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1. Introduction

Factorisation homology
∫
−A of an En,G-algebra A is a so-called left Kan-extension

of certain functors of (∞, 1)-categories. This generalises singular homology, and (in
analogy with the Eilenberg-Steenrod axioms) satisfies the ⊗-excision theorem.

This talk is meant to give a fast route of formal definitions towards an understand-
ing these concepts. The style of presentation chosen here will see definitions being
stated formally but in sometimes slightly condensed formulas. This is an attempt to
highlight the “elegance” that (subjectively) derives from these formulas. Unwinding
the definitions is fruitful and left to the reader in most cases, and in many cases
explicit exercises are suggested. These notes add content and (hopefully helpful)
commentary slightly expanding upon the topics discussed during the lecture.

Remark 1.1. There’s no claim to originality of the material presented here. Main
sources are [Rie14], [Shu06], [Lur09] and [AKMT19]. All of the many errors are my
own (but please don’t hesitate to contact me if something seems wrong to you!).

2. Categorical homotopy theory

Notation 2.1. We will use A,B, C,D,M,V to denote (higher) categories. We use
V often for some monoidal category that we can enrich in (which, in one sentence
means, that we abstract “hom sets” to be objects of some category V, instead of
objects of the category of sets Set. For background about enriched see [KK82]). M
often denotes a category with weak equivalences, which is a “presentation” of an
(∞, 1)-category as we will explain. We denote hom functors by homC(−,−), C(−,−)
or simply C. Functor categories will be denoted by both Fun(C,D) and CD.

Knowing at least the idea underlying enriched category theory (i.e. replacing
hom sets in Set with hom objects in a category V) would be useful. The standard
reference is [KK82].

2.1. Tensors, cotensors, ends and coends.

Definition 2.2 (tensors, cotensors). We say a V-enriched C is tensored respectively
cotensored over V if there are functors

− · − : V × C → C
(−)− : Cop × V → Cop

called tensor (resp. cotensor), such that

C(V ·A,B) ∼= V(V, C(A,B))

C(A,BV ) ∼= V(V, C(A,B))

In other words, tensors (resp. cotensors) give adjunctions to hom functors

− ·A ` C(A,−)

B− ` C(−, B)

Example 2.3. In the case V = Set, then whenever C has coproducts it is tensored

by setting S ·A =
⊔|S|

A. Similarly, if it has product we can set BS =
∏|S|

A.
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Remark 2.4. In the decategorified case of finite dimensional Hilbert spaces (i.e.
putting Hilbert spaces, which are sets, in place of categories, and the inner product
in place of the hom functor), the above universal properties correspond to 〈rv, w〉 =
r 〈v, w〉 and 〈v, rw〉 = r 〈v, w〉.

Definition 2.5. Assume B is cotensored. We define the coend functor to be the
left adjoint ∫ C

` (−)C(−,−) : B → BC
op×C

(if it exists). Assume B is tensored. We define the end functor to be the right adjoint

C(−,−) · (−) `
∫
C

: BC
op×C → B

(if it exists).

Remark 2.6. In the decategorified case of finite dimensional Hilbert spaces, with
functors corresponding to maps of Hilbert spaces (which again form a Hilbert space),
and × corresponding to ⊗, we find that the universal properties of ends/coends
corresponds to the trace tr, namely for H : C∗ ⊗ C → D we have 〈trC(H), v〉 =
〈H, IdC ⊗ v〉. The fact that we have both ends and coends reflects that the category

Cat (unlike Hilbf.d.) is not self-dual.

Ends and coends are special instances of weighted (co)limits.

Definition 2.7. Let W : Dop → V (resp. W : D → V) and J : D → C. The

W -weight colimits colimW J (resp. the W -weighted limit limW J) are objects in C
defined by the universal property

C(colimW J, b) ∼= VD
op(W, C(J−, b))

C(a, limW J) ∼= cV D(W, C(a, J−)

Exercise 2.8. Check values coends and ends are weight colimits resp. limits by
writing out the natural isomorphism defining the respective adjunction.

Exercise 2.9. Check that for V = Set and W = ? the terminal functor, the weighted
definitions coincide with the usual colimit and limit.

In fact, every weighted (co)limits can be expressed in term of (co)ends.

Remark 2.10 (Coend coequaliser formula). In the case of V = Set, there is a another
formula for ends and coends in terms of colimits and limits. In the case of coends
we have for H : Cop × C → D that

∫ C
H ∼= coeq

 ⊔
f :c→c′ H(c, c′)

⊔
cH(c, c)

H(f,1)

H(1,f)


Remark 2.11. We state four rules of the so-called “(co)end-fu” (see [Lor15])

(i) Natural transformations. Let F,G : C → D.

Nat(F,G) ∼=
∫
C
D(F−, G−)
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To some extent, this can in fact be taken as the definition of natural trans-
formations (see [KK82]). The next exercise is a consistency check between
this claim and Remark 2.10 (in fact, the exercise can be used to prove that
remark).

Exercise 2.12. In the case V = Set show the formula for Nat(F,G) using the
coequaliser formula from Remark 2.10.

(ii) Hom continuity. ∫
C
D(H, d) ∼= D(

∫ C
H, d)∫

C
D(d,H) ∼= D(d,

∫
C
H)

which simply uses that colimits and limits can be commuted with hom-functors
(in a variance appropriate sense).

(iii) Fubini. ∫
C

∫
B
H =

∫
C×B

H =

∫
B

∫
C
H

(left as an exercise).
(iv) Ninja Yoneda lemma

F ∼=
∫ C
D · F

F ∼=
∫
C
FD

(proven later). Note that here we condensed notation slightly, for instance,
the first line reads as a natural isomorphisms

Fd ∼=
∫ C
D(−, d) · F (−)

Remark 2.13 (Weighted limits formula). We can now compute

C(colimW J, b) ∼= VD
op(W, C(J−, b))

∼=
∫
Dop

V(W, C(J−, b))

∼=
∫
Dop

C(W · J, b)

∼= C(
∫
Dop

W · J, b)

where we used the expression of natural transformations as an end, tensoredness,
and hom continuity in that order. It follows that

colimW J ∼=
∫
Dop

W · J

Exercise 2.14. Only if you feel like it: In the case V = Set, using Exercise 2.12 to
replace the second step of the previous exercise, show

colimW J ∼= colim JπW
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where πW : el(W ) → Dop is the projection from the category of elements of W :
objects are tuples (d ∈ D, s ∈ W (d)) and morphisms f : (d, s) → (d′, s) are
morphisms f : d′ → d such that W (f)(s) = s′. πW maps (d, s) to d.

Use this to derive Remark 2.10.

2.2. Kan extensions.

Definition 2.15. Let K : A → B. The left and right Kan extension functors LanK
and RanK are defined as adjoint by

LanK ` − ◦K : Fun(B, C)→ Fun(A, C)
− ◦K ` RanK : Fun(A, C)→ Fun(B, C)

where − ◦K denotes precomposition by K.

