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1 Introduction

Motivation. Enrichment of categories generalizes the notion of ordinary categories by abstracting
the role played by the category of sets in the definition of an ordinary category. The general question
is to what V we can abstract, or in other words, in what V we can enrich. The classical and best
known answer for ordinary categories is a monoidal category V. We replace Hom sets by ‘Hom
objects’ of V, and since a monoidal V has a ‘tensor product’ we will easily define a ‘two-variable’
composition map as an arrow in V.

Contents of this Essay. The central object of study of this essay will be the 2-category
V-CAT of V-enriched categories, where V is a symmetric monoidal closed (and later complete)
category. We give the basic defintions of V-categories, V-functors and V-natural transformations
in section 2 after a short introduction to monoidal categories. In section 3 we then transfer parts
of our theory of CAT to V-CAT, the 2-category of V-categories, such as showing V-CAT to have
symmetric monoidal structure, describing V itself as a V-category and defining Hom V-functors. For
the latter, through the notion of closedness we will first internalize Hom sets to Hom objects in V
and then lift canonical ordinary functors to V-functors. In section 4 we first define (and explain) the
concept of extraordinary V-naturality and apply it to canonical families of maps previously defined.
Equipped with this tool we can prove a first (weak) Yoneda Lemma with ease, and this version
will be enough to recover important parts of the theory of adjunctions from CAT in V-CAT.
To strengthen this Yoneda lemma we will proceed to internalize ordinary V-functor categories to
V-categories in V-CAT by explicit construction using ends in section 5. We will not only gain
(partial) closedness of V-CAT in further analogy to CAT but will then also be able to state our
stronger Yoneda lemma and various consequences. Finally, an outlook is appended to this essay
which hints towards a generalized theory of enrichment.

Notation. We will basically follow the notation of [2] but sometimes make it more complicated,
in order to possibly achieve more clarity about the objects at interest. Also in many easy but larger
diagrams we will not write out all the objects if there is only one reasonable way to fill them in. We
sometimes denote partial functors by TA− where the hyphen indicates the free slot. A justification
for this notation will be given in section 4. The view on the difference between V-Cat and V-CAT
taken in this essay is explained in section 5.4 but does not have considerable impact on the rest of
this work.

Development of the Subject. First papers developing the idea of enrichment in monoidal
categories were written in the 1960’s by various authors including Eilenberg, Maclane and Kelly.
The book [2] by Kelly written in it’s original version 1982 was the first ‘connected account’ on the
topic, and summarized more than 15 years of developement.

Acknowledgments. I would like to thank Julia for supervising me and suggesting the great
book by Tom Leinster [5], although in the end I could not include much of it in this essay. The
content and structure of content strongly follows the first two Chapters of [2] (but less so the style
of presentation, in particular we do present some of the tedious verifications). Examples and proofs
from [3], [4], [7] were included when it was suitable, and the nLab has proven to be a valuable
reference as well. The outlook is based on [5] and [6].
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2 Monoidal Categories

Definition 2.1. A monoidal category consists of a six-tuple (V0,⊗, a, l, r, I), where V0 is an ordinary
category containing the object I, ⊗ is a bifunctor V0 × V0

//V0 called the tensor map, and a, l, r
are natural isomorphisms as follows: a : ((−⊗−)⊗−) //(−⊗ (−⊗−)), l : (−⊗ I) //1V and
r : (I ⊗−) //1V satisfying the following coherence axioms:

(W ⊗X)⊗ (Y ⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

W ⊗ ((X ⊗ Y )⊗ Z)(W ⊗ (X ⊗ Y ))⊗ Z

((W ⊗X)⊗ Y )⊗ Z

aW,X,Y⊗Z

''

1W⊗aX,Y,Z

CC

aW,X⊗Y,Z//

aW,X,Y ⊗1Z

��

aW⊗X,Y,Z

77

(V1)

(X ⊗ I)⊗ Y
aX,1,Y //

rX⊗1Y ''

X ⊗ (I ⊗ Y )

1X⊗lYww
X ⊗ Y

(V2)

This axioms are of course not chosen randomly, but such that all possible diagrams formed of
a, l, r, 1 via tensoring commute. This is formalized in a coherence theorem for monoidal categories.
As an example we quickly derive commutativity of two small diagrams in the next claim. These two
examples also show that it will be tedious to handle a, l, r without a general theorem of coherence.

Claim 2.2 (consequences of coherence axioms). The coherence axioms imply that

a) l ⊗ 1 = la : (I ⊗X)⊗ Y //X ⊗ Y and (1⊗ r)a = r : (X ⊗ Y )⊗ I //X ⊗ Y

b) l = r : I ⊗ I //I

Proof.

(I ⊗ (I ⊗X))⊗ Y a //

(1⊗l)⊗1

''

•
1⊗(l⊗1)

��
1⊗a

��

• a // •

•

a⊗1

OO

(r⊗1)⊗1

66

a
// •
r⊗(1⊗1)

??

a
// •

1⊗l

__

(1)

The outer square commutes by (V1). All inner diagrams except the right most triangle commute by
(V2) and naturality. We thus deduce commutativity of the right most triangle; i.e. 1⊗(1⊗l) = 1⊗la.
After composing it with l and using naturality of l, it is equivalent to the first statement of Part
a). The second statement follows similarly when setting the two objects on the right equal to I.

Part b) follows after noting lI = 1⊗ lI : I ⊗ (I ⊗ I) //I as a consequence of naturality of l.
Thus we have rlar−1 = r(1 ⊗ l)ar−1 : I ⊗ I //I . This yields the statement after substituting
(1⊗ l)a = r⊗ 1 by (V2) on the right hand side, part a) on the left hand side, and commuting r to
the right via it’s naturality.
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We give a rough sketch of a proof of coherence from the above claim: Part a) does already
provide us with an important tool, namely the possibility of commuting a with instances of l, r.
And after having commuted all instances of l, r to the right, we see by Part b) that we don’t have
to worry about differences in instances of l, r in places where they can occur interchangebly (i.e. on
I ⊗ I). Thus (argued sketchily) it remains to prove coherence for instances of a and 1 alone. Using
this reduction argument a full proof, based on the construction of a free weak monoidal category
on one generator, can be found in [3] (however, without the explicit proof of the above claim and
actually assuming Part b)).

Handling ‘almost identities’ seems difficult. Do we need a, l, r at all? If a, l, r are identities then
we recover the notion of a strict monoidal category. Now it is indeed possible to show that every
(weak) monoidal category is equivalent to some strict monoidal category and this actually does
provide us with an alternative proof of coherence (see [5] for a sketch). But still, the notion of a
monoidal category is non-trivial in that we cannot just regard V0 as a strict monoidal category by
quotienting out isomorphic objects. In Example 2.3 f) below we construct a non-strict monoidal
category where all isomorphic objects are equal.

Finally, we can ask (the technical question) why we don’t require full coherence in the definition
of monoidal category from the beginning. In a more general setting, that is in higher categorical
structures, this indeed seems to be the way to go (cf. [5]). But technically, it is easier to check two
diagrams than all possible diagrams.

After these theoretic considerations, which show that monoidal categories as defined above are
actually interesting, let us give examples of monoidal categories:

Examples 2.3. (examples of monoidal categories)

a) An example of a strict monoidal category is the category of endofunctors [C, C] of an ordinary
category C. Tensoring is composition, I is the identity functor and a, l, r clearly become
identities in this case.

b) A category with all finite products and a terminal object I is monoidal: Fix a product A×B
with projections maps π1, π2 for each pair of objects A,B and make it the value of our tensor
map. f × g is then uniquely induced via π1(f × g) = fπ1 and π2(f × g) = gπ2 . Universality
of the product makes × a functor and induces the maps a, l, r. The coherence axioms (V1)
and (V2) also follow from universality (i.e. uniqueness of factorizing morphisms). We call
such categories cartesian. This example includes for instance Set, Top and Cat.

c) Categories with an ‘actual’ tensor product, e.g. Ab and R-Mod: The case is much like the
previous example, because we need to use the universal property (by which ⊗ is defined) to
derive the monoidal structure.

d) Posets 2 = {0, 1} and R+: In the category 2 we write 1 = true, 0 = false, ≤ = `. It
becomes monoidal when we set ⊗ = ∧, I = 1. In particular a, l, r are identities. For the
poset R+ (reversely ordered positive reals with ∞) we set I = 0, ⊗ = + and see again a, l, r
to be identities. (We will reuse these examples, but their potential power was developed by
Lawvere in [7].)

e) For a topological space X, we get a monoidal category (X,x) with loops as objects and
homotopy classes of loop homotopies as morphisms. ⊗ is concatenation of loops.
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f) Take a skeleton Set0 ⊂ Set (i.e. the full subcategory of a collection of representatives of
isomorphism classes in Set). This has products and is monoidal. All isomorphic objects are
equal. We show it is non-strict: Take the countably infinite set N ∈ Set. Then N is stable
under products N ×N = N . Assume all a are identities so that (f × g)× h = f × (g × h) :
N × N −→ N for all f, g, h : N −→ N . But then applying πi=1,2 to this equality yields
fπ1 = (f × g)π1, hπ2 = (g × h)π2 . Projections are epi in Set. So we deduce f = f × g = g
for all f, g which is not true.

We define the underlying set functor V as the representable functor V(I,−). Applying this
to our above examples we see that it indeed gives us a notion of elements of objects of V (in partic-
ular for the examples of the usual cartesian categories and categories of models of algebraic theories
with tensor products). But it is definitely not always faithful (e.g. for V = Cat). We will write
f ∈ X for f : I //X but keep in mind that X is an ‘object of something’ and not in general a set.

2.1 V-enriched categories

The third example from the above revives the spirit of our initial motivation: In monoidal categories
we can express ’multivariable operations’ (e.g. a binary composition) as actual morphisms in V.
We now give the central definition of

Definition 2.4 (V-categories). A V-category A consists of a set of objects obA, Hom objects
A(A,B) ∈ V for each pair of objects A,B, a multiplication law

M = MAABC : A(B,C)⊗A(A,B) //A(A,C)

and an identity element j = jAA : I //A(A,A) satisfying the following axioms:

(A(C,D)⊗A(B,C))⊗A(A,B)
a //

M⊗1
��

A(C,D)⊗ (A(B,C)⊗A(A,B))

1⊗M
��

A(B,D)⊗A(A,B)
M

// A(A,D) A(C,D)⊗A(A,C)
M

oo

(M1)

A(B,B)⊗A(A,B)
M // A(A,B) A(A,B)⊗A(A,A)

Moo

I ⊗A(A,B)

jB⊗1

OO

l

55

A(A,B)⊗ I

1⊗jA

OO

r

ii
(M2)

With our notion of elements, be can now proceed to ’plug in’ elements into our composition
map M . We can define

Definition 2.5 (pre- and postcomposition). Let f ∈ B(B,C), g ∈ B(D,A). Call

B(A, f) : B(A,B)
l−1
//I ⊗ B(A,B)

f⊗1 //B(B,C)⊗ B(A,B)
M //B(A,C)

B(g,B) : B(A,B)
r−1
//B(A,B)⊗ I 1⊗g //B(A,B)⊗ B(D,A)

M //B(D,B)

post- and precompostion. Write B(1, f) and B(g, 1) if no reference to a specific A and B in a
statement is needed or if they are clear from context.

5



(M1) and (M2) are nothing but generalizations of the associativity and identity axioms of
ordinary categories. Then, by naturality and coherence of a, l, r, pre- and postcomposition obey
the same laws as they do in ordinary category theory. We use this observation throughout the essay
and formalize it as follows

Claim 2.6 (pre- and postcomposition). Let f ∈ B(A,B), g ∈ B(B,C), h ∈ B(C,D). Then

a) B(1, g)f = B(f, 1)g =: g.f and B(1, jB)f = B(jA, 1)f = f

b) B(1, g)B(1, f) = B(1, g.f) (similarly for B(g.f, 1)) and B(1, f), B(h, 1) commute

c) M(B(f, 1)⊗ 1) = M(1⊗ B(1, f))

d) M(B(1, f)⊗ 1) = B(1, f)M (similarly for B(f, 1))

Proof. Let us just record to corresponding statements in an ordinary category which will make
them easy to remember for further use:

a) g ◦ f is well def. and 1 ◦ f = f ◦ 1 = f

b) g ◦ (f ◦ −) = (g ◦ f) ◦ − and f ◦ (− ◦ h) = (f ◦ −) ◦ h
c) (− ◦ f) ◦ − = − ◦ (f ◦ −) d) (f ◦ −) ◦ − = f ◦ (− ◦ −)

In the ordinary case these are trivial applications of the axioms of a category. The proofs in the
enriched setting just follow along these lines (now based on (M1) and (M2)) by coherence and
naturality. To demonstrate this let us proof the first statement:

B(1, g)f = M(g ⊗ 1)l−1f = M(g ⊗ f)l−1 = M(1⊗ f)r−1grl−1 = B(f, 1)g

We can generalize axioms for ordinary functors on the same ground

Definition 2.7 (V-functors). A V-functor T : A //B is defined by a map of objects T :
obA //obB and morphisms on Hom objects T = TAB : A(A,B) //B(TA, TB) in V, such that

A(B,C)⊗A(A,B)
MA //

T⊗T
��

A(A,C)

T
��

B(TB, TC)⊗ B(TA, TB)
MB
// B(TA, TC)

(VF1)

and

I
jA //

jB $$

A(A,A)

T
��

B(TA, TA)

(VF2)

We call T fully faithful (f.f.) if all TAB are isomorphisms in V.

