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Introduction

Framed combinatorial topology is a novel theory describing combinatorial phenomena
arising at the intersection of stratified topology, singularity theory, and higher algebra. The
theory synthesizes elements of classical combinatorial topology with a new combinatorial
approach to framings. The resulting notion of framed combinatorial spaces has unexpect-
edly good behavior when compared to classical, nonframed combinatorial notions of space.
In discussing this behavior and its contrast with that of classical structures, we emphasize
two broad themes, ‘computability in combinatorial topology’ and ‘combinatorializability
of topological phenomena’. The first theme of computability concerns whether certain
combinatorial structures (such as simplicial complexes homeomorphic to spheres) can
be algorithmically recognized and classified. The second theme of combinatorializability
concerns whether certain topological structures (such as manifolds) can be faithfully
represented by a discrete structure. Combining these themes, we will find that in the
context of framed combinatorial topology we can overcome a set of fundamental classical
obstructions to the computable combinatorial representation of topological phenomena.

We begin this introduction by elaborating the themes of computability and of combi-
natorializability in, respectively, Section I.1 and Section I.2. We then give a more formal
overview of our results in Section I.3, a chapter-by-chapter outline in Section I.4, and an
outlook on the larger program and aims of the subject in Section I.5.

I.1 Computability in combinatorial topology

Computability is the ability to solve a ‘general problem’ by a ‘general method’, that
is, the ability to write a step-by-step procedure which for each specific instance of a
problem computes a solution. Combinatorial topology provides, in a sense, a computation-
oriented foundation for the study of spaces, by encoding space in discrete structures [RS72]
[Bry02]. However, many fundamental problems in combinatorial topology turn out to be
computably intractable; such problems include the following [Mar58] [VKF74] [Nab95]
[NW03] [Wei04] [Poo14].

1. The statement ‘The simplicial complex K is homeomorphic to the n-disk’ cannot
be computably verified for general finite complexes K. Similarly, the statement
‘The simplicial complex K is homeomorphic to a manifold’ cannot be computably
verified.

2. These uncomputability issues remain in the piecewise linear setting: the statement
‘The simplicial complex K piecewise linearly subdivides the n-simplex’ cannot be
verified in general, and neither can the statement ‘The simplicial complex K is
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a piecewise linear manifold’. In particular, one cannot classify all subdivisions of
the n-simplex with a given number of simplices, nor classify all piecewise linear
n-manifolds with a given number of simplices.

3. More generally, it is impossible to algorithmically decide whether two simplicial
complexes K and L have homeomorphic, or piecewise linearly homeomorphic,
geometric realizations.

4. Similarly, given two embedded, or piecewise linearly embedded, simplicial complexes
K ↪→ Rn and L ↪→ Rn, one cannot in general determine whether the embeddings
are ambient homeomorphic, respectively ambient piecewise linearly homeomorphic.

One could view these failures of computability as unavoidable imperfections of mathematics
as we know it, or one can see them as failures of the classical simplicial method of
combinatorializing topological structures. Adopting the latter viewpoint, one may hope
for a form of combinatorialization with better computability properties, for instance in
which one can recognize combinatorial disks and classify combinatorial manifolds.

The first central theme of this book is that, though typical simplicial methods do
not provide a computable foundations for combinatorial topology, there is a different
approach, using framed combinatorial spaces, that may provide a more suitable basis for
computable combinatorial topology. Our theory of ‘framed combinatorial topology’ differs
in two fundamental respects from classical piecewise linear topology: first, we endow
simplices and simplicial complexes with a combinatorial framing structure, and second,
we generalize the resulting class of ‘framed simplicial complexes’ to a broader class of
‘framed regular cell complexes’. Though classical regular cells are much less tractable even
than simplices—indeed even the list of cell shapes is uncomputable—it will turn out that
framed regular cells arise as iterated constructible combinatorial bundles and therefore
both these cells and their complexes are, remarkably, algorithmically classifiable.

A classical frame of an m-dimensional vector space is an ordered choice of m linearly
independent vectors. We will define a combinatorial frame of an m-simplex to be an
ordered choice of m vectors in the spine of the simplex. To make sense of a frame on a
simplicial complex, we need a notion of the compatibility of frames along faces shared
between simplices. The restriction of a frame of a simplex to a face gives not only
information about a frame of the face but also about how that restricted frame embeds
in the ambient frame of the simplex; we will be primarily concerned with the resulting
notion of embedded framed simplex, and a framed simplicial complex will be a simplicial
complex with compatible embedded frames on all its simplices.

Regular cell complexes, that is those complexes whose attaching maps are injective,
generalize simplicial complexes by allowing cells of ‘polytopic’ shapes instead of merely
‘triangular’ shapes. Regular cells can be identified with the geometric realizations of
their face posets [Bjö84] [LW69], and via that identification they obtain piecewise linear
simplicial subdivisions. We use that simplicial structure, together with our notion of
framed simplicial complexes, to define framings of regular cells and identify a tractable
class of such cells, namely those that are ‘flat’ in that they admit a framed embedding
into euclidean space. A framed regular cell complex, finally, will be a regular cell complex
with compatible choices of flat framings on each of its cells.

A space with a homeomorphism to a regular cell complex is ‘cellulated’, as a space
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with a homeomorphism to a simplicial complex is ‘triangulated’. The fact that cellulated
spaces have played a less prominent role than triangulated spaces in classical combinatorial
topology is partially due to the aforementioned fundamental computability obstruction: it
is impossible to classify all the possible shapes of regular cells, in the sense that one cannot
produce a list of all regular cells with a given number of faces, in general; said another way,
there is no general algorithm for deciding whether a given poset is the face poset of a regular
cell, even though there are only finitely many posets of a given size. Endowing regular
cells with a framing overcomes this fundamental issue: framed regular cells, in contrast
to their nonframed counterparts, are classifiable. Specifically, given a poset together
with a framing of its geometric realization, we can algorithmically recognize whether the
poset is the face poset of a framed regular cell. This is possible, at root, because we
will discover that flat framed regular cell complexes are the geometric realizations of a
novel combinatorial structure, called ‘trusses’, which are iterated constructible bundles of
oriented fence posets.

Framed regular cells strike an unlikely and delicate balance, being simultaneously a
class of shapes that is tractable (in that they are algorithmically recognizable, unlike
ordinary regular cells) and also a class of shapes that is quite