Remark 2.16. Spelling the first case out we find for F ∈ Fun(A, C), G ∈ Fun(B, C)
an isomorphism of natural transformations Fun(LanK F,G) ∼= Fun(F,GK). As for
any adjunction this isomorphism is given by acting on some β : LanK F → G with
the right adjoint − ◦K and precomposing with the unit µF : F → LanK FK. In
other words, any α : F → GK will factor uniquely that way, which is the more
commonly mentioned definition of Kan extensions. The situation is depicted below

B

A C

LanK F

G
K

F

α
µF

β

Note that by passing to opposite categories (which reverses the direction of
natural transformations), left Kan extensions become right Kan extensions and vice
versa.

Definition 2.17. We say a right Kan extension of F along K is pointwise, if post-
composition with any representable functor C(c,−) yields a right Kan extension (of
the C(F−, c) along C(K−, c)). A left Kan extension is pointwise if its corresponding
right Kan extension is pointwise.

Remark 2.18 (A formula). Given a pointwise left Kan extension, we compute, using
first the Yoneda lemma and then the property of being pointwise, that

C(LanK Fb, c) ∼= SetB
op

(B(−, b), C(LanK F−, c))
∼= SetA

op

(B(K−, b), C(F−, c))
We recognise this expresses LanK Fb as a weighted limit (with weight B(K−, b).
Using Remark 2.13, we then find

LanK F (b) =

∫ A
B(K−, b) · F (−)

The isomorphism being natural in b we can also write this as1

LanK F (−) =

∫ A
B(K−,−) · F

1To be really explicit about the functor slots in this equation, one could write

LanK F (
1
−) ∼=

∫ A
B(K

2
−,

1
−) · F (

2∗

−)

where the same number across the isomorphism identifies the same slot of isomorphic functors,

whereas numbers and their starred version are “bound” by an (co)end.
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We further remark that essentially all useful Kan extensions are “pointwise” (see
[Rie14, Ch.1]).

Exercise 2.19 (General formula). The same formula holds without the assumption
of the Kan extension begin pointwise. The proof can be given using coend-fu and is
left to the reader (see e.g. [ML13, X.4.1])

Exercise 2.20 (Right extension case). Similarly, prove RanK F =
∫
A F

B(−,K−).

Remark 2.21 (Proof of ninja Yoneda). We can now easily prove the ninja Yoneda
lemmas from expanding the observations that F = Lanid F and F = Ranid F using
the above formula.

These formulas, as well as the “(co)end-fu”, are useful for deriving general facts
about Kan extension. For instance,

Observation 2.22. If K is fully faithful (as it will be be for factorisation homology)
then

(LanK F )K ∼=
∫ A
B(K−,K−) · F

∼=
∫ A
A(−,−) · F

∼= F

where in the last step we used the ninja Yoneda lemma. In other words, we observe
that if K is fully faithful then LanK F is an actual extension of F in the sense that
when “restricting” (i.e. precomposing) LanK F to K one recovers F .

2.3. Examples.

2.3.1. Nerve-realisation paradigm, Dold-Kan correspondence. Using notation from

the previous section, consider the case where K = y : A → SetA
op

is the Yoneda
embedding. We compute (using our weighted limit expression, and then the Yoneda
lemma) that

C(Lany Fb, c) ∼= SetA
op

(SetA
op

(y−, b), C(F−, c))
∼= SetA

op

(b, C(F−, c))
In other words we have an adjunction,

SetA
op

A C

Lany F
y

F

C(F−,−)

The “yoneda extension” Lany F is also called the realisation of presheafs on A in C,
and C(F−,−) is called the nerve of objects of C in A. F is called dense if the nerve
is fully faithful.

We will consider special instances of this. Let ∆ ⊂ Cat be the subcategory of
finite non-empty total orders. Up to passing to an equivalent (skeletal) category we
can assume the objects of ∆ are [m], m ∈ N, denoting the total order with (m+ 1)

elements. Set sSet = Set∆op

, the category of simplicial sets. Denote the Yoneda
embedding of ∆ by ∆.
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There is an faithful inclusion T : ∆ → Top, realising m as the topological
m-simplex. Passing to the nerve and realisation we find

Set∆op

∆ Top

|−|
∆

T

Sing(−)

Usually |−| is called geometric realisation (of a simplicial set), and Sing is called
singular complex (of a topological space).

Exercise 2.23. Use the coequaliser formula to convince yourself that geometric
realisation of a simplicial set is actually a reasonable name for this functor.

Similarly, ∆ trivially includes into Cat, and we obtain the yoneda extension

Set∆op

∆ Cat

π≤1

∆

N

Here, π≤1 is also called fundamental path category (of a simplicial set), where as N
is called the nerve (of a category).

As a final example, consider the following Ab-enriched situation. Note that
using the free abelian group functor F : Set→ Ab, every ordinary (Set-enriched)
category can be thought of as being Ab-enriched. Let Ch be the category of chain
complexes (in non-negative degree). Every [m] ∈∆ can be thought of as a chain
complex C[m], whose nth degree is the free group on non-degenerate n-simplices
in [m] (that is, elements in y[m][n] not in the image of any ∆[m](f), f : [n′]→ [n],
n′ > n), and whose nth differential is induced from the alternating sum, over
0 ≤ i ≤ n, of maps ∆[m](dni ) (where dni : [n− 1]→ [n] is the unique injective map
omitting i in its image) by setting degenerate elements equal to zero.

Exercise 2.24. Spell out the definition of C[m], noting in particular that [m] has no
non-degenerate n-simplices for n > m, and check the chain differentials compose to
zero. Check this defines a functor C : ∆→ Ch.

We can now consider the extension of C, and as before obtain an adjunction

Ab∆op

∆ Ch

M
F∆

C

NCh

In this case the adjunction is actually an adjoint equivalence. This is an instance of
the so-called Dold-Kan correspondence.

Remark 2.25. The latter is a fundamental bridge between algebra and homotopy
theory: While chain complexes seem like something “fully algebraic and discrete”, we
can now see that through there correspondence with simplicial abelian groups, and
thus in particular their map to simplicial sets, and thus (via geometric realisation) to
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spaces, they can be seen to inherit a “continuous” or “homotopical” structure from
the latter. Indeed, weak homotopy equivalences correspond to quasi-isomorphism of
chain complexes under this translation. The fact that chain complexes come (rather
naturally) equipped with this homotopical structure, is a reason for their big role in
classical homological algebra.