Let us apply the definition to our previous example
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Examples 2.8. (examples of V-functors)

a) In the case V = Set we recover the notion of ordinary functors (Hom objects are sets of
arrows and TAB are functions between them compatible with composition).

b) By enriching in V = Cat we obtain (or define) 2-Categories. We call Cat-functors corre-
spondingly 2-functors, and Cat-natural transformations 2-natural (see Def. 2.9). Composi-
tion becomes a functor A(B,C)×A(A,B) //A(A,C). If T is a 2-functor then TAB is an
ordinary functor between ’Hom categories’ compatible with the composition functors. A one
object 2-Category A is a strict monoidal category when identifying A(A,A) = V0, M = ⊗
(and the corresponding weak notion is obtained through bicategories: cf. Example 6.4).

c) A category enriched in Ab is a preadditive category (see [1]).

d) For a category d enriched in the poset R+ denote the Hom objects by d(x, y). The existence
of a multiplication law then reads d(y, z) + d(x, y) ≥ d(x, z) and the existence of a unit
0 ≥ d(x, x). Thus we recover the notion of a generalized metric space (without requiring:
d(x, y) = d(y, x), x 6= y ⇒ d(x, y) ≥ 0 and d(x, y) <∞). R+-Functors are contracting maps:
d(x, y) ≥ d′(Tx, Ty) for T : d //d′

e) A category P enriched in 2 gives us: P (y, z)∧P (x, y) ` P (x, z) and 1 ` P (x, x) via composi-
tion law and identity element. Thus, we can write P (x, y) as the statement x ≤ y (being true
or false) and obtain that P is a preorder. A functor T : P //P ′ is an order preserving
map: x ≤ y ` Tx ≤ Ty

Definition 2.9 (V-natural transformations). A V-natural transformation α : T //S : A //B
is a family of elements αA∈A ∈ B(TA, SA) such that:

A(A,B)
T //

S
��

B(TA, TB)

B(1,αB)

��
B(SA, SB)

B(αA,1)
// B(TA, SB)

(VN1)

With these definitions at hand we can now consider the category of V-categories.

3 The 2-Category V-CAT

We first have to consider how the objects defined above compose.

1. V-functors T : A //B , S : B //C can clearly be composed as (ST )AB = STATBTAB
(since STMA = SMB(T ⊗ T ) = MC(ST ⊗ ST ))

2. We need two types of composition for V-natural transformations

(a) vertical composition: Given A BR //

T

��

P

DD

α
��
β
��

we can define β · α : T //P as:

(β · α)A = βA.αA
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since by claim 2.6 we have

B(1, βB.αB)T = B(1, βB)B(1, αB)T = B(1, βB)B(αA, 1)R

= ... = B(βA.αA, 1)P

(b) horizontal composition: Given A B

T

��

P

DD
α
�� C

Q

��

S

DD
β
��

we can pre- and postcompose with

functors as follows: (Qα)A := QTAPAαA gives a V-natural transformation QT //QP
(since by (VF1) we getQC(1, α) = C(1, Qα)Q). Trivially, (βP )A := βPA gives a V-natural
transformation QP //SP as well. Thus we define

β ∗ α = βP ·Qα

(Associative) vertical composition implies the existence of an ordinary category of V-functors,
which we denote by [A,B]0. Composition of V-functors and horizontal composition then show that
the collection of V-categories V-CAT can be regarded as 2-category in the sense of Definition 2.4.
For we can give the following defintion of composition and identity:

Definition 3.1 (V-CAT). Let V-CAT denote the 2-category, whose objects are V-categories A,B
and whose Hom objects are [A,B]0 with composition being the functor

M : [B, C]0 × [A,B]0 // [A, C]0 , (Q,T ) 7→ QT , (β, α) 7→ β ∗ α

and identity jA ≡ 1A ∈ [A,A]0.

(M1) follows from associativity of the above compositional calculus. Pre- and postcompos-
ing with elements as in Def. 2.5 gives compostion with V-functors: e.g. V-CAT(1, Q)T = QT ,
V-CAT(1, Q)α = 1Q ∗ α = Qα. (M2) follows from definition of jA.

Let I ∈ V-CAT be defined by obI = {1}, I(1, 1) = I and with canonical M, j. For A ∈ A
there is a unique V-functor I //A mapping 1 to A, which we call JA.

From the theory of 2-Categories we can define a ’underlying category functor’ as the
2-representable functor (−)0 := V-CAT(I,−) : V-CAT //CAT . We will learn about V-
representables soon. Until then, we have to give an explicit construction of (−)0: Let α : T //S :
A //B

1. A0 = (A)0 = V-CAT(I,A) has objects JA ≡ A and morphisms (f : JA //JB ) ≡ f ∈
A0(A,B) = VA(A,B) with composition law g ◦ f = g.f and identity jA.

2. T0 = (T )0 maps JA to TJA and f to Tf . Thus (T0)AB : f 7→ Tf equals V TAB. Therefore, if
V is faithful the assignment T 7→ T0 is injective.

3. α0 = (α)0 : (α0)A = αA ∈ B0(T0A,S0A) = V B(TA, SA) and naturality follows by applying
V to (VN1).
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These definitions clearly make (−)0,AB : [A,B]0 // [A0,B0] a functor. (VF1) and (VF2) then
follow from our definition of M noting that a functor is fully defined by it’s action on objects and
morphisms.

Remark. We will sometimes adopt the notation f : A //B for an element f of A(A,B), i.e.
f : I //A(A,B). There are of course no morphisms in the V-category A, so there is also nothing
we could f : A //B confuse with.

3.1 Monoidal structure of V-CAT

In analogy to CAT we want to be able to speak of multivariable functors. The monoidal structure
of CAT allows us do internalize multivariable functors to ordinary functors via cartesian products
of ordinary categories. Thus we are seeking a tensor map in V-CAT. The following would be a
natural definition:

ob(A⊗ B) = obA× obB
(A⊗ B)((A,B), (A′, B′)) = A(A,A′)⊗ B(B,B′)

(VT1)

and an identity element jA⊗B = (jA ⊗ jB)l−1. But then in order to apply our ’two variable’
composition MA ⊗MB we need to be able to rearrange our tensor product of Hom objects, to
define MA⊗B as follows:

(A(A′, A′′)⊗ B(B′, B′′))⊗ (A(A,A′)⊗ B(B,B′))
MA⊗B //

m

��

A(A,A′′)⊗ B(B,B′′)

(A(A′, A′′)⊗A(A,A′))⊗ (B(B′, B′′)⊗ B(B,B′))
MA⊗MB

22
(VT2)

The construction of m can be achieved via

Definition 3.2 (symmetry). A monoidal category is symmetric if it is equipped with an addi-
tional natural isomorphism cXY : X ⊗ Y //Y ⊗X (called the symmetry) and satisfying some
appropriate axioms of commutativity.

Of course, the axioms are chosen such that a, l, c, r satisfy a corresponding coherence theorem;
and we have already said enough on this topic (it should be clear that m can be defined in any
reasonable way).

We want to complete the construction of the tensor map in V-CAT. So far, we have defined
in (VT1) and (VT2) a tensor map on 0-cells (objects, i.e. V-categories). This enables us to speak
already about V-CAT × V-CAT for instance (obtained by ’tensoring’ 2-categories). We further
define on 1-cells and 2-cells

T ⊗ P : A⊗ B //C ⊗ D by (T ⊗ P )ABA′B′ := (TAA′ ⊗ PBB′)

and
α⊗ β : T ⊗ P //Q⊗ S by (α⊗ β)A := (αA ⊗ βA)l−1
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By this definition (and in the second step using the definition of MC⊗D) we see that

((α′ ⊗ β′)A.(α⊗ β)A) := (α′A ⊗ β′A)l−1.(αA ⊗ βA)l−1

= ((α′A.αA)⊗ (β′A.βA))l−1

This is just stating that (−⊗−)(AB)(A′B′) : [A,A′]0 × [B,B′]0 // [A⊗ B,A′ ⊗ B′]0 is an (ordinary)
functor and thus a morphism in Cat. It remains to verify the V-functor axioms for our tensor map.
We can deduce from the above definitions

T ′T ⊗ S′S = (T ′ ⊗ S′)(T ⊗ S) and (α′ ∗ α)⊗ (β′ ∗ β) = (α′ ⊗ β′) ∗ (α⊗ β)

And this expresses compatibilty (VF1) of (− ⊗ −)(AB)(A′B′) with the composition functors M
(multiplication in V-CAT×V-CAT and in V-CAT from Def. 3.1 and (VT2)). It clearly preserves
identities as in (VF2). We have thus defined a 2-functor:

⊗ : V-CAT× V-CAT //V-CAT (2)

The symmetric monoidal structure can be inferred as follows: The maps a, l, r, c of V induce
2-natural isomorphisms which will again be denoted by a, l, r, c between appropriate instances of
the above tensor 2-map and with identity object I.

For instance, the V-functor aABC : (A⊗ B)⊗ C //A⊗ (B ⊗ C) is given by ((A,B), C) 7→
(A, (B,C)) on objects and by (aABC)((A,B),C))((A′,B′),C′) = aA(A,A′)B(B,B′)C(C,C′) on Hom objects.
Similar definitions hold for l, r, c. We deduce that a, l, r, c satisfy the coherence relation because
their maps on Hom objects do so in V. We also see that they are 2-natural: Plugging e.g. a into
(VN1) gives

[A,A′]0 × [B,B′]0 × [C, C′]0
((−⊗−)⊗−) //

(−⊗(−⊗−))
��

[(A⊗ B)⊗ C, (A′ ⊗ B′)⊗ C′]0
V-CAT(1,αA′B′C′ )
��

[A⊗ (B ⊗ C),A′ ⊗ (B′ ⊗ C′)]0
V-CAT(aABC ,1) // [(A⊗ B)⊗ C,A′ ⊗ (B′ ⊗ C′)]0

(3)

We then have to verify an equality of ordinary functors. Recall that e.g. V-CAT(1, aABC) is a
functor acting by postcomposing the V-functor aABC to V-functors and V-natural transformations.
Then the above equality follows directly from naturality of a and coherence. Similarly for l, r, c.

We have finally arrived at the following:

V-CAT is a symmetric monoidal 2-category

Of course the words ‘functor’ and ‘natural’ in the definitions of monoidality and symmetry now
need to be replaced by 2-functor and 2-natural. This statement allows to transfer the following
constructions from the case V = Set:

Definition 3.3 (partial functors). Let T : A⊗ B //C be a bifunctor. We define it’s partial
functors as follows:

TA− = T (A,−) : B l−1
//I ⊗ BJ

A⊗1B//A⊗ B T //C

T−B = T (−, B) : A r−1
//A⊗ I1A⊗JB

//A⊗ B T //C
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As for V =Set we now have

Proposition 3.4 (Compatibility condition of partial functors). Let TA− : B //C and
T−B : A //C be families of V-functors satisfying T−AB = TB−A =: T (A,B) on objects. Then
there is a unique ’full’ V-functor T : A⊗ B //C with partial functors TA− and T−B if and only
if we have

A(A,A′)⊗ B(B,B′)
T−B′⊗TA−

//

c

��

C(T (A,B′), T (A′, B′))⊗ C(T (A,B), T (A,B′))

M
��

C(T (A,B), T (A′, B′))

B(B,B′)⊗A(A,A′)
TA′−⊗T−B // C(T (A′, B), T (A′, B′))⊗ C(T (A,B), T (A′, B))

M

OO

(4)

Note that the corresponding condition in Set would read T (g, 1)T (1, f) = T (1, f)T (g, 1)

Proof. (cf. [4]) Suppose T exists. The upper leg of diagram (4) is by Definition 3.3 of partial
functors equal to the upper leg of the following diagram:

•
(1⊗j)⊗(j⊗1) //

m

��

Y
T⊗T //

m

��

•
M

��
X

r−1⊗l−1
??

r−1⊗l−1
  

•

•
(1⊗j)⊗(j⊗1) // • M⊗M // •

T
??

where X = A(A,A′)⊗B(B,B′) and Y = (A(A,A′)⊗B(B′, B′))⊗ (A(A,A)⊗B(B,B′)). The inner
diagrams (from left to right) commute by coherence, naturality of m, and functoriality of T . But
by claim 2.6 the lower leg yields T(AB)(A′B′). Thus if T exists it equals the upper leg of (4). A
similar diagram (obtained by folding in c to the above) shows T is equal to the lower leg of diagram
(4). Thus diagram (4) commutes and T is equal to its diagonal.