2.3.2. Day convolution. The process of Day convolution is transferring monoidal
structure from a category to its presheaf category, and can be defined as a left Kan
extension as well. We give the following example (which can be easily generalised
to other situations): set ∆+ ⊂ Cat the subcategory of finite (possibly empty)
total orders. There is a strict monoidal structure on ∆+ given by “ordered union”
[m]⊕ [n] = [m+ n+ 1] on objects which can be easily seen to extend to morphisms
in ∆+. Consider the left Kan extension of ∆+⊕ along ∆+ ×∆+ as follows

sSet+

∆+ ×∆+ ∆+ sSet+

(−?−)∆+×∆+

(−⊕−) ∆+

Exercise 2.26. Using the coequaliser formula give an explicit description of the
simplices in K ? J for (augmented) simplicial sets K,J ∈ sSet+ = Set∆+ . Show
K ?∆+[−1] = ∆+[−1] ? K = K.

The functor (− ?−) is also called the join and can be see to endow sSet+ with
a monoidal structure.

The join further has the following special properties. It also yields a bifunctor
on sSet (since, setting K[−1] = for K ∈ sSet, we have a functor sSet→ sSet+).
Together with the observation that there are natural maps K = ∆+[−1]?K → J ?K
and similarly K → K ? J , this induces functors

(− ? K), (K ?−) : sSet→ K/sSet

which admit adjoints (− ? K) ` (−)/− : (F : K → X) 7→ X/F , called the slice, and
similarly (K ?−) ` (−)−/, called the coslice.

Exercise 2.27. Using the adjunction isomorphism (that is, Map(∆[m], X/F ) ∼= ...)
find an explicit description of slice and coslice.

2.3.3. Derived functors, homotopy colimits. Inching closer to the topic of higher
categories, we introduce the notion of relative categories, as a category M with a
class of morphisms W in M called weak equivalences and closed under composition
and containing all identities. Frequently, stronger assumptions are put onW such as
in the theory of model categories (or similarly, in the theory of “categories with weak
equivalences” or “homotopical categories”). The underlying idea remains the same:
a relative category describes a category equipped with a “homotopy theory” in that
the class of weak equivalences describes those morphisms that are “homotopically
invertible”. It is reasonable to ask functors to preserve weak equivalences. If they
do, they are called homotopical. If they don’t then a canonical approximation by
homotopical functors is given Kan extensions as follows.

Definition 2.28. Let (M,W) be a relative category. Its homotopy category γM :
M → Ho(M) is defined by the following universal property: Precomposition
− ◦ γM : Fun(Ho(M),A) → Fun(M,A) is an equivalence of categories when
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restricting the codomain to “homotopical” functors Fun∼(M,A) mapping weak
equivalences to isomorphisms.

Let (Mi,Wi) (i ∈ { 1, 2 }) be relative categories. Let F :M1 →M2. The total
left derived functor of F is the right Kan extension LF of γM2

F along γM1

M1 M2

Ho(M1) Ho(M2)

F

γM1 LF γM2

LF

Often what we are interested is instead the left derived functor LF which is a
homotopical functor M1 →M2 such that γM2

LF (by initiality of γM1
) induces a

total left derived functor. Similar definitions can be given for (total) right derived
functors defined using left Kan extensions and denoted by RF (resp. RF ).

Exercise 2.29. Think of an explicit construction of Ho(M) (or have a look at [Rie14,
2.1.6]).

Exercise 2.30. Check that left (and right) derived functors are unique up to natural
isomorphism.

Remark 2.31 (Homotopy colimits). Given a relative category (M,W), then the
functor category MD inherits a notion of weak equivalence: namely we define the
class of weak equivalence WD to consists of those natural transformation which are
componentwise weak equivalences. (We remark that if (M,W) and D has more
structure then (MD,WD) can be given more structure too, e.g. a model structure
such as the Reedy model structure, which we met in last week’s talk. However, the
definition of weak equivalence WD remains the same).

In general the functor colim : MD → M, taking a D shaped diagram to its
colimit, is not homotopical. Its left derived functor

hocolim := L colim

is usually called the homotopy colimit.

Remark 2.32 (Computation of derived functors). A left deformation Q of M is an

element in MM with a weak equivalence δ : Q
∼−→ id (it is a right deformation

if δ : id
∼−→ Q). Given a functor F : M1 → M2 of relative categories, if Q is a

deformation of M1 such that FQ is homotopical, then it can be shown that

LF = FQ

Indeed, using the definition of the homotopy category, it suffices to check that
γM2

FQ admits a universal natural transformation µ to γM2
F , such that for G ∈

Fun∼(M1,Ho(M2)), any β : G→ γM2
F uniquely factors through µ.

Exercise 2.33. Show this (or see [Rie14, 2.2]).

Remark 2.34 (Classical derived functors). Write R-Mod for the category of left
R-module. This embeds deg0 : R-Mod ↪→ ChR into R-module chaing complexes
as chain complexes concentrated in degree zero. In particular, any additive (i.e.
Ab-enriched) functor on F : R-Mod→ S-Mod induces a functor on F• : ChR →
ChS by acting degree-wise. But using our previous observation about the Dold-
Kan correspondence, we know ChR (unlike R-Mod) has homotopical structure,
with weak equivalences given by quasi-isomorphisms. These are not preserved by
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functors F• in general, but chain homotopy equivalences are. There is a deformation
Q : ChR → ChR turning quasi-isomorphic chains into chain homotopy equivalent
chains (“projective resolution”), and thus for any F , LF• = F•Q. Classically, the
nth derived functor of F is then obtained by passing to nth homology HnFQ. For
example, for F = (− ⊗R N) we get the nth Tor functor TorRn (−, N).

2.3.4. Bar construction. Our final example of Kan extensions is the two-sided bar
construction. Given G : Dop → B, F : D → C and ⊗: B × C → C we define the
two-sided bar construction B(G,D, F ) as the left Kan extension

∆op

elND Dop ×D C

B(G,D,F )πND

(tgt,src) G⊗F

Recall elND is the category of elements of the nerve ND of D. Objects are strings
of morphisms in D, and the functors tgt and src associate to a string its target
respectively source object.

Exercise 2.35. Using the coequaliser formular obtain an explicit expression for the
values of B(G,D, F ) on ∆op (or see [Rie14, 4.2]). If V = M = Set, and ∗ is the
terminal functor to Set, then show B(∗,D, ∗) = ND.

Remark 2.36 (The free theory of left and right modules). The two-sided bar construc-
tion has a slightly more general incarnation: Given a monad M (as an endomorphism
in a bicategory B) and left and right modules F and G for M then B(G,M,F )
describes the functor from the theory I of “a monad Im with left module If and
right module Ig” to B mapping Ig, Im, If to G,M,F , but restricted to the hom
category homI(If , Ig). The latter category is indeed ∆op. There are nice string
diagrams that can be drawn to visualise this, see e.g. [Bae07, Lect. 24]. For instance,
B(G,M,F )n is the object GMnF of that hom category.

A connection to the construction given here is based on the observation that
an ordinary category D is itself a monad M = D in the bicategory of spans of
sets Span(Set) while profunctors (and thus functors by postcomposition with hom
functors) are bimodules in that bicategory. For instance, composition being given
by pullback in the bicategory of spans, the term Mn appearing above translates
as Mn = mor(D)×obj(D) ...×obj(D) mor(D) back into the explicit description using
strings of morphism of length n that can be derived from the definition given here
(see previous exercise).

We will revisit the explanation of the idea underlying the bar construction in
Remark 2.41.

Definition 2.37. The functor tensor of functors F,G as above is defined by

G ⊗D F =

∫ D
G ⊗ F

We remark that there is a dual notion of functor cotensor, depending on the
presence of a “cotensor” of M over V.

Remark 2.38. Since the the inclusion of the two arrows [1] [0] into ∆op is

final (i.e. colimits are preserved when precomposing with this functor), one can see
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that

colim∆op B(G,D, F ) = G ⊗D F

by rewriting the left colimit as a coequaliser and using the coequaliser formula on
the right.

Exercise 2.39. Let R be a one object Ab-enriched category, i.e. a ring. let N :
R → Ab, M : Rop → Ab be Ab-functors, making them right resp. left modules.
Consider their underlying Set functors and use the monoidal structure ⊗Z on Ab,
to compute the functor tensor

N ⊗R M =

∫ R

N ⊗Z M

using the coequaliser formula. Show that it coincides with the usual tensor product.

Examples 2.40. Using previous results, we find the following range of examples. The
formula for weighted colimits gives

colimW J = W ⊗D J

In particular,

colim J = ∗ ⊗D J

Our ninja Yoneda lemmas can now be stated as

F = D ⊗D F

making D into “free modules” for the functor tensor. More generally for Kan
extensions we find,

LanK F = B(K−,−) ⊗A F

In particular, geometric realisation, can be written as for X : ∆op →M and M
tensored over sSet)

|X| = ∆ ⊗∆op X

A functor tensor is a generalisation of the usual tensor, “using the same coequaliser”
formula. The two-sided-cobar construction is a “coherent” (or “cofibrant”) resolution
of the functor tensor as we will explained again informally in the next remark.

Remark 2.41 (Resolutions and free monoids). ∆op is the free (monoidal) category
containing a strict monoid object (see [Bae07, Lect. 24]). A general purpose of
free structures is to generate all possible composites of their generating elements,
and thus to provide a data structure to record equalities/coherences between these
composites. In this (informal) sense ∆op, is for instance the right category to encode
higher coherences of monoids, and in particular monoidal categories (monoids in
Cat×) can for instance be defined like (pseudo-)functors

M : ∆op → Cat×

(together with some conditions of natural isomorphisms M [n] ∼= M [1]n, analogous
to the so-called “Segal conditions”). This is in contrast to defining a monoidal
category simply by

M : ∆op
≤[2] → Cat×
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∆op
≤[2] (the full subcategory of ∆op with objects [0], [1], [2]) can represent data for

identities and a monoid multiplication (− ⊗ −) : [2]→ [1]. But it does not contain
not all possible “freely generated” compositions [k]→ [l] of ⊗ with itself and how
these compositions cohere — a simplest example of a coherence is for instance
associativity, stating (− ⊗ −) ⊗ − = − ⊗ (− ⊗ −).

We can now also revisit our understanding of the bar construction. B(G,D, F ) not
only contains “simple, unary” actions B(G,D, F )1 of the monad D on its modules
F and G, but also “composite” actions (and their coherences) B(G,D, F )n>1, and
these are indexed by (a hom category in) the free theory of a monad with modules
I, see Remark 2.36, analogous to ⊗-composites and their coherences of monoidal
categories being indexed in ∆op.

It (now hopefully expectedly) turns out, instead of quotienting out (higher) paths
of (higher) actions as we did with the coequaliser, we should just be gluing them
together using our geometric realisation construction. In particular, instead of the
coequaliser

colimF = colimB(∗,D, F )

we should consider the geometric realisation

|B(∗,D, F )|
Indeed, we have the following.

Remark 2.42 (Deformation for colim). Let us assume we know what a simplicial
(i.e. sSet-enriched) model category is, and that M is an instance of that definition,
together with a “cofibrant replacement functor” Q :M→M (As an example of the
previous definition the reader may take M = Top, which obtains sSet-enrichment
using the singular complex functor Sing defined earlier). Let F : D → M be a
diagram. Then

hocolimF = |B(∗,D, QF )|
or for a pointwise cofibrant F ,

hocolimF = |B(∗,D, F )|
We can further reformulate (by commuting colimits)

|B(∗,D, QF )| = |B(∗ ⊗D D,D, QF )|
= ∗ ⊗D |B(D,D, QF )|
= colim |B(D,D, QF )|

which means |B(D,D, Q−)| :MD →MD is a deformation for colim, in the sense
previously defined.

Exercise 2.43 (Homotopy colimits as enriched weighted limits). Firstly, observe
the geometric realisation |X| of a bisimplicial set X : ∆op → sSet is its diagonal
|X|n = Xn,n. Secondly For D a Set-enriched category, verify Bn(∗,D,D(d,−)) =
N(d/D)n, or, varying d and n, B•(∗,D,D) = N(−/D). Thirdly, note, the constant
functors const− : Set → sSet turn sets into discrete simplicial sets, and allow to
think of ordinary categories as sSet-enriched categories. This implies B•(∗,D,D) for
discrete sSet-enriched D yield the (horizontally discrete) bisimplicial set N(−/D)•,•.
Combining this verify (or see [Rie14, 4.1]) the computation that

|B•(∗,D,D)| = |N(−/D)•,•| = N(−/D)• : D → sSet
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Further verify that (commuting colimits)

|B•(∗,D,D)| ⊗D F = |B•(∗,D,D ⊗D F )| = |B•(∗,D, F )|
Deduce that

hocolimF = N(−/D) ⊗D F
which we recognise as a (enriched) weighted limit, yielding in turn the expression

M(hocolimF,m) ∼= sSetD
op

(N(−/D),M(F−,m))

Definition 2.44. A 0-simplex of sSetD
op

(N(−/D),M(F−,m)) will be called a
homotopy coherent cocone over F in M.

We will now turn our attention to a different perspective on higher categories,
yielding another notion of homotopy coherent (co)cone and compare the two.

3. ∞-Category theory

3.1. General remarks on higher categories. The idea of higher category theory
has several origins. One is of topological nature: If we think of a groupoid (a category
in which all morphisms are isomorphisms) as the fundamental groupoid of a space
containing points and paths, then a higher groupoid should contain points, paths,
paths of paths (“homotopies”) etc. The correspondence of (the algebraic notion
of) higher groupoids and (the topological notion of) spaces is called homotopy
hypothesis, and is a guiding paradigm in the development of higher category theory.