Conversely, assume TA−, T−B are functors compatible as in (4). We set T(AB)(A′B′) equal to
the diagonal of (4) (clearly there is just one way to define T on objects). We have to verify the
V-functor axioms for T . Since T is defined via composition of it’s partial functors, the proofs follow
from axioms of composition, functoriality of partial functors and (4). As an example (VF2) follows
by:

TjA⊗B := M(T−B′ ⊗ TA−)(j ⊗ j)l−1 = M(j ⊗ j)l−1 = M(j ⊗ 1)l−1j = j

Proposition 3.5 (Naturality is verified variable by variable). Let αAB ∈ C(T (AB), S(AB))
and T, S : A⊗ B //C . Then α being a V-natural transformation T //S is equivalent to
αA · : TA− //SA− , α ·B : T−B //S−B being families of V-natural transformations.
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Proof. (cf. [4]) Given α V-natural, the corresponding αA·, α·B are obtained by precomposition with
functors as Def. 3.3, and thus natural.

Conversely, assume that αA · , α ·B are natural ∀A,B. Let X = A(A,A′) ⊗ B(B,B′) as before.
Then

•
M

}}
1⊗C(α,1)

��

X
S−B′⊗SA− //

T−B′⊗TA−oo

T−B′⊗SA−

��

•
C(1,α)⊗1

��

M

!!
•

C(α,1) ""

•
M
��

•
1⊗C(1,α)

oo
C(α,1)⊗1

// •
M
��

•

C(1,α)||
• •

The outer legs of this diagram give us the statement we seek. The upper squares commute by
V-naturality of αA · , α ·B. All other parts commute by Claim 2.6.

We quickly consider underlying bifunctors of V-bifunctors. Let T : A⊗ B //C as before.
Then the underlying bifunctor defined through the underlying partial functors is not the same
as T0, since (A ⊗ B)0 6= A0 × B0 in general. We can however reconcile those two pictures if we
precompose T0 with the canonical embedding u : A0 × B0

//(A⊗ B)0 given by (A,B) 7→ (A,B)
and (f, g) 7→ (f ⊗ g)l−1. The partial functors of T0u are now the underlying functors of the partial
V-functors of T . (This can be seen tracing through our definition of partial functors, and defining
I ∼= I0 and thus B0

∼= I0 × B0 in the only reasonable way).

Another consequence of symmetry is the following duality. We define an involutive operation
(−)op on V-CAT: Aop lives on the same set of objects as A and has Hom objects Aop(A,B) =
A(B,A). Then multiplication can clearly be given as MA

op
= MAc and the identity element stays

the same. We deduce from the above definitions that: (A ⊗ B)op = Aop ⊗ Bop and (Aop)0 =
(A0)op =: Aop

0 . Every V-functor T : A //B has a canonical opposite functor T op : Aop //Bop ,
every V-natural transformation α : T //S has a canonical αop : Sop //T op .

Examples 3.6. An example of a non-symmetric monoidal category is the category of bimodules
over a noncommutative ring.

3.2 Closedness and internal Homs

Drop symmetry for now. We note that Cat is itself a Cat-category, and more trivially Set is
itself a Set-category. That means, both admit to lift their Hom-Sets to Hom-Objects. We will call
these internal Homs. In the Set case the underlying idea is the idea of currying; a two-variable
function can be seen as an indexed family of functions. Thus to every to 2-variable function there
corresponds a unique function from the ‘index set’ to the set of functions in the second variable
(the internal Hom). We generalize the idea as follows:

Definition 3.7 (closedness). A monoidal category is called closed if the functor−⊗Y : V0
//V0

has right adjoint [Y,−] : V0
//V0 for all Y ∈ V0.
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We denote this adjunction (natural in X and Z) by

π = πYXZ : V0(X ⊗ Y,Z) ∼= V0(X, [Y.Z]) (5)

and the unit and counit correspondingly:

d = dYX : X // [Y,X ⊗ Y ] , e = eYZ : [Y,Z]⊗ Y //Z (6)

Drawing from our intuition from Set (where e evaluates variables from Y on functions from [Y,Z])
we call the counit evaluation. And with the same intuition in mind we will refer to the adjunction
as currying in one direction, and uncurrying in the other.

To see that such an adjunction lifts underlying Sets to internal Homs consider setting X = I in
eq. (5) to obtain a map ι (Y above an arrow denotes the usual Yoneda embedding):

ιX : V0(X,Z)
Y (l) //V0(I ⊗X,Z)

πX
//V0(I, [X,Z]) =: V [X,Z]⇒ ιX : V0(X,Z) ∼= V [X,Z] (7)

We thus call [X,Z] an internal Hom. Even more is possible: We can lift ι and π to maps between
internal Homs. For this we need the following technical lemma. The result of this discussion is
given in claim 3.9.

Lemma 3.8 (technical lemma). Let F a G : D //C and F ′ a G′ : D //C be adjunctions with
their corresponding natural isomorphisms and counits denoted by π, ε and π′, ε′. Let s : F //F ′

be a natural isomorphism. Then there exist a unique natural isomorphism t : G //G′ such that
π′ ◦ Y (s−1) = Y op(t) ◦ π : D(FA,B) //C(A,G′B).

Proof. Let f : FA //B . From π′ ◦ Y (s−1) = Y op(t) ◦ π we deduce:

(π′)−1(tπ(f)) = (π′)−1(π′(fs−1)) = fs−1 (8)

On setting f = εB we find (π′)−1(t) = εBs
−1. Thus if a natural isomorphism t as above exists it

is unique. Similarly we deduce (exchange the roles of primed and non primed) that π−1(t−1) = ε′s
must hold. Conversely, we can take this as definitions for t,t−1 and need to verify naturality and
that the definitions give mutual inverses. This is a straight forward check using bijectiveness and
naturality of our adjunctions.

We can now apply this lemma to derive the liftings of π and ι. For our first application we use our
natural isomorphism rZ : Z ⊗ I //Z . Take r = s, i−1 := t, and adjunctions π : (−⊗ I) a [I,−],
π′ : 1V0 a 1V0 . Since r : (−⊗ I) ∼= 1V0 have a unique i:

i : 1V0
∼= [I,−] or i = iZ : Z ∼= [I, Z] (9)

such that π−1(iZ) = rZ or iZ = π(rZ).

Our second application uses our isomorphism aXY Z : (X ⊗ Y )⊗ Z //X ⊗ (Y ⊗ Z). Take
a = s, p−1 := t, and adjunctions π : (−⊗X)⊗ Y a [X, [Y,−]], π′ : −⊗ (X ⊗ Y ) a [X ⊗ Y,−]. As
before, we derive natural isomorphisms:

p = pXYZ : [X ⊗ Y,Z] ∼= [X, [Y,Z]] (10)
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such that pZ = π(eX⊗Y aXY Z) and p−1
Z = π′(eX(eY ⊗ 1)a−1

XY Z)).

We adopt the notation (−) for πY from now on, in particular dropping reference to Y . For
later use we sum up the above discussion in the following simple equations:

p−1 = e(e⊗ 1)a , i = r (11)

Now p, i are liftings of π and ι in the following sense.

Claim 3.9. The V morphisms p and i given in eq. (10) and (9), and defined by eq. (11), fulfill
V i = ιI : V Z //V [I, Z] and V p = ιπι−1 : V [X ⊗ Y, Z] //V [X, [Y, Z]].

Proof. We will proof the first statement. Take f : I //Z . Then:
V i(f) = r̄f . On the other hand ιI(f) = fl = fr = r(f ⊗ 1) = r̄f .

Examples 3.10. a) Set is of course closed. The adjunction reduces to the rule of currying (or
lambda conversion) as described before.

b) Top is unfortunately not closed. Instead one can work with a ’convenient category of topo-
logical spaces’ (see the same-named article in nLab for more information).

c) In the poset 2 the internal Hom is implication [y, z] = (y ⇒ z): The unit and counit are
the (always existing) entailments x ` (y ⇒ x ∧ y) and (y ⇒ z) ∧ y ` z (’modus ponens’). It
follows that we have an adjunction x ∧ y ` z iff x ` (y ⇒ z). This is just seen to be the
’deduction theorem’ (cf. [7]).

d) In the poset R+ we have x + y ≥ z iff x ≥ z − y and thus set [y, z] = max{z − y, 0}
(cf. [7]). Indeed unit and counit just express the inequalities x ≥ max{x + y − y, 0} and
max{z − y, 0}+ y ≥ z.

e) If we have a symmetry c we have the adjunction Y ⊗− a [Y,−] via π′ = πY (c). More generally
a closed V with a right adjoint for Y ⊗ − is called biclosed (thus we deduced symmetric ⇒
biclosed).

We can now return to our initial goal to establish V ∈ V-CAT. In order to avoid confusion
we will call the V-category lifting of V that we are about to construct by the name V̂. From our
discussion the following definition should be natural

Definition 3.11 (construction of V̂ as V category). Let V̂ have objects obV, and Hom objects
V̂(Y,Z) = [Y,Z]. Multiplication is given via currying as successive evaluation, explicitly: M :
[Y, Z]⊗ [X,Y ] // [X,Z] corresponds under the adjunction πX to:

([Y,Z]⊗ [X,Y ])⊗X a // [Y,Z]⊗ ([X,Y ]⊗X)
1⊗e // [Y,Z]⊗ Y e //Z (12)

The unit jX corresponds under currying to l : I ⊗X //X . Then V̂ ∈ V-CAT.

For this definition to hold we need to verify (M1) and (M2). As an example and introduction
to the type of proofs that will follow we proof (M1).
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Proof. The statement we need is M(1 ⊗ M)a = M(M ⊗ 1). The definition of M reads M =
e(M ⊗ 1) := e(1⊗ e)a. If we uncurry our statement we get:

e(1⊗ e)a((1⊗M)⊗ 1)(a⊗ 1) = e(1⊗ e)a((M ⊗ 1)⊗ 1)

⇔ e(1⊗ e(M ⊗ 1))a(a⊗ 1) = e(M ⊗ 1)((1⊗ 1)⊗ e)a
⇔ e(1⊗ e)(1⊗ (1⊗ e)) = e(1⊗ e)(1⊗ (1⊗ e))

using (tacitly as always) coherence in the last step. (Note that the indices can be easily filled in by
drawing the diagram corresponding to the above equations.)

Claim 3.12 (V̂0 and V0 are equivalent). The underlying category V̂0 and V0 are equivalent.

Proof. We define the hat functor (̂·) : V0
//V̂0 as follows

X 7→ X and (f : Y //Z ) 7→ (f̂ = ι(f) ∈ [Y, Z]) (13)

Recall ι(f) = fl. Clearly 1̂X = l̄ = jX . For functoriality it remains to check ι(f).ι(g) = ι(fg).
Uncurried this statement reads:

e(1⊗ e)a((fl ⊗ gl)l−1 ⊗ 1) = fgl (14)

which is easily verified using e(h̄ ⊗ 1) = h. Now the hat map is clearly full and faithful (ι is iso)
and bijective on objects which completes the proof.

We will denote the inverse hat functor as (̌·) : V̂0
//V0 mapping g ∈ [X,Y ] 7→ ḡl−1. Of

course all this being very bijective, we can just identify the two categories. And the reader is invited
to ignore the small hats here and there. But when we want to reach an explicit expression in one
or the other representation we need to refer back to these isomorphisms.

3.3 Hom and tensor as V-functors

Having our V-category V̂ at hand, we can now go on to lift representables to V-functors with
codomain V̂. Roughly speaking, representables should be curried versions of composition. More
formally,

Definition 3.13 (lifting representables). Define A(A,−) : A //V̂ by A(A,−)(B) = A(A,B)
(written as A(A,B)) on objects and A(A,−)BC : A(B,C) // [A(A,B),A(A,C)] corresponds
under adjunction to

M : A(B,C)⊗A(A,B) //A(A,C) (15)

Again we need to verify that this is a functor, which follows from our definition and axioms of
composition in both A and V̂. We verify (VF1):

Proof. We will sometimes abbreviate A for A(A,−)BC in proofs for legibility. The definition of

A(A,−)BC then reads e(A ⊗ 1) = MA. (VF1) states M V̂(A ⊗ A) = AMA. Uncurry the RHS to
get MA(1⊗MA)a and the LHS to get MA(MA⊗ 1). Thus the statement holds by (M1) in A.
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Keeping the analogy to the Set case, we want our representables to be bifunctors: Consider eq.
(15) of Def. 3.13. We would like to fix the right, instead of the left argument of M . This was shown
to be possible in the presence of symmetry in Example 3.10 e). Thus assume V to be symmetric
and define

A(−, B) := Aop(B,−) : Aop //V̂ (16)

These functors are compatible by definition of opposite composition and associativity axioms and
therefore we have

Claim 3.14 (existence of Hom). There is a functor A = HomA : Aop ⊗A //V̂ with partial
functors A(A,−) and A(−, B)

Proof. By Proposition 3.4 we need to verify that M(A−B′ ⊗AA−) = M(AA′− ⊗A−B)c (with the
notation for partial functors introduced in Def. 3.3). Uncurry to get

e(1⊗ e)a((A−B′ ⊗AA−)⊗ 1) = e(1⊗ e)a((AA′− ⊗A−B)⊗ 1)(c⊗ 1)

write A−B as Aop
B− and plug in the definition e(B ⊗ 1) = MB using MA

op
= MAc. The above

statement then holds by (M1).

Recall our short discussion of underlying bifunctors and the inclusion map u at the end of the
last subsection. It assures that the partial functors of the underlying ordinary bifunctor will be the
underlying functors of the partial V-bifunctor.

Definition 3.15 (the hom functor). Define homA to be the ordinary bifunctor (HomA)0u post-
composed with our hat isomorphism. Explicitely hom = homA : Aop

0 ×A0
//V0 is given by:

homA : Aop
0 ×A0

u //(Aop ⊗A)0
(HomA)0// V̂0

(̌·) //V0 (17)

In accordance with our discussion of underlying functors, we denote homA(g, f) = A(g, f) and
keep in mind that the RHS of this statement should be identified with a map to V0. Then we derive
from eq. (17) and def. of (̌·)

hom(A, g) = Agl−1 = M(g ⊗ 1)l−1 ≡ A(A, g) (18)

and
hom(g,A) = homAop(A, g) = Mc(g ⊗ 1)l−1 = M(1⊗ g)r−1 ≡ A(g,A) (19)

Our notation turns out to be perfectly consistent with section 1.

Recall that composition in A0 was just given by the above expressions (18) and (19). We thus
obtain the following ordinary bifunctor equality (proved by comparing partial functors):

HomA0 = V homA ≡ V (HomA)0 (20)

(surpressing u and hats on the right.) Thus our initial Definition 3.13 describes indeed a lifting of
the ordinary Hom functor of the underlying category!

We now consider the special case A = V̂. Then we can interchangebly write V̂(ĝ, f̂) and [f, g].
This is the content of the following claim:
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Claim 3.16 (the internal Hom functor [−,−]). There exists [−,−] : Vop
0 × V0

//V0 with
partial functor [Y,−] being the right adjoint of − ⊗ Y as before. [−,−] is given by hom when we
identify V̂0

∼= V0 in it’s domain. Explicitly,

[−,−] = hom( ˆ(−), ˆ(−))

Proof. We need to show that the partial functor hom(Y,−) agrees with [Y,−]. Clearly on objects
we have equality homV̂(Y,Z) = [Y,Z]. Thus, we have to show equality on morphisms: uncurry the

statement homV̂(Y, f̂) = [Y, f ] to get (using e(f̂ ⊗ 1) = fl and eq. (18)):

LHS = e(1⊗ e)a((f̂ ⊗ 1)l−1 ⊗ 1) = fe

which equals the RHS by definition of our adjunction.

Note that the internal Hom bifunctor could also be defined along the lines of the ’technical
lemma’ (but without isomorphisms). This is reflected in the first part of the following

Lemma 3.17 (properties of homV̂). Let f : X //Y and α : I //A(A,B). We have

a) V̂(f̂ , 1) = [f, 1] = e(1⊗ f) and V̂(1, f̂) = [1, f ] = fe

b) [α, 1]A(A,−) = iA(α, 1) and [1, α]A(A,−) = iA(1, α) (dually, [α, 1]A(−, A) = ...)

Proof. a) Recall V̂(f̂ , 1) = M(1⊗ f̂)r−1. Uncurry to get

e(1⊗ e)a((1⊗ f̂)r−1 ⊗ 1)) = e(1⊗ f)

as required. The second statement follows directly from definition of the adjunction.

b) From part a) we derive that the uncurried LHS reads e(1 ⊗ α)(A ⊗ 1) = MA(1 ⊗ α). On
the RHS employ our definition i = r to obtain the same expression. The second statement
follows similarly.

So far we constructed an ’internalized’ V-functor Hom for all V-categories A and showed that
it reduced to the ordinary Hom by applying the underlying category and underlying set functor
accordingly. We should now also internalize tensoring in the case A = V. Again, intuition is drawn
from the Set case for the following definition:

Definition 3.18 (lifting the tensor map). Define Ten : V̂ ⊗ V̂ //V̂ on objects by Ten(X,Y ) =
X ⊗ Y . Let Ten(XY )(X′Y ′) : [X,X ′]⊗ [Y, Y ′] // [X ⊗ Y,X ′ ⊗ Y ′] be the map corresponding to
’separate evaluation’ as follows:

([X,X ′]⊗ [Y, Y ′])⊗ (X ⊗ Y )
m //([X,X ′]⊗X)⊗ ([Y, Y ′]⊗ Y )

e⊗e //X ′ ⊗ Y ′

Recast this definition in the form e(Ten⊗1) = (e ⊗ e)m. As for A(A,−)BC this allows us to
(uncurry and) proof V-functor axioms (VF1) and (VF2). We can then proceed as in the case of
Hom when constructing hom: Consider Ten0 u and postcompose with the hat isomorphism. Call
this map ten. The absurdly chosen name becomes obsolete because: Just as homV̂(−,−) was shown

equal to [−,−], it follows that ten(−,−) is equal to − ⊗ −, when we identify V̂0 and V0 in their
domains. This gives the first part of the following
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Lemma 3.19 (properties of Ten). Our tensoring V-functor Ten has the properties

a) −⊗− is given through V0 ×V0
∼= V̂0 × V̂0

u //(V̂ ⊗ V̂)0
Ten0 //V̂0

∼= V0. In particular g ⊗ f =

Ten(u(ĝ, f̂)) ≡ Ten(g, f) (surpressing u and hats).

b) Ten allows us to represent HomA⊗B as follows

(Aop ⊗ Bop)⊗ (A⊗ B)
HomA⊗B //

m

��

V̂

(Aop ⊗A)⊗ (Bop ⊗ B)
HomA⊗HomB

// V̂ ⊗ V̂

Ten

OO (21)

Proof. a) was explained above.

b) We only need to verify equality on partial tensor by Prop. 3.4. We want

(A(C,C ′)⊗ B(D,D′))
(A⊗B)((AB),−) //

A(A,−)⊗B(B,−)
**

V̂

V̂ ⊗ V̂

Ten

OO (22)

Uncurrying the lower leg gives (e ⊗ e)m((A ⊗ B) ⊗ (1 ⊗ 1)) = (MA ⊗MB)m as required.
Dually, the second partial tensor equality follows.

An immediate consequence of both parts of this lemma is

(A⊗ B)(u(f, g), u(f ′, g′)) = Ten(A(f, f ′),B(g, g′)) = A(f, f ′)⊗ B(g, g′) (23)

This equation is of course derived from the functorial equality from part b), and precomposed with
elements under use of part a).

Remark (another coherence theorem). The reader will have inevitably noticed the similarity
of the above proofs. Just as translating trivial applications of ordinary category axioms to V-
enriched categories for a monoidal V, the proofs followed along the lines of verifications in Set via
our notion of currying. And the feeling that ”the statements just had to be right” can be put into
another coherence theorem encompassing many of the verifications above.

4 The weak Yoneda Lemma

4.1 Extraordinary V-naturality

Let us recall our definition of V-naturality. Given V-functors T, S : A //B and a family of maps
αA : TA //SA (i.e. elements of B(TA, SA)), this constitutes a V-natural transformation if the
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following commutes

A(A,B)
T //

S
��

B(TA, TB)

B(1,αB)

��
B(SA, SB)

B(αA,1)
// B(TA, SB)

(VN1)

A short motivation for what will follow: In the above we are ’moving between images’ of functors
depending covariantly on one variable A. By Prop. 3.5 the multivariable case can be treated
’variable by variable’ and we denote it in the following string diagram:

A Bop Cop D

Cop Bop D A

(24)

where the upper row denotes the arguments of T , and the lower row the arguments of S. We obtain
more general transformations if we allow bending of these comparing lines: This requires co- and
contravariant dependence on an argument, and ’bending’ the rules for α accordingly as we will soon
define. For instance we obtain:

A Aop Cop D
or

Cop Bop C B

Cop Bop D B Aop Bop B A

(25)

This is essentially what this section will be about, and it provides a nice (and correct) intuition for
composition of these generalized natural transformations: namely, vertically concatenation of the
string diagrams (if possible, as it is in eq. (25) if C = D). We will prove this at the end of this
section.

Remark. 1. We are not braiding above (there is no crossing ’above’ or ’below’).

2. There is a fourth way to ’reasonably arrange four arrows’ in a square. This is for instance
used in Riemannian geometry to express TpM ∼= T ∗pM via g (see [3], p. 220). But it does not
generalize to the diagrammatic calculus above. All cases can be subsumed in the notion of
dinatural transformations (which Max Kelly did not like, cf. nLab).

We now define extraordinary V-naturality sketched above. Given a bifunctor S : Aop ⊗A //B
and a familiy αA : K //S(A,A) we call it V-natural if

A(A,B) = Aop(B,A)
SA− //

S−B

��

B(S(A,A), S(A,B))

B(αA,1)

��
B(S(B,B), S(A,B))

B(αB ,1)
// B(K,S(A,B))

(VN3)

commutes. Dually (i.e. bending lines in the domain of T ) we call αA : T (A,A) //K , for
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T : Aop ⊗A //B , V-natural if we have

A(B,A)
TA− //

T−B

��

B(T (A,B), T (A,A))

B(1,αA)
��

B(T (A,B), T (B,B))
B(1,αB)

// B(T (A,B),K)

(VN2)

Let us first establish that we can again verify naturality variable by variable. In other words
drawing the above string diagrams makes sense.

Proposition 4.1 (extraordinary V-naturalilty is verified var-by-var). Given T : (Aop ⊗ Bop)⊗ (A⊗ B) //C .
Then αAB : K //T ((A,B), (A,B)) is V-natural in (AB) iff it is V-natural in each variable.

Proof. We proof the non-obvious direction. Let X = (A⊗B)((AA′)(BB′)) = A(A,A′)⊗B(B,B′).
Consider (with our notation for partial functors T−BA′B′ = T ((−, B), (A′, B′))) the following:

•
M

��

(1⊗C(αA′B′ ,1))

��

X
c //

(T−BA′B′⊗TA′BA′−)

��

T−BA′B′⊗TA′−A′B′oo •
TABA′−⊗TAB−B //

(TABA′−⊗T−BA′B)

��

•

(1⊗C(αAB ,1))

��

M

��
•

C(αA′B′ ,1)

((

•

M

##

•
1⊗C(αA′B ,1)
oo

M

��

•
M

��

1⊗C(αA′B ,1)
// •

M

||

•

C(αAB ,1)

ww

•

C(αA′B ,1)

��
•

(26)

The outer diagram gives the statement we want. All lower shapes commute by claim 2.6. The
left and right trapezoids commute by V-naturalilty of partial transformations. Thus the above
commutes if the pentagon commutes, which is seen to be a compatibilty condition on partial functors
of T .

As in the case of ordinary V-natural transformation we can pre- and postcompose with
(adequate) functors P,Q to yield new V-natural transformation Qα and αP (compare construc-
tion of V-CAT in section 3). It amounts to post- or precomposing with a single string in our
diagram. Finally we can, as in the case of (VN1) V-naturality, tensor our natural maps, to obtain
a map between the corresponding tensored functors. This follows directly from equation (23) and
by tensoring the naturality diagrams.