Unlike in higher groupoids (also call ∞-groupoid), in a (∞, 1)-category not all
paths need to be invertible but are instead “directed” (however all k-paths, that is,
paths of (k − 1)-paths with 1-paths being ordinary paths, are invertible for k > 1).
More generally in an n-category (or (∞, n)-category), we not require k-paths to be
invertible up to dimensions k ≤ n.

The difficulty of higher categories lies in finding a description of how composites
of higher paths cohere. There are several models of (∞, 1)-categories and more
generally higher categories.

(i) Space enrichment : One idea underlying some of these models is to use (Set-
theoretic or combinatorial) models of topological spaces to describe the hom
spaces of (∞, 1)-categories. Examples are Kan complex-enriched categories,
Top-enriched categories or (in a broader sense of the idea) quasicategories.

(ii) Contractibility : Another idea is to use the idea of “contractibility” that says
that all disk-like composites cohere as long as they compose to the same
shape. This idea can be adapted to give definitions of (∞, n)-categories as
well. Examples as θn-spaces, n-fold Segal spaces, and Batanin-Leinster type
definitions of n-categories2.

Remark 3.1 (Classification of coherences). Neither space enrichment nor contractibil-
ity give us a good handle of classifying coherences: the former, “hides” coherences
in the theory of spaces, the latter only describes them explicitly in the simple case
of disk-like coherence, with general coherence being complex amalgamations of these
simpler disk-like ones. However, most interesting coherences (such as those hidden
in the homotopy groups of sphere by the homotopy hyptohesis) are of this complex

2A different between the latter and the former however is, that the latter specifies compositions
uniquely making it a so-called “algebraic” model, whereas in the former compositions are only
given up to contractible choice making it a so-called “non-algebraic” model”
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nature. Furthermore, in low dimensions a classification of these coherences is known
and includes for instance the Reidemeister moves or the Yang-Baxter equation. A
research programme aiming at a direct description and classification of interesting
coherences in general dimensions was started in the speaker’s thesis [Dor18].

We will focus our attention on quasicategories. As pointed out in the previous
remark, the business of coherences is “hidden away” in the theory of Kan complexes
(to be defined below). It should not come as a surprise that as a result of hiding away
higher coherences (∞, 1)-category ends up to be much more similar to (enriched)
1-category theory than to, e.g., 2-category theory. This also justifies why we’ve
spent so much time on 1-category theory in the previous section.

3.2. Quasicategories.

Definition 3.2. A Kan fibration is a map of simplicial sets f : X → Y ∈ sSet
satisfying the lifting property (i.e. the dashed arrow always exists)

Λi[n] X

∆[n] Y

f

where Λi[n], 0 ≤ i ≤ n, is the ith horn of ∆[n], a sub-simplicial set obtained from
∆[n] by removing the unique non-degenerate n-simplex from it, as well as the unique
(n− 1)-simplex not containing the 0-simplex i.

Kan complexes are a combinatorial model for topological spaces.

Exercise 3.3. Show that every singular complex of a topological space is a Kan
complex.

Definition 3.4. A quasicategory C is a simplicial set such that the following lifts
always exist

Λi[n] C

∆[n]

for 0 < i < n. Let c1, c2 ∈ C be 0-simplices (called objects). We define the hom
space C(c1, c2) as the pullback

C(c1, c2) C/c2

c1 C

(here we are using the slice construction defined earlier).

The intuition is as follows: m-simplices in C are m-paths, m > 0, and objects
for m = 0. For m = 1 these are directed, having a source object and a target
objects. For m > 1, the distinction between source and target need not be made
anymore (and would be an arbitrary choice albeit a possible one), since all m-path
are “invertible” up to a higher path. This is a consequence of the horn-filling
condition.
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Remark 3.5 (Recovering a quasicategory from a space enriched category). Every
sSet-enriched category C ∈ sSetCat can be translated into a quasicategory N∆(C) ∈
sSet. For this, not that [n] ∈∆ naturally obtains the structure of an sSet-category
S[n], if we set hom simplicial sets S[n](i, j) to be the nerve of the poset of all string
of morphims i→ ...→ j in [n] ordered by inclusion (note that strings of morphisms
in n are determined by the subset objects they contain, which is why we can chose
to order by inclusion). By Kan extension we also obtain

S = Lan∆⊂Cat S : Cat→ sSetCat

both this and S : ∆→ sSetCat are called simplicial thickening. Kan extending S
along ∆ we also obtain (using the nerve realisation paradigm)

C[−] ` N∆ :

with N∆ called the coherent nerve. If C is Kan-complex enriched (that is its hom
spaces are actually Kan complexes) then N∆(C) is a quasicategory. In fact, more
technically, Kan-complex enriched categories are the fibrant objects in the Bergner
model structure on sSetCat, and C[−] ` N∆ is a Quillen equivalence when putting
Joyal model structure on sSet in which quasicategories are fibrant. For general C
one thus needs to apply fibrant replacement QC before recovering a quasicategory
via N∆(QC).

Definition 3.6 (Functors and universe). Functors F : C → D of quasicategories are
maps of their underlying simplical set. The functor space Fun(C,D) is the maximal
Kan complex containing the the internal hom sSet(C,D) ∈ sSet (recall sSet is
cartesian closed, thus sSet(∆[m], sSet(C,D)) ∼= sSet(∆[m] × sSet(C × ∆[m],D)
gives you an idea of what the m-simplex in sSet(C,D) are).

We define the Kan complex-enriched category Cat∆
∞ to have as objects quasi-

categories C, and as hom spaces functor spaces Fun(C,D). The quasicategory of

quasicategories Cat∞ is defined as N∆(Cat∆
∞).

Most of the usual operations of 1-categories (such as the Yoneda lemma, notion
of fullness/faithfulness, or simply pre- and post-composition inducing functors on
hom spaces) can be recovered along similar lines. The reader is invites to invite to
think about these notions themselves. Details can be found in [Lur09].

3.3. Adjunctions, Kan extensions and colimits. We now “lift” the our earlier
definitions into the context of quasicategories (however, our formulation will be so
general, that they likely apply for other models of (∞, 1)-categories too).

Definition 3.7 (Adjunctions). See [Lur09, 5.2.2]. Given F : C → D and G : D → C,
together with a natural transformation µ : id→ GF such that for all c ∈ C, d ∈ D,

the map D(Fc, d)
G(−)µc−−−−−→ C(c,Gd) is a weak equivalence (an isomorphism in the

homotopy category of spaces), then we say F ` G are adjoint functors.

We remark that a slightly more elegant definition is possible: any functor F : C →
D can be regarded as a bundle “classified” by a functor D → Prof to profunctors.
If D = ∆[1], then D → Prof picks out a single profunctor R : C0 −7−→ C1 (setting
Ci = F−1(i)). If this is both covariantly (R ∼= C1(G0−,−)) and contravariantly
(RisoC0(−, G1−)) represented then G0 ` G1. This represented condition for R can
be translated to properties of F : To represent an adjunction F needs to be both a
coCartesian and Cartesian fibration (see [Lur09]).
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Definition 3.8 (Kan extensions). See [Lur09, 4.4.2]. Let K : A → B, and C be
(functors of) quasicategories. The left Kan extension functor (if it exists) is the left
adjoint

LanK ` − ◦K : Fun(B, C)→ Fun(A, C)

Definition 3.9 (Colimits and limits). See [Lur09, 1.2.13]. c ∈ C is called initial
if Cc/ → C is a trivial Kan fibration (that is, a Kan fibration whose geometric
realisation is a weak equivalence). Now let F : D → C. The (∞-)colimit colim(F )
is an initial object of CF/.

Exercise 3.10. Dualise the above discussion, writing down definition of limits and
right Kan extensions.

3.4. Monoidal structures and tensor products. We give sketchy definitions,
built upon our work in the 1-categorical context, of monoidal structures and (functor)
tensors. In particular recall Remark 2.41 that ∆op is the free (monoidal) category
containing a monoid, and that all other monoids (in particular, monoidal categories
which are monoids in Cat) can be described as functors from ∆op. The correct
(∞, 1)-categorical analogue is the following.

Definition 3.11 (Symmetric monoidal (∞, 1)-categories). See [Lur12, 2.0.0]. A
monoidal quasicategory is a functor

V : N(∆op)→ Cat∞

satisfying the Segal conditions : The natural map V [n]→ V [1]n is a weak equivalence.
Similarly, a symmetric monoidal quasicategory is a functor

V : N(Fin∗)→ Cat∞

(where Fin∗ is the category of finite pointed sets) satisfying again the natural Segal
condition.

In the similar spirit, recalling Remark 2.36, we sketch the following.

Definition 3.12 (Tensor products). See [Lur12, 4.4.2]. The bar construction
B(G,D, F ) for appropriate functors G,F of quasicategories, can be defined analogous
to the 1-categorical case, yielding a functor (i.e. map of simplicial sets) B(G,D, F ) :
N(∆op)→M. We define the functor tensor

G ⊗D F = colimB(G,D, F )

Note, that the colimit now refers to the ∞-colimit.

In particular, if D is some algebraic theory (such as a higher categorical version
of a ring R, like in one of our earlier examples) this will be a good candidate to
define the tensor product of “higher” modules G and F over D. (The point here is
simply that: The bar construction is a the right construction for a coherent tensor
product, as explained with more detail in Remark 2.36. A formal construction in
the language of ∞-operads is given in [Lur12]).

3.5. Comparison to 1-categorical presentations. We have now seen two dif-
ferent approaches to higher categories:

(i) Presentations of higher categories : 1-categorical structures with “weak equiv-
alences”, e.g. relative categories

(ii) Higher categories: Structures with “higher morphisms”, e.g. quasicategories
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Having seen these two approaches, we mention a couple of natural questions.

• How can we assure that these theories do the same job? There are techniques to
pass back and forth between them and showing they are equivalent. The latter
mostly by introducing model structures and constructing Quillen equivalences,
which then guarantee exactly that at least at the level of homotopy categories
we will obtain equivalent theories. A caveat (one of several!) we should
mention is that model categories (unlike relative categories) do not present
all (∞, 1)-categories (but only a [possibly improper] subset of the co/complete
ones).

• Is it even reasonable to assume that every quasicategory, and thus every ∞-
groupoid, can be presented by the simplistic structure of relative categories?
The underlying idea of passing from presentations to higher categories is a
“localisation” construction that treats weak equivalence as if they were we
(weakly) invertible. In fact, for instance [BK12] manage to package this into
a nerve construction Nξ (which unlike our nerve here contains additional
subdivisions allowing us exactly to walk backwards along weak equivalence).
The left adjoint “realisation” Kξ to Nξ, realises a (bi)simplicial set X by
gluing together relative categories from these subdivided simplices with weak
equivalences according the gluing of (bi)simplices in X.

• How does our definition of derived functors defined by Kan extension translate
to higher categories? There is no real analogue of derived functors in higher
categories. Derived functor are “homotopical corrections” to non-homotopical
functors. But in higher categories, every functor is already homotopical (e.g.
every functor of quasicategories preserves weak equivalences). Nonetheless, we
can ask whether a given homotopical corrected functor represents a functor
of higher categories. For instance, does hocolim present ∞-colim? A answer
in the case of quasicategories is given in [Lur09, 4.2.4]. Another is suggested
in the exercise below. In general, both for derived functors and for novel
“corresponding” definitions stated in higher categories we have to verify that
they satisfy the desired universal properties, such as our definition of hocolim
and ∞-colim above (however, derived functors do of course inherit a universal
property from being define by Kan extensions, in which sense they are a “closest”
homotopical approximation to the orignal universal property. Also see [Rie17,
6.4.12]).

Exercise 3.13 (Comparing notions of colimits). Let M = Top, and F : D → Top
a pushout diagram in Top. Using Exercise 2.43, a “homotopy coherent cocone C”
under X” is an object

C ∈ sSetD
op

(N(−/D),Top(F−, X))

Compare this with a “cocone under X” in the sense of ∞-colimit of quasicategories:
for the latter note (recalling S,N∆)

sSet(N(D), N∆(Top)) ∼= sSetCat(S(D),Top)

A pushout diagram F : N(D) → N∆(Top) thus corresponds to a functor F :
S(D)→ Top, and a (∞, 1)-cocone with summit m in N∆(Top)F/ corresponds to a
functor C : S(D ? ∗)→ Top with C(∗) = m and C = F on S(D).

Convince yourself that data needed to specify cocones is the same, and thus that
hocolim and ∞-colim coincide in the sense sketched above.
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4. Factorisation homology

4.1. G-structures. Recall, given a group G with ρ : G → Gln(R), a G-structure
on a manifold M consists of a map φ : M → BG (BG denoting the classifying

space of G) together with a homotopy h : B(ρ)φ
∼−→ τ where τ : M → BGln is the

classifying map of the tangent bundle of M .
Let Mfldn denote the (∞, 1)-category of n-manifolds (without boundary) with

hom spaces being space of embeddings with compact-open topology (in other words,
Mfldn is defined as a Top-enriched category). We define the (∞, 1)-category of
n-manifolds Mfldn,G with G structure by the pullback (in Cat∞)

Mfldn,G Top/BG

Mfldn Top/BGln

Top/B(ρ)

τ

A similar definition can be given for Diskn,G based on i : Diskn ⊂Mfldn, the full
subcategory of finite disjoint unions of Rn.