We now consider vertical composition β · α, i.e. composition of the string diagrams below.
By our Prop 4.1 we can always fix variables, and thus can assume w.l.o.g. α has at most one
argument in it’s domain. The verification of the statement ’string diagrams can be composed’ then
splits up in the following three subcases of composition series:

1. The first series of compositions claims composability of string diagrams as follows:

Aop A Aop A ... A
gives

Aop A Aop A

(27)
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example: αAB : K //T (A,A,B,B), βABC : T (A,B,B,C) //S(A,C) for T, S with
codomain B and domain as above. The composite is βAAA.αAA : K //S(A,A).

2. The second series is dual to the first (read the diagram upside down).

3. The third series claims composability of:

A

gives

A

A Aop A ... A

A A

(28)

example: αAB : T (A) //S(A,B,B), βAB : S(A,A,B) //R(B) giving the composite
βAA.αAA : T (A) //R(A)

Proof. Recall that B(β.α, 1) = B(α, 1)B(β, 1) and B(α, 1) commutes with B(1, β) by claim 2.6. The
proofs are then straightforward; e.g. for the first term of the first series we alternatingly apply V-
naturality and commute our terms to get from B(αB, 1)B(βBB, 1)S−B to B(αA, 1)B(βAA, 1)SA−.

4.2 Naturality of canonical maps

We will now give a range of useful and canonical examples for the concepts developed in the last
section.

Lemma 4.2 (V-naturality of general maps). Let R,S : A //B , T : A⊗ B //C and
α : R //S . Conditions in the definition of these objects can be reformulated as follows

a) αA : I //B(RA,SA) satisfies (VN2) iff α : R //S satisfies (VN1)

b) SAB : A(A,B) //B(SA, SB) satisfies (VN1) in B iff S satisfies (VF1). The same holds
for V-naturality in A.

c) T−B,AA′ = T (−, B)AA′ : A(A,A′) //C(T (A,B), T (A′, B)) satisfies (VN2) in B iff T fulfills
the compatibility condition of Prop. 3.4.

Proof. a) Write out (VN2)

A(A,B)
SAB //

RAB

��

B(SA, SB)
B(RA,−) // [B(RA,SA),B(RA,SB)]

[αA,1]

��

B(RA,RB)

B(−,SB)

��
[B(RB,SB),B(RA,SB)]

[αB ,1]
// [I,B(TA, SB)]

(29)

and the statement follows immediately from lemma 3.17 b).
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b) Write out (VN1) for the variable B (i.e. fix A in the statement):

A(C,D)
A(A,−) //

B(SA,−)S

��

[A(A,C),A(A,D)]

[1,SAD]

��
[B(SA, SC),B(SA, SD)]

[SAC ,1]// [A(A,C),B(SA, SD)]

(30)

By Lemma 3.17 a) uncurrying the upper leg gives SADe(A⊗ 1) = SADM
A and the lower leg

gives e(B ⊗ 1)(SCD ⊗ SAC) = MB(SCD ⊗ SAC). Thus (VN1) in B is equivalent to (VF1).
Considering Sop yields the statement in A

c) Fix A,A′. Set Q(−,−) = C(T (A,−), T (A′,−)). With our usual notation for partial functors,
we want to verify

B(B,B′)
QB− //

Q−B′

��

[Q(B,B), Q(B,B′)]

[T−B ,1]
��

[Q(B′, B′), Q(B,B′)]
[T−B′ ,1]

// [A(A,A′), Q(B,B′)]

(31)

Employing Lemma 3.17 a) once more we can derive that this diagram corresponds under the
adjunction to the equality of M(TA′−⊗T−B) = M(T−B′⊗TA−)c expressing the compatibility
of partial functors.

We should dwell a bit on this lemma: We expressed three seemingly different ideas (naturality,
functoriality, compatibility of partial functors) in terms of the same idea. Also, part c) gives a
justification of the non-standard (but space saving) notation for partial functors in this essay.

Lemma 4.3 (V-naturality of canonical maps). We have

a) A(A,−)BC and A(A, g) are V-natural in all variables

b) eYZ : [Y, Z]⊗ Y //Z (the LHS is the functor Ten(V̂(−,−),−) evaluated at (Y,Z, Y )) is
V-natural in all variables. And so are aXY Z , lZ , rZ , cXY (where the functors are formed of
appropriate instances of Ten).

c) MABC : A(B,C)⊗A(A,B) //A(A,C) is V-natural in all variables (where the LHS is the
functor Ten(A(−,−),A(−,−)))

d) jA : I //A(A,A) is V-natural. For A = V, f : A //B this implies [1, f ]jA = [f, 1]jB.

e) pXY Z : [X ⊗ Y,Z] // [X, [Y, Z]] (where the LHS is the functor V̂(Ten(−,−),−) and the

RHS is V̂(−, V̂(−,−))) is natural in all variables. And so are dYX , iZ .

Proof. a) A(A,−)BC is V-natural in all variables by the previous lemma part b). So we have that
A(A,−)BCg : I // [A(A,B),A(A,C)], for g : I //A(B,C), is V-natural in A, and thus
by the previous Lemma part a) a natural transformation (which is identified with A(A, g)).
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b) As an example of (VN3), we verify naturality of e in Y

[Y, Y ′]
Ten([Y ′,Z],−)//

V̂op(Z,−)
��

[[Y ′, Z]⊗ Y, [Y ′, Z]⊗ Y ′]

[1,eY
′

Z ]

��

[[Y ′, Z], [Y, Z]]

Ten(−,Y )
��

[[Y ′, Z]⊗ Y, [Y, Z]⊗ Y ]
[1,eYZ ]

// [[Y ′, Z]⊗ Y, Z]

(32)

Recall that we have Ten(−, Y )XX′ = Ten(−,−)(XY )(X′Y )(1 ⊗ jY )r−1 by definition of par-
tial functors. Then we can use Lemma 3.17, as well as the definitions e(Vop ⊗ 1) = Mc,
e(Ten⊗1) = (e ⊗ e)m and e(j ⊗ 1) = l to derive the statement by uncurrying the above
diagram.

The cases of the maps a, l, r, c are treated in exactly the same spirit.

c) By definition MABC = e(A(A,−)BC ⊗ 1). To apply our compositional calculus we note:
Firstly, by precomposing eYZ in each label with the functor A(−,−) it becomes a V-natural

map of the form e
A(A,B)
A(C,D) : S(A,B,C,D,A,B) //R(C,D). Secondly, precompose 1A with

A(−,−) and then tensor it with A(A,−)BC (natural by a) ) to obtain a natural map of the
form A(A,−)BC ⊗1A(D,E) : T (B,C,D,E) //S(A,B,A,C,D,E). We can now draw a nice
string diagram

Aop A Aop A

A Aop Aop A Aop A

Aop A

(33)

to see that by the second and third composition series M composes to be a V-natural map
in all variables.

d) jA : I //A(A,A) is a natural transformation transformation between the functors 1A and
1A : A //A . Thus by the previous Lemma, it is (VN2) natural in A. Note that applying
V to the (VN1) naturality of j means A(jA, 1)f = A(1, jB)f or equivalently by claim 2.6,
A(1, f)jA = A(f, 1)jB. Thus in the case A = V we (re)derived for f : A //B

[1, f ]jA = [f, 1]jB (34)

e) Following the spirit of part c) we just note the equalities : p−1 = [1, e] Ten(−, Y ), d =
e(p⊗1)(j⊗1)l−1, i = [1, r]d (proved, of course, by uncurrying and using our defining equations
(11) of p−1 and i, and definitions of d and j in V). Then V-naturality follows from our
compositional calculus as in part c).

Having shown d, e to be V-natural enables us (together with our results about composition) to
state the following general principle. Below A,B,C,D,E, F each denote a set of variables.
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Lemma 4.4 (a general principle for V-naturality). For T, S,R V-functors with codomain
V̂ we have that α : T (D,D,A,B)⊗ S(E,E,A,C) //R(F, F,B,C) is V-natural if and only if
α : T (D,D,A,B) // [S(E,E,A,C), R(F, F,B,C)] is V-natural (in all variables)

Proof. α = e(α⊗ 1). α = [1, α]d.

4.3 Forms of the weak Yoneda Lemma

Lemma 4.5 (weak Yoneda lemma). Let α : A(K,A) //FA denote a natural transformation

between A(K,−) and F : A //V̂ . Let η : I //FK denote an element of FK. The following
mapping gives a bijection between the set of natural transformations A(K,−) //F and the set
of elements of FK:

α 7→ η(α) : I
jK //A(K,K)

αK //FK

η 7→ α(η) , α(η)A : A(K,A)
FKA // [FK,FA]

[η,1] // [I, FA]
i−1
//FA

Proof. 1. We want to show η(α(η)) = η. Consider

[FK,FK]
[η,1] // [I, FK]

i−1
FK // FK

I

jFK

OO

jI // [I, I]

[1,η]

OO

i−1
I // I

η

OO (35)

Using jI = iI (by definition jI = r = i), the lower leg gives η. The upper leg gives η(α(η)).
The diagram commutes by V-naturatily of j (Lemma 4.3 d)) and naturality of i.

2. We want to show α(η(α)) = α. Consider

A(K,A)
A(K,−)//

FKA

��

[A(K,K),A(K,A)]
[j,1] //

[1,αA]
��

[I,A(K,A)]
i−1
//

[1,αA]
��

A(K,A)

αA

��
[FK,FA]

[αK ,1] // [A(K,K), FA]
[j,1] // [I, FA]

i−1
// FA

(36)

The diagram commutes by V-naturality of α and naturality of i. The top leg of this diagram is
1A(K,A) since by Lemma 3.17 [j, 1]A(K,−) = i. Comparing the legs then yields the statement.

Corollary 4.6 (extra variable Yoneda). Let F : Bop ⊗A //V , K : B //A and αBA :
A(KB,A) //F (B,A) be V-natural in A. By Yoneda, let η = η(αB · ) : I //F (B,KB). Then
ηB is V-natural in B if and only of αBA is V-natural in B

Proof. Just write out the Yoneda bijection from the previous Lemma

η(αB · ) : I
jKB //A(KB,KB)

αBKB //F (B,KB)

α(ηB)A : A(KB,A)
F (B,−)(KB)A // [F (B,KB), F (B,A)]

[ηB ,1] // [I, F (KB,A)]
i−1
// F (B,A)

Our results for composition of V-natural maps imply that if one of αBA, ηB is V-natural in B the
other is as well.
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Corollary 4.7 (Yoneda for representables). For T : A //B take F = B(B, T−).

a) A map η : I //F (K) = B(B, TK) corresponds under the Yoneda bijection to

α(η)A : A(K,A)
TKA //B(TK, TA)

B(η,1) //B(B, TA) (37)

b) Let T = 1A (i.e F = A(B,−)). Then αA = A(η,A) and α : A(K,−) //F is an iso if and
only if η(α) is an iso.

Proof. a) Apply Lemma 3.17 b) to the Yoneda bijection: i−1[η, 1]B(B,−) = i−1iB(η, 1).

b) Suppose η is an iso. Then α = A(η, 1) (by part a) ) is an iso. Conversely suppose α is an iso.
Then αα−1 = A(η(α).η(α−1), 1) = A(1, 1) = 1 and α−1α = A(η(α−1).η(α), 1) = A(1, 1). By
bijectiveness of the Yoneda map we deduce η(α).η(α−1) = 1(= jB) and η(α−1).η(α) = 1(=
jK). Thus η(α) is an isomorphism in A0.

Definition 4.8 (representations). F : A //V is called representable if there is an V-natural
isomorphism α : A(K,−) //F . (K,α) is called a representation of F , η(α) is called its counit.

Note that by the previous Corollary any two representations (K,α), (K ′, α′) of F are isomorphic
as follows: By part b) (α′)−1α = A(k,−) and this k : K //K ′ is an iso.

If we ’index’ a family of representables with an additional variable we get the following

Lemma 4.9 (extra variable representations). Let F : Bop ⊗A //V such that for all B
F (B,−) is representable by (KB,αBA), where K is a map on objects. Then there is a unique way
to make K a V-functor K : B //A (i.e. define KBC) such that αBA becomes V-natural in B.

Proof. By our ’extra variable Yoneda’ Corollary 4.6 αBA is V-natural in B if and only if the
corresponding family ηB : I //F (B,KB) is. This determines KBC is follows

B(B,C)

F (−,KC)CB

��

KBC // A(KB,KC)
F (B,−)KBKC

))

αB(KC)

vv
F (B,KC)

iF (B,KC) ((

[F (B,KB), F (B,KC)]

[ηB ,1]uu
[F (C,KC), F (B,KC)]

[ηC ,1]
// [I, F (B,KC)]

(38)

The outer diagram just (VN2) for ηB. The right square is seen to follow from the Yoneda bijection.
Since F (B,−) is representable α is an isomorphism and we deduce

KBC = α−1
B(KC)i

−1
F (B,KC)[ηC , 1]F (−,KC)CB (39)

Thus KBC is seen to be V-natural in B (not yet in C since in the equation above we don’t know if
K is a V-functor).
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But then, by Lemma 4.2 b) KBC satisfies (VF1). It remains to show (VF2). Set B = C in the
above diagram. Then we have following commutative diagram

I

j

  

j

##

I

j
##

j

##B(B,B)

F (−,KB)

��

K // •
F (B,−)

// •
[ηB ,1]

��
•

[ηB ,1]
// •

(40)

The outer legs of this diagram are equal. We deduce [ηB, 1]F (B,−)KjB = [ηB, 1]F (B,−)jKB.
Apply α−1i−1 to get (VF2).

4.4 Applications of the weak Yoneda Lemma

We are now in the position to rediscover more parts of ordinary category theory. We have established
that V-CAT is a 2-category and in every 2-category (actually also in the weak case) we have the
notion of adjunctions, defined below. But with the Yoneda Lemma at hand, we will see that this
notion becomes richer and more powerful.

Definition 4.10 (adjunctions). An adjunction T a S consists of V-functors T : A //B , S :
B //A and V-natural transformations η : 1 //TS , ε : ST //1, called unit and counit, which
satisfy the triangular identities Tε · ηT = 1T and εS · Sη = 1S .

We write out the triangular identities in variables:

TεA.ηTA = jTA , εSB.SηB = jSB (41)

Lemma 4.11. Take T, S as above. Then specifying an adjunction T a S by natural transformations
η, ε satisfying the triangular identities is equivalent to specifying a V-natural isomorphism

nAB : A(SB,A) ∼= B(B, TA) (42)

natural in A and B.

Proof. Assume T a S is given by η, ε satisfying the triangular identities: Set F (−,−) = B(−, T−).
Then ηB : I //B(B, TSB) = F (B,SB) corresponds by our ’extra-variable Yoneda’ Corollary
4.6 to a family of maps α(ηB)A V-natural in A and B. By Corollary 4.7 these are of the form:

nAB := α(ηB)A = B(ηB, 1)TSBA , nAB : A(SB,A) //B(B, TA) (43)

Dually (via Sop a T op : Aop //Bop ) define a V-natural map n̄ as follows

n̄AB = A(1, εA)SBTA , n̄AB : B(B, TA) //A(SB,A) (44)

We need to show n̄ABnAB = 1A(SB,A). Equivalently 1 and n̄n need to correspond to the same map
under the Yoneda bijection (for fixed B):

jSB = 1A(SB,SB)jSB
!

= n̄SBBnSBBjSB = A(1, εSB)SBTSBB(ηB, 1)TSBSBjSB
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The RHS now is seen to be εSB.SBTSBηB if we use (VF2) for T , (VF1) for S and the rules of claim
2.6 (In other words, translate the ordinary steps to get from εS(T (1)η) to εSη). Thus we have
shown that n̄n = 1 is equivalent to the second triangular identity. Dually, nn̄ = 1 is equivalent to
the first triangular identity.

Conversely, we just define ηB, εA to correspond to nAB and n−1
AB by the Yoneda bijection. V-

naturality follows from Cor. 4.6, and the triangular identities from the argument above.

If we combine this previous Lemma and Lemma 4.9 about ’parametrized representations’ we
obtain the following

Corollary 4.12. T : A //B has left adjoint if and only if B(B, T−) is representable for all B.

Examples 4.13. For V = Set we have a criterion for B(B, T−) being representable. Namely it is
representable if and only if (B ↓ T ) has initial object (SB, η) (cf. [1]). For general V there is no
such criterion.

Definition 4.14 (equivalences in V-CAT). We call A and B equivalent, if there exist V-functors
T : A //B , S : B //A and V-natural ismorphisms η : 1 //TS , ζ : ST //1. We speak of
an adjoint equivalence if T a S.

Lemma 4.15. Given an equivalence as above it can be made into an adjoint equivalence with unit
η.

Proof. Set ε = ζ · Sη−1
T · ζ

−1
ST to be the counit. As in the last proof translate the ordinary steps to

the enriched case in order to verify the triangular identities. (cf. [1])

Lemma 4.16. In an adjunction as above, T is fully faithful if and only if ε is iso.

Proof. We have the equality

A(A,A′)

A(εA,1) ''

TAA′ // B(TA, TA′)

A(STA,A′)

nTAA′

77
(45)

since under the Yoneda bijection: nTAAA(εA, 1)jA = nTAAεA = A(ηTA, 1)TεA = jTA = TAAjA.
The second equality holds by def. of n, the third is the first triangular identity. Clearly εA being
iso makes T fully faithful. Conversely, n−1

AA′TAA′ being iso makes εA iso by Corollary 4.7 b).

Proposition 4.17 (V-category equivalence conditions). T : A //B is part of an equivalence
if and only if it is fully faithful and essentially surjective

Proof. If T is part of and equivalence it is essentially surjective. By the previous Lemmas 4.15 and
4.16 we may choose the equivalence adjoint, so that ε is iso, and T thus fully faithful.

Conversely, choose SB, and ηB : B //TSB iso by T being essentially surjective. Then
n := B(ηB, 1)TSBA is iso (T is f.f.) and V-natural in A. We can regard it as ’parametrized repre-
sentation’, and apply Lemma 4.9 to get functoriality for S and V-naturality in B. This determines
our adjunction by Lemma 4.11, and ε is iso by the triangular identities and T being full and faithful.
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Of course, adjunctions in V-CAT carry over to ordinary adjunctions in the underlying cate-
gories, by applying (−)0 to categories, functors and natural transformation. We just note:

n0 ≡ B0(η, 1)T0f = V B(η, 1)Tf = V n (46)

by our result on ’lifting the Hom’ functors in equation (20).

In this section we have have recovered many basic result about adjunctions and equivalences
from ordinary category theory. This was made possible by the presence of the Yoneda bijection
that we established in the previous subsections. Finally, we note that as for ordinary categories,
adjunctions in V-CAT can be composed (by composition of n’s) and form a category (actually
even a 2-category through the definition of mates). We will end this section with 2 examples.

Examples 4.18. a) pXY Z : V̂(Ten(X,Y ), Z) ∼= V̂(X, V̂(Y, Z)) is V-natural in all variables and
thus gives rise to an adjunction with S = Ten(−, Y ) and T = V̂(Y,−). Thus by constructing
p we have not only lifted π but also it’s adjunction.

b) q := pV̂(c, 1)p−1 : V̂(X, V̂(Y,Z)) ∼= V̂(Y, V̂(X,Z)) is V-natural and thus gives an adjunction

with S = (V̂(−, Z))op : V̂ //V̂op and T = V̂(−, Z) : V̂op //V̂ . The underlying adjunction
(via eq. (46)) can be identified with

q0 : πY (c)Zπ
−1 : V0(X, [Y, Z]) ∼= V0(Y, [X,Z]) (47)

This operation corresponds to ’changing the curried variable’ (at least, if V = Set).

5 Functor categories

So far we internalized Hom sets of V to form V̂ and lifted the Hom functors of underlying categories,
the tensor product of V0 and the closedness adjunction of V0. Now we would like to lift the Yoneda
bijection. In particular we need to ’internalize’ sets of V-natural transformations to objects in V.
In other words, we want to internalize functor categories of V-CAT to V-categories. Instead of
constructing this indirectly by an adjunction to the tensor map (as we did for V itself) we will
give an explicit construction by the notion of ends. But in the section on closedness below we will
reconcile these two approaches.

We assume V to be closed symmetric monoidal and complete.

5.1 Construction of functor V-categories via ends

For the explicit construction of the internatlized functor categories, we seek a K ∈ V such that V K
corresponds to the set of natural transformations R //S (for R,S V-functors).

Definition 5.1. Let T : Aop ⊗A //V . A V-natural family λA : K //T (A,A) is called
an end of T , if for all V-natural families αA : Y //T (A,A) there exists a unique factorizing
f : Y //K such that αA = λA.f . We call K or the tuple (K,λ) an end, λ it’s counit, and denote
K by

∫
A∈A T (A,A). Write α = α(f) and f = f(α) for the 1-1 correspondence by universality of λ.
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We have an equivalent characterization of this definition as follows (recall eq. (47)):

Lemma 5.2 (ends as equalizers). (K,λ) is an equalizer of

K
λ //

∏
A∈A T (A,A)

ρ //
σ
//
∏
A,B∈A[A(A,B), T (A,B)] (E)

where πABρ := ρABπA, ρAB := q0(T (A,−)AB) and πABσ := σABπB, σAB = q0(T (−, B)BA), if and
only if λA = πAλ : K //T (A,A) is an end of T.

Proof. We claim the following diagrams are equivalent:

A(A,B)

T (−,B)BA

��

T (A,−)AB // [T (A,A), T (A,B)]

[λA,1]
��

(VN2) ⇔

K

λB
��

λA // T (A,A)

ρAB

��
[T (B,B), T (A,B)]

[λB ,1]
// [K,T (A,B)] T (B,B) σAB

// [A(A,B), T (A,B)]

(48)

To see this apply q0 to the left diagram (recalling q0 = πY (c)π−1). By Lemma 3.17 we have
π−1([λ, 1]T ) = e(T ⊗ λ). Thus

q0([λ, 1]T ) = π(e(T ⊗ λ)c) = π(e(T ⊗ 1)c(λ⊗ 1)) = π(e(T ⊗ 1)c)λ = q0(T )λ (49)

Taking T to be T (−, B) and T (A,−) above (and λ accordingly) proofs our claim. It follows: A
morphism α : Y //

∏
A∈A T (A,A) satisfies σα = ρα if and only if we have πABσα = πABρα if

and only if πAα satisfies (VN2) (by the equivalence above). Thus there is a one to one correspon-
dence of cones (K,α) and V-natural transformations αA via αA = πAα. The universal property of
a coequalizer of (E) and an end become equivalent.

This Lemma provides us with a tool to discuss existence of ends. In particular, if A is small we
immediately see ends to exist.

We can use the fact that our adjunction π preserves naturality (Lemma 4.4) to prove:

Lemma 5.3. The right adjoint functor [X,−] preserves ends.

Proof. Let (
∫
T (A,A), λ) be an end of T . By our adjunction we have a 1-1 correspondence of maps

Y
f

xx

αA

%%
π←→

Y ⊗X
f

xx

αA

%%
[X,
∫
T (A,A)]

[1,λA]
// [X,T (A,A)]

∫
T (A,A)

λA
// T (A,A)

(50)

Now αA is V-natural if and only αA is. So given α as above there exists a unique f making the
right diagram commute. Thus [1, λA] is an end.

We deduce an isomorphism

[X,

∫
A∈A

T (A,A)] ∼=
∫
A∈A

[X,T (A,A)] (51)
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Note that the above proof resembles a proof of the fact that right adjoints preserve limits. But
V-natural families are not cones. To generalize the above Lemma we would probably require ad-
junctions that preserve V-naturality, or some other compatibility in conjunction with Lemma 5.2.

As in the case of ends, we can now consider the induced functors of an end with an additional
indexing variable. So let T : Aop ⊗A⊗ B //V̂

Lemma 5.4 (extra variable ends). Let λAB : H(B) :=
∫
A T (A,A,B) //T (A,A,B) be an end

of T for all B. Then there is a unique way to make H a functor H : B //V̂ such that λAB
becomes V-natural in B.

Proof. Write out the V-naturality condition for λAB in B:

B(B,C)
HBC //

T (A,A,−)BC

��

[HB,HC]

[1,λAC ]
��

[T (A,A,B), T (A,A,C)]
[λAB ,1]// [HB,T (A,A,C)]

(52)

By the previous lemma [1, λ ·C ] is an end. Since the lower leg is natural in A, there is a unique way
to choose the HBC to make the above diagram commute, for all B,C. We have to show this makes
H functorial. This follows from universality of [1, λ]. For instance, (VF1) follows from

•

M

��

•
1⊗[λ,1]oo M // •

[λ,1]

��

•

1⊗[1,λ]

``

[λ,1]⊗1

��

B(C,D)⊗ B(B,C)
T⊗H
oo

H⊗H
��

M
//

T⊗T

OO

•

T

>>

H

��
•

M
||

•
[1,λ]⊗1oo M // •

[1,λ]

""
• •

(53)

We want the right central square to commute. Everything else commutes by (52), (VF1) for T and
claim 2.6. Thus, postcomposing the square with [1, λ] and using uniqueness of factorizing maps
gives the statement.