Unwinding definitions one finds that that a morphism f : M1 → M2 not only
consists of a map of the underlying manifolds but also filler for each blank face as
well as the interior of the following tetrahedron

BG

M BGln

M2

Bρ

h1

h2

f

φ1

φ2

Remark 4.1 (hom space of G-structure disk). Pulling back the above pullback at
the object Rn ' ∗ we obtain a pullback diagram of one-object (∞, 1)-categories,
i.e. delooped spaces. This pullback diagram of spaces allows us to determine
Mfldn,G(Rn,Rn) (see [AKMT19]) and from the top arrow one obtains a homotopy
equivalence

Mfldn,G(Rn,Rn)
∼−→ Top/BG(∗, ∗) ' ΩBG ' G

4.2. Definition and axiomatisation. Note that using disjoint union
⊔

as a
monoidal product, both Diskn,G and Mfldn,G obtain symmetric monoidal structure
(as (∞, 1)-categories).

Definition 4.2. Let C⊗ be a symmetric monoidal (∞, 1)-category. A (symmetric
monoidal) functor A : Diskn,G → C⊗ is called an En,G-algebra.

Factorisation homology
∫
−A (with coefficients in A) is the left Kan extension

Mfldn,G

Diskn,G C⊗

∫
− Ai

A

We make the following observations
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(i) The inclusion Diskn,G ⊂ Mfldn,G is fully faithful. Thus, as observed pre-
viously in the 1-categorical case (and assuming an analogous result for the
(∞, 1)-categorical case), we have∫

D

A
∼−→ A(D)

for D ∈ Diskn,G
(ii) The inclusion Diskn,G ⊂ Mfldn,G is dense in the sense previously defined.

This means each manifold can be written as a canonical colimit of disks.
(iii) Since Mfldn,G(Rn,Rn) ∼= G we have that A0 ≡ A(Rn) (abusing notation

here!) has a G action (by functoriality of A).

The easiest case is that of G = ∗, in which case G-structure is also called framing.
In this case, we also simply speak of En-algebra. En-algebras (and En,G-algebras)
obtain their algebraic structure from disk embeddings. E.g. the embedding of the
binary union

Rn
⋃

Rn ↪→ Rn

induces a multiplication operation

mA : A0 ⊗ A0
∼= A(Rn

⋃
Rn)→ A(Rn) = A0

(a, b) 7→ mA(a, b)

Note that this requires to order the two components of Rn
⋃

Rn, a choice which
when changed will lead to the opposite algebra structure Aop, that is, mA(a, b) =
mAop(b, a). Also note that

(i) For n = 1, we have mA(a, b) 6= mA(b, a) in general. We can visualise this
as the fact that the blue and red inclusions of 1-disks R t R ↪→ R below are
non-homotopic

(ii) For n = 2, we have mA(a, b)
∼−→ mA(b, a) by the usual Eckmann-Hilton

argument, visualised below

however, there are two such homotopies of embeddings: above we’ve visualised
a homotopy by clockwise rotation, but counter-clockwise rotation works just
as well. These two homotopy in turn need not be homotopic themselves. In
particular mA(a, b)

∼−→ mA(b, a)
∼−→ mA(a, b) need not be the identity — a

divergence from the classical strict commutativity.
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(iii) For n = 3, the two rotational homotopies become homotopic due two the
presence of the third dimension (π1S

2 = 0). However they are so by two
different homotopies, which again are not homotopic. This pattern continues
for higher n.

Thus the higher the n, the “more commutativity” is present in an En-algebra.
We will now come to the main theorem about factorisation homology. Recall a

collar gluing of n-manifolds is a manifold obtained as the gluing X1 tW×R X2 of
manifolds X1, X2 along a submanifold W × R ⊂ Xi.

Definition 4.3 (⊗-excisiveness). A monoidal functor F : Mfld
⊔
n,G → C⊗ is ⊗-

excisive if for each collar gluing we have

F (X1 tW×R X2) = F (X1) ⊗F (W×R) F (X2)

Let Fun⊗-exc(Mfldn,G), C⊗) denote the full subcategory of ⊗-excisive functors in
Fun(Mfldn,G), C⊗)

Implicit in the previous definition is the natural E1,G-algebra structure of F (W ×
R) and the natural module structure of F (Xi) for this algebra. The tensor product is
then constructed as the (∞-)colimit of an appropriate bar construction as explained
earlier. We will revisit these structure in an example in a moment.

Theorem 4.4 (Aximatic characterisation of factorisation homology). The factori-
sation homology functor

∫
−A is ⊗-excisive, and the adjunction∫

−
− ` (− ◦ i) : Fun⊗(Diskn,G, C⊗)→ Fun⊗-exc(Mfldn,G), C⊗)

is an adjoint equivalence.

Trivial proof sketch. For ⊗-excisiveness of
∫
−A, dissect the definition of the tensor

product in terms of the bar construction in dimension 1, and deduce the statement.
By definition of left Kan extensions, we already have an adjunction, and thus units
and counits. It remains to show that those are indeed natural equivalences.

In other words all ⊗-excisive functor from G-manifolds to C⊗ actually arise as
factorisation homology from an En,G-algebra. This is analogous to the following

characterisation of singular homology: let Fun⊗-exc(TopCW ,Ch⊕proj) denote functors
from the topological category of spaces homotopy equivalent to finite CW complexes
to the topological category of projective chain complexes, that are “excisive”, not
with respect to collar gluings, but general pushouts of cofibrations. Then we have
the following:

Theorem 4.5 (Reformulating the Eilenberg-Steenrod axioms). There is an equiva-
lence of categories

Fun⊗-exc(TopCW ,Ch⊕proj) Ch⊕proj
C∗(−;−)

ev∗

where V → C∗(−;V ) denotes singular homology with coefficients in V .

How exactly this is a reformulation of the Eilenberg-Steenrod axioms we will dis-
cuss again in the following examples. In particular we will mention how factorisation
homology is a generalisation of singular homology.

4.3. Examples.
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4.3.1. n = 1: Hochschild chains. Our first example is meant to illustrate the tensor
product X1 ⊗W×R X2 from Definition 4.3 in the case of the trivial structure group,
that is, the case of framed manifolds. In dimension n = 1, manifolds are unions
of open disks and circles, and the notion of framing and orientation can be seen
to coincide (thus we assume our 1-manifolds and their embeddings to be oriented
from now). The circle however can be written as a collar gluing S1 = R

⊔
S0×R R,

illustrated in the following

As a consequence of the excision theorem we derive∫
S1

A = A0 ⊗∫
S0×R A

A0∫
S0×RA has itself E1 algebra structure (and the argument applies to all objects of

the form
∫
W×RA as used in the ⊗-excision theorem), which can be seen as follows:

recall that algebra multiplication operations on A0 = A(R) (resp. their coherences)
are the images under A of embeddings of disks (resp. their (higher) homotopies).
Taking the product of these embeddings with S0 (or more generally, with W ) shows
that the image of A(S0 × R) carries the same algebra structure. For instance,
multiplication operations on A(S0 × R) are induced by embeddings such as