Note that by the very definition of ends, there is a 1-1 correspondence between V-natural
families αAB : Y //T (A,A,B) and induced maps fB : Y //H(B), vaguely reminding us of
our (extra variable) Yoneda bijection. We can now discuss V-naturalilty of f in B (if B stands
for an appropriate set of variables). So the following Lemma can be seen in analogy to our ’extra
variable Yoneda’ Lemma

Lemma 5.5 (naturality in extra variables of ends). Let T : Aop ⊗ Bop ⊗A⊗ B //V̂ and

(H(B,C), λ ·BC) an end of T (−, B,−, C) where H : Bop ⊗ B //V̂ as in the previous Lemma. Let
αAB : Y //T (A,B,A,B) be natural in A, and fB = f(α ·B) : X //H(B,B) the factorizing
map. So αAB = λABBfB. Then, α is V-natural in B if and only if f is V-natural in B.
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Proof. Since αAB = λABBfB, f being V-natural clearly implies α being V-natural in B. Conversely
assume the product λABBfB = αAB is V-natural in B. Consider the diagram

•
[fC ,1] // •

•
[1,λABC ]

dd

[fC ,1] // •
[1,λABC ]

??

•

[λACC ,1]

OO

B(B,C)
TA−AC

oo

H(C,−)

OO

H(B,−)//

TABA−

��

•

[fB ,1]

OO

[1,λABC ]

��
• [1,λABB ] // •

[fB ,1]

OO (54)

The inner square is the statement we want to show. The other parts commute trivially or by
V-naturality of λ. Now by our assumption, λABBfB is V-natural in B, and so the outer legs of this
diagrams commute. Arguing by universality of [1, λ] yields the statement.

Let R : B //V̂ , S : Aop ⊗A⊗ B //V̂ . We claim that our previous Lemma implies

RB
gB

xx

β(gB)A=βAB

%%

gB V-nat. ⇔ βAB V-nat. in B∫
A S(A,A,B)

λ′AB

// S(A,A,B)

(55)

Indeed, when identifying RB ∼= I ⊗ RB via the V-natural isomorphism l, under adjunction the
above becomes equivalent to

I
fB=gl

ww

αAB=βAB l

&&

fB V-nat. ⇔ αAB V-nat. in B

[RB,
∫
A S(A,A,B)]

λABB=[1,λ′AB ]
// [RB,S(A,A,B)]

which is just a special case of our previous Lemma.

Corollary 5.6 (Fubini’s Theorem). With objects as in the previous Lemma.

a) If
∫
A T (A,B,A,C) exists for all B,C then∫

(A,B)
T (A,B,A,B) ∼=

∫
B
H(B,B) =

∫
B

∫
A
T (A,B,A,B)

b) If in addition
∫
B T (A,B,D,B) exists for all A,D then∫

A

∫
B
T (A,B,A,B) ∼=

∫
B

∫
A
T (A,B,A,B)
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Proof. αAB V-natural in (A,B) corresponds to a V-natural fB = f(α ·B) : Y //H(B,B) and
factors uniquely as αAB = λABfB. Now fB factors uniquely over

∫
BH(B,B). Thus the RHS of a)

satisfies the universal property of an end of T (−−,−−). Part b) follows immediately from a).

We have developed the tools we need and will construct functor categories now.

Definition 5.7. Let T, S : A //B . Define [A,B](T, S) :=
∫
A∈A B(TA, SA) , if it exists, and call

it’s counit EA = EA,TS .

In accordance with our initial motivation we note that the elements α : I // [A,B](T, S) of
[A,B](T, S) are in 1-1 correspondence to V-natural transformation αA : I //B(TA, SA) by the
identification αA = EA,TSα. In analogy to the ordinary case, EA can be seen as ’evaluation map’
and we will refer to it as evaluation. We want [A,B] to be a V-category, and E to be a functor.
We thus require

[A,B](S.R)⊗ [A,B](T, S)

EA⊗EA

��

M [A,B]
// [A,B](T,R)

EA

��
and

I
j[A,B]
//

j $$

[A,B](T, T )

EA

��
B(SA,RA)⊗ B(TA, SA)

M // B(TA,RA) B(TA, TA)

(56)

The lower legs of each diagram are V-natural in A. By universality of EA this defines M [A,B] and
j[A,B] uniquely. And, once more by universality of EA this implies the axioms (M1) and (M2) for
[A,B] (we can ’evaluate’ them down to the axioms in B and use naturality of a, l, r) .

We sum up our construction: [A,B] forms a V-category of V-functors with Hom objects being
ends [A,B](T, S) if they exists for all T, S : A //B . Multiplication and identity are given through
the defining equations (56) above, where EA is the V-functor [A,B] //B mapping T 7→ TA and
EA,TS is given as counit of [A,B](T, S).

If not all Hom objects of [A,B] exist, then we can still work with the full ’V-subcategory’ of
functors for which [A,B](T, S) does exist (here, subcategory is written in quotation marks, since
there is no parent category). Or we can restrict our attention only to V-functors parametrized by
an extra variables, say P (C,−) and Q(D,−) for P : C ⊗ A //B , Q : D ⊗A //B , such that
[A,B](P (C,−), Q(D,−)) exists for all C,D. In light of our extra variable results above call this
end H(C,D). We know H exists as a functor, but it is not given to us explicitely so far. This will
change in the next section. First we record the statements of Lemma 5.5 and equation (55) for our
current case:

Y
αAB

&&

fB

~~
and

R(B,C)
βABC

''

gBC

{{
H(B,B)

=EA,PB−QB−

λABB // B(P (B,A), Q(B,A)) H(B,C)
=EA,PB−QC−

λABC // B(P (B,A), Q(C,A))

(57)

where f and α, g and β mutually imply V-naturality in extra variables as before.

Finally, we remind ourselves that there was a reason for writing the index A in EA downstairs,
namely V-naturality. In the light of Lemma 4.2 c) (naturality of variables in partial functors) we
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know that EA,TS will be part of a full evaluation functor E(−, A) = EA if we can specify a family
of V-functors E(T,−) such that E(T,−)(A) = TA = EAT for all T and A. This is achieved by
setting E(T,−) = T : A //B . Thus we obtained (of course, under the condition that [A,B]
exists):

E : [A,B]⊗A //B , E(T,−) = T , E(−, A) = EA (58)

5.2 Partial closedness of V-CAT

Evaluation maps are the counits of ’currying’-like adjunctions. So given this E we will now build
an isomorphism in V-CAT. Assume [A,B] exists. Consider the canonical map:

φABC : V-CAT(C, [A,B])
(−⊗A)C[A,B]// V-CAT(C ⊗ A, [A,B]⊗A)

V-CAT(1,E)// V-CAT(C ⊗ A,B)

(59)
By our result on 2-functoriality of ⊗ in V-CAT in section 3 this map is clearly 2-natural in C
(we don’t know about possible functoriality of [−,−] in V-CAT, so we cannot say anything about
A,B). Explicitly it maps:

(G : C // [A,B]) 7→ (C ⊗ A G⊗1 // [A,B]⊗A E //B )

(β : G //F ) 7→ (E(β ⊗ 1) : P //Q) (60)

Lemma 5.8. φABC is an isomorphism of categories.

Proof. We need the show that firstly, every P : C ⊗ A //B has a unique preimage G, and
secondly, every α : P //Q has a unique preimage β : G //F . Given P , then G is uniquely
determined from (60), since by precomposing with (JC ⊗ 1)l−1 : A //C ⊗ A (cf. def. of partial
functors, GJC = JGC) we get:

P (C,−) = E(GC,−) = GC (61)

Precomposing with (1⊗ JA)r−1 : C //C ⊗ A gives:

P (−, A) = E(−, A)G = EAG (62)

The first equation determines G on objects: GC = P (C,−) ∈ [A,B]. The second yields:

C(C,D)

P (−,A)CD ((

GCD // [A,B](GC,GD)

EA,GCGD

��
B(GC(A), GD(A))

(63)

which determines GC by universality of EA and naturality of P (−, A)CD in A. Again by universal-
ity of EA the V-functor axioms of G are then a consequence of those of P (−, A). This establishes
bijectiveness on objects. It also allows us to construct H as follows:

E being a functor the following is V-natural in all variables:

E−A,TS = EA,TS : [A,B](T, S) //B(EAT,EAS) (64)
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Now take G,F corresponding to P : C ⊗A //B and Q : D ⊗A //B under the bijection we
just established. Precompose EA,TS in the last to slots with G,F to get a V-natural

λACD = EA,GC FD : [A,B](GC,FD) //B(EAGC,EAFD) = B(P (C,A), Q(D,A)) (65)

The left hand side is now an explicit functor being equal to H on objects (by eq. (61)) and making
λACD natural. Thus by uniquess of H this functor must equal H. We obtained

H : Cop ⊗D Gop⊗F // [A,B]op ⊗ [A,B]
HomA⊗B // V̂ (66)

We return to our proof. It remains to show bijectiveness on natural transformations. Take
α : P //Q , we look for β such that α = E(β ⊗ 1). It follows

αAC = (E(β ⊗ 1A))AC = EGCAFCA(βC ⊗ jA)l−1 = EA,GCFCβC = (βC)A (67)

And thus βC is uniquely defined. We need to show V-naturality of βC : I // [A,B](GC,FC) in
C. But now we know [A,B](GC,FC) = H(C,C) by eq. (66), and since EAβC = αAC is V-natural
in C so is βC by (57).

We showed that φ is an isomorphism of categories and natural in C, and so we deduce that
([A,B], φ) gives a representation of V-CAT(− ⊗ A,B). But our ’extra variable representations’
Lemma 4.9 applies, and [A,B] becomes a 2-functor [−,−] on V-CAT (’where it exists’). Actually,

[−,−](AB)(A′B′) : V-CAT(A,A′)× V-CAT(B,B′) //V-CAT([A,B], [A′,B′])

can be easily determined in this case (at least, more easily than in the formula of Lemma 4.9, but
based on the same idea), since the counit now explicitly depends on [−,−] (see [2]).

We make a small digression: Let’s take the perspective of section 3.2. That is, we ask for a
representation ωC : V-CAT(C,D) ∼= V-CAT(C ⊗A,B) instead of an explicit construction of [A,B].
We then have

Lemma 5.9 (functor V-categories by adjunctions). Given such representation (D, ω) with
counit E′, if V has a initial object 0 then D ∼= [A,B].

Proof. The counit E′ : I //V-CAT(D ⊗A,B) can be regarded as V-functor D ⊗A //B . By
Cor. 4.7 ’Yoneda for representables’ we can then express ω by E′ as ω = E′(− ⊗ 1). We first
construct a bijection O on objects, by using I in place of C

O : objD ∼= V V-CAT(I,D) ∼= V V-CAT(I ⊗ A,B) ∼= obj[A,B]
T 7→ (G : 1 7→ T ) 7→ ω(G) = E′(G⊗ 1) 7→ E′(T,−)

Now let C = CY : objCY = {1, 2}, CY (1, 2) = Y , C(i, i) = I, CY (2, 1) = 0 (with canonical composition
maps and identities). With this we find another bijection N :

{f : Y //D(T1, T2)} ∼= {G ∈ V-CAT(CY ,D);G12 = f, Gi = Ti}
∼= {P ∈ V-CAT(CY ⊗A,B);P = ω(G)}
∼= {αA : Y //B(S1A,S2A);Si = P (i,−), αA = P (−, A)12}

Now P = ω(G) means Si = P (i,−) = E′(Gi,−) = O(Gi) = O(Ti) and also P (−, A)12 =
E′(−, A)T1T2G12 = E′(−, A)T1T2f (using eq. (61), (62)). Thus D(T, S) is an end of B(TA, SA)
(identifying T and O(T )) with counit E′(−, A)TS : The unique factorizing f for a natural family α
is given by N−1(α).
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Finally, a remark on closedness of V-CAT. We have seen that [A,B] exists for all B for
example if A is small. In these cases, −⊗A has right adjoint [A,−], where the construction above
gave us both the adjunction φ (for fixed A) and 2-functoriality of [A,−]. Thus we can refine the
previous statement from section 3 as follows:

V-CAT is a symmetric monoidal (partially) closed 2-category .