Of course, S0 × R is just two copies of disks. However, note that the orientation
(marked by arrows in all previous pictures) of the collar S0 ×R ⊂ S1, force that the
algebra structures on the two disks are opposite to each other. Monoidality of A
implies that we have (up to a global “op”)

A(S0 × R) = Aop
0 ⊗ A0

The action of Aop
0 ⊗ A0 on the two A0 in the above collar gluing (or more generally

the
∫
Xi
A in the excision theorem) can then be understood as follows. By nature of

being a collar there are natural embeddings S0 × R t R ↪→ R (or more generally,
(W×R)tXi ↪→ Xi) which by monoidality of A induce a map (Aop

0 ⊗ A0) ⊗ A0 → A0,
or more generally ∫

W×R
A ⊗

∫
Xi

A→
∫
Xi

A
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In summary, the first summand has E1-algebra structure by embeddings it into itself,
and the second summand obtains suitable module structure by similar embeddings.
In fact, for our simple example it is quite straight-forward to understand this module
structure: A is a right (Aop

0 ⊗ A0)-module if the latter acts by (a ⊗ b) · c = abc.
Switching left and right multiplication it is also a left (Aop

0 ⊗ A0)-module. We can
derive and visualise this module structure simply by writing out the above map
S0 × R t R ↪→ R

and applying A to it, obtaining the according map A0×A0×A0 → A0 for a ternary
multiplication, that is, left and right components act by left and right multiplication
on the middle component. The fact that left multiplication is a right Aop-action
and right multiplication a right A-action can also be visualised in this way, which is
left to the listener.

So far we haven’t chosen any specific C⊗. If we chose C⊗ = N(Vect⊗) (recall
that every 1-category can be turned into a quasicategory by applying the nerve, and
such a quasicategory is called 1-truncated), then the colimit of the bar construction
becomes the ordinary colimit over a simplicial objects, which as mentioned before
can be computed as the usual “functor tensor coequaliser” defining the tensor
product over an algebra. The reader can verify that for this choice of C we have∫

S1

A = A0

⊗
Aop

0 ⊗A0

A0 = A0/[A0, A0]

called the cocentre.
Next choose C⊗ = Ch⊗R to be the (∞, 1)-category of cochain complexes of R-

modules in non-negative degree. This is now understood as a (true, non-truncated)
(∞, 1)-category for instance by using (a dual version of) the Dold-Kan corre-
spondence. A more direct description as a quasicategory is also possible, see
e.g. [AKMT19]. Then, ∫

S1

A = A0

⊗
Aop

0 ⊗A0

A0 = HC(A0)

is usually called the Hochschild chain complex of the E1-algebra A0. The history of
this homological gadget is quite interesting, and the presentation above in terms of
a tensor product of higher algebras is a recent one. One immediate consequence
of having phrased this definition in the language of factorisation homology is that
HC(A0) obtains an action of S1 ↪→Mfld1(S1, S1).

4.3.2. Translating ⊗-excision into Mayer-Vietoris. Next lets consider chain com-
plexes C⊗ = Ch⊕Z as a 1-truncated (∞, 1)-category. ⊕ acts degree-wise. Every chain

complex V ∈ Ch⊕Z is an En-algebra for arbitrary n, simply by addition. Let us
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define the chain complex

C∗(−;V ) =

∫
−
V

and call it “formal singular chains with coefficients in V ”. Now let X1 tW×R X2

be a collar gluing. Write C∗(X1 ∪ X2) = C∗(X1 tX1∩X2 X2;V ). The ⊗-excision
theorem now gives

C∗(X1 ∪X2) = C∗(X1;V )
⊗

C∗(X1∩X2;V )

C∗(X2;V )

As before, the tensor product reduces to the usual tensor product. The module
structure can be shown to translate to addition as a consequence of the En-algebra
structure on C∗(Rn;V ) = V being given by addition. To compute the above tensor
product we are thus led to the coequaliser

= coeq

(
C∗(X1;V )⊕ C∗(X1 ∩X2;V )⊕ C∗(X2;V ) C∗(X1;V )⊕ C∗(X2;V )

(−+−,−)

(−,−+−)

)

which in turn exhibits C∗(X1 ∪X2) as the cokernel of the map (−x, x) : C∗(X1 ∩
X2;V )→ C∗(X1;V )⊕C∗(X2;V ). This map itself is injective, leading a short exact
sequence

0→ C∗(X1 ∩X2;V )
(−x,x)−−−−→ C∗(X1;V )⊕ C∗(X2;V )→ C∗(X1 ∪X2)→ 0

This can be seen to be the Mayer-Vietoris “axiom” over singular homology, which
can be taken to determine singular cohomology to some degree3. We conclude
that C∗(X;V ) are actual singular chains in X with coefficients in V . In this sense
factorisation homology generalises singular homology, and ⊗-excision translates to
the Mayer-Vietoris axiom.

Remark 4.6. The domain of spaces to which factorisation homology applies can
be extended to include CW-complexes by embedding them into high-dimensional
Euclidean space, and thickening them to obtain homotopy equivalent manifolds.

4.3.3. more En-algebras. Here are some more basic examples of En-algebras in
nature and their properties, essentially copied over from [AKMT19], and left to the
listener for verification.

(i) E1-algebras in (the 1-category) Set× are monoids
(ii) En-algebras, n ≥ 2, in Set× are commutative monoids

(iii) E2-algebra in (the (2, 1)-category) Cat× are braided monoidal categories.
(iv) E2,or-algebra in Cat× are balanced monoidal categories

(v) En-algebras, n ≥ 3, in Cat× are symmetric monoidal categories
(vi) En-algebras in Top× include n-fold loop spaces ΩnX and configuration spaces

Conf(Rn) consisting of a finite number of points distributed in Rn (that is,
Conf(Rn) =

⊔
n Map(∗tn,Rn)). Showing these to spaces have En algebra

structure is a good exercise to get going with En-algebras. In fact, Conf(Rn)
is the free En-algebra on one generator in Top×.

3see https://mathoverflow.net/questions/97621/mayer-vietoris-implies-excision

https://mathoverflow.net/questions/97621/mayer-vietoris-implies-excision
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5. Epilogue

Factorisation homology is a powerful conceptual tool to generate new invariants
from algebraic data on local models. It is a very active area of research, and
generalisations for instance to the setting of “stratified spaces” have been given.
This is important, because it allows us to talk about more general spaces than
manifolds and also brings us in the realm of (∞, n)-category theory, with possible
new proofs of important conjectures such as the cobordism hypothesis on the
horizon. This paragraph is however the opposite of comprehensive, and a much
better overview of the scope of this theory can be found e.g. in [AKMT19] and
[AF15]. The purpose of this talk was merely to give a coherent (pun intended!)
story leading up to the definition of factorisation homology, which could serve as
an inspiration to explore more topics from higher category theory of homotopical
algebra for the listener.
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