5.3 The strong Yoneda Lemma

We now have the toolset to strengthen the weak Yoneda Lemma. Recall that q0 was our ’change
of curried variable’ adjunction. In particular for F : A //V :

FKA : A(K,A) // [FK,FA] ⇒ q0(FKA) : FK // [A(K,A), FA]

Lemma 5.10 (strong Yoneda). Let F : A //V and K ∈ A. Then the V-natural family θA :=
q0(FKA) : FK // [A(K,A), FA] is an end. As a direct consequence there exists a (factorizing)
isomorphism θ : FK ∼= [A,V](A(K,−), F )

Proof. Consider the chain of mutual implications:

αA : Y // [A(K,A), FA] is V-natural in A

⇔ αA = q0(αA) : A(K,A) // [Y, FA] is V-natural in A

⇔ αA = [η, 1]FKA for unique η : Y //FK

⇔ αA = q0(αA) = q0(FKA)η = θAη for unique η

where in the second implication we used ’Yoneda for representables’ 4.7, and in the last calculation
we borrowed eq. (49).

The weak Yoneda lemma can now be rederived as the bijection underlying θ (recall the under-
lying set of [A,V](A(K,−), F ) is the set of natural transformations A(K,−) //F ). But note
that we used the weak Yoneda Lemma in the above proof.

In analogy to the set case we want to establish V-naturality in the two remaining ’free
variables’ of the Yoneda isomorphism θ: The V-functor F and the A-object K. We have to
take into account possible non-existence of [A,V] as a V-category, in which case F is not a valid
variable to test V-naturality. As before, we introduce an extravariable functor P : C ⊗ A //V .
Then define as in the strong Yoneda Lemma

θA,CK := q0(P (C,−)AK) (68)

This is V-natural in A,C,K since P (C,−)AK is. But our induced isomorphism θCK satisfies
EAθCK = θA,CK and is thus itself natural in C,K (by (57)). We obtained a family of isomorphisms:

θCK : P (C,K) ∼= [A,V](A(K,−), P (C,−)) = H(K,C) (69)

natural in K and C. (The functor H is defined as before.)
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Now let us assume [A,V] does exists, so we can speak about V-naturality in the variable F ∈
[A,V] and the functor H is given to us explicitely. To adapt the previous result ’parametrize F by
itself’: P = E, E(F,−) = F . To find H as in (66) we need to determine φ−1(E) and φ−1(A(−,−)).
Clearly φ(1) = E.

Define Y = φ−1(A(−,−)) : Aop // [A,V] and call it the Yoneda embedding. By (61) we
have Y K = A(K,−) on objects. By (62) we derive that Y is full and faithful:

Aop(K,L)

A(−,A)KL ))

YKL // [A,V](A(K,−),A(L,−))

EA

��
[A(K,A),A(L,A)]

(70)

But A(−, A)KL = q0(A(L,−)KA) = θA (the first equality expresses Mop = Mc in curried form).
And thus YKL = θ by universality of EA. So YKL is iso.

Now H is by (66) given as H = Hom[A,V](Y
op⊗1). Plugging everything into (69) we can finally

state:
θFK : E(F,K) = FK ∼= [A,V](Y K,F ) = H(F,K) (71)

is natural in K and F!

There is, of course, an extra variable version of the strong Yoneda Lemma, which is a nice
application of Fubini. Consider F : Bop ⊗A //V and K : B //A . Yoneda gives us:

θCKB : F (C,KB) ∼= [A,V](A(KB,−), F (C,−)) = H(KB,C) (72)

natural in C and B. Now we can ’integrate’ on both sides, writing out H as integral itself, and
apply Fubini to obtain: ∫

B
F (B,KB) ∼= [Bop ⊗A,V](A(K−,−), F (−,−)) (73)

The elements of the left hand side are V-natural families ηB : 1 //F (B,KB), whereas elements of
the right hand side are natural transformations αAB : A(KB,A) //F (B,A). So the underlying
bijection recovers our ’weak extra variable Yoneda’ Corollary.

5.4 Note on existence of functor categories

Throughout the essay we assume that objA is a set. The notions small and non-small are used
with respect to a chosen (Grothendieck) universe U , i.e. A being small means objA ∈ U . In the
following we will speak of U -small for clarity, and Set-small/large will mean the difference of sets
and and proper classes: When we spoke of Cat and CAT we made the difference between the Set-
small Cat (category of U -small categories) and the large CAT (category of Set-small categories).
Similarly for V-CAT. Notions for completeness were also used with respect to our universe U .
Thus, for instance V-Cat is actually closed while V-CAT was called partially closed.

The problem of possible non-existence of functor categories [A,B] can be addressed as follows.
It turns out that one can always embed V ⊂ V ′ (limit preserving) such that [A,B] is at least a
V ′-category. As an example we consider V = U -Set. Then if A is not U−small [A,B] might not be
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a U -Set-category. But employing the ‘axiom of universes’ we can find a larger universe U ′, U ⊂ U ′
such that obA ∈ U ′. Then V ⊂ V ′ = U ′-Set and [A,B] is certainly a V ′-category. There is more to
say about this (see [2]).

6 Conclusion and Outlook: Generalized Enrichment

6.1 Conclusion

There might be less technical and more straight forward introductions to the basic notions of en-
richment than this essay. And the advanced reader might possibly get annoyed by the level of
detail in which some verifications were presented. But the tools that were developed in this essay,
the techniques presented when it came to internalizing hom sets and categories, and additional
categorical notions like ends and extraordinary V-naturality that were included, are very powerful
(and might of course have important generalizations which the author is not aware of). So let us
recap what we did in this essay.

Starting from the definition of monoidal categories we defined V-enriched categories in a straight-
forward fashion. This already made us rediscover many different concepts from (strict) 2-categories
to generalized metric spaces. Symmetry was shown to be a property that allowed V-CAT to obtain
a symmetric monoidal (2-)structure itself, leading for instance to the inductive definition of (strict)
(n + 1)-categories by enriching in n-Cat. It also provided us with an involution operation ( · )op.
We pinpoint closedness to be the property that allowed us to internalize Hom sets of V such that
V ∈ V-CAT. Then using the powerful tools of ordinary and extraordinary V-naturality (which
were explained to have the ’same roots’), we were easily able to established the statement of a
Yoneda bijection. As an application we recovered many results about adjunctions from CAT in
V-CAT.

To strengthen Yoneda, we wanted to lift the bijection to an isomorphism. For this we needed to
lift functor categories to functor V-categories. We did this with the notion of ends, but reconciled
our construction with the earlier notion of closedness. The Yoneda bijection and it’s corollaries
could then be easily lifted to corresponding V-versions.

There is much more to say about enrichement in monoidal categories and a lot of further theory
(indexed limits, Kan extensions) can be found in [2]. But there is also no reason to restrict our
idea of enrichment to the case of monoidal categories, though it is the best-known case. A different
(and very general) perspective will be the topic of the following final section.

6.2 Outlook: Generalized enrichment

This is a lightweight and rough outlook to a generalized theory of enrichment and it is included
’just for fun’. Everything here is from Tom Leinster [5] and [6].

As sketched in the introduction, monoidal structure in a category allows us to handle multi-
variable operations (like composition M) via tensoring. However, more generally we could allow
multivariable arrows in our category to represent these operations. That is, arrows can have as
domain a list of n objects instead of just one. This leads to the idea of (classical) operads and
multicategories. We can sketchily formalize the idea: Our multicategory C should consist of a
class of objects C0 and for each n a class of n-ary arrows C(a1, ..., an; a) (depicted e.g. as arrows

37



starting at a1, ..., an, joining into one and ending at a). There should be identities 1a ∈ C(a, a) and
composition. Associativity and identity axioms should be required accordingly.

Examples 6.1. Every (strict) monoidal category V can be seen to have a underlying multicategory.
We just define V(a1, ..., an; a) to be V(a1 ⊗ ... ⊗ an, a) and composition as composition in V by
tensoring the inputs. (The condition of strictness can actually be dropped, see [5] Chapter 2 and
3).

We want to generalize these multicategories. To give a small motivation let us take a differ-
ent perspective on categories in the sense of internal category theory. Underlying every ordinary
category there is a graph of arrows and objects. So a graph can be represented by a diagram

C1

dom

~~

cod

  
C0 C0

(74)

in Set, where C0 is regarded as set of objects, C1 as set of arrows. To make it a category we need ad-
ditional structure, namely a composition map M : C1 ×C0 C1

//C1 and identities j : C0
//C1

satisfying axioms. Here C1 ×C0 C1 denotes the pullback of the diagram C1
dom //C0 C1

codoo .
In analogy to letting Hom objects live in other categories V, we can allow this structure to live

in other categories E . We then speak of E-graphs and E-categories and we can define maps between
them so that they form categories. There is a forgetful functor from E-categories to E-graphs. In
the case E = Set this has as left adjoint the ’free category’ functor. We obtain a monad fc on
graphs. So far, all this is seems reasonable.

Examples 6.2. Taking E to be Top, lets us discover the notion of ’topological categories’: Object
set and arrow set obtain a topology. For instance a topological space X gives rise to a category
Π1X where objects are points (with topology of X) and arrows are homotopy classes of paths with
fixed enpoints (with topology X [0,1]

/
∼).

How would we define enrichment in V from this perspective? We could take I(C0) to be a full
graph (i.e. each arrow representing an ordered pair of objects). Then specifying a map from arrows
of I(C0) to objects of V can serve as definition of Hom objects; a map, however, which does not
take place at the same categorical level (arrows to objects). We would need to specify axioms (M1),
(M2) by hand. This is not very satisfactory.

Let us come back to multicategories first: If we want to apply the above construction to mul-
ticategories we apparently need to modify the ’domain part’ of our diagram, to allow multi-object
domains. We finally define a generalized multicategory, called a T -multicategory, to be a diagram

C1

dom

||

cod

  
T (C0) C0

(75)

in a category E with monad T (with convenient properties), and functions for composition and
identities looking much like our functions above together with corresponding axioms (a detailed
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definition can be found in [5] Chapter 4). The diagram on its own gives us again the notion of a
T -graph.

How is this a generalization of multicategories? We recover classical multicategories if we choose
T to be the free monoid monad on E = Set. Even more, we recover our ordinary category diagram
above if we take the identity monad on E = Set. So our new notion encompasses classical categories
and multicategories as special cases.

As before we have a forgetful functor from T -Multicat to T -Graph (both names should be
clear in meaning). Under ’suitability assumptions’ (see [5] Chapter 6.5) this has a left adjoint ’free
T -multicategory’ functor and the adjunction is monadic, giving rise to a monad T+ on E+ = T -
Graph. Thus we can speak of T+-multicategories. Now, take I(C0) to be the (unique) ’indiscrete’
T -multicategory corresponding to the graph

T (C0) T (C0)× C0
π1oo π2 // C0 (76)

I(C0) is an algebra of our free T-mulicategory monad T+, i.e. there is α : T+(I(C0)) //I(C0).
So this in turn let’s us construct a T+-multicategory (I(C0))+ corresponding to the graph

T+(I(C0)) T+(I(C0))
1oo α // I(C0) (77)

We are in the position to state the central and final definition of this section:

Definition 6.3 ([5], Chapter 6.8). Given a T+-multicategory V, a V-enriched T -multicategory
consist of an object C0 ∈ E and a map (I(C0))+ //V of T+-multicategories.

And how does this generalize our theory of enrichment in a monoidal category? Well, in
the easiest case of T being the identity monad on E = Set, T+ becomes the fc monad on the
category of graphs. T+-categories are then called fc-multicategories. These are 2-dimensional
structures encompassing for instance bicategories (’weakly’ enriched Cat-categories). And just as
strict monoidal categories are one-object (strict) 2-categories, weak monoidal categories are one-
object bicategories.

Examples 6.4. Given a topological space X we obtain a bicategory Π2X as follows: Objects
(0-cells) are points, 1-cells are paths between points, 2-cells our homotopy classes of path homo-
topies with fixed endpoints. Note that composition of paths is then only associative up to a 2-cell
isomorphism. Then, the full subcategory determined by one point x lets us recover exactly our
initial example 2.3 e): paths (loops) become objects, concatenation becomes tensor product.

We now divine the solution to our above problem of a strange mapping between arrows to ob-
jects: monoidal categories should be regarded as 2-dimensional structure, objects becoming 1-cells,
the tensor map becoming composition of these. It sounds reasonable that lifting objects to arrows
might enable us to bundle the parts of our classical definition of enrichment into the a single map,
as the map in the above definition.

Ultimately working out the terms and notions involved in the above definition in the case of
T+ being fc, and then choosing a monoidal category to be V (more precisely, it’s corresponding
fc-category) will make us indeed recover the notion of enrichment that this essay started out with.
So we made the circle.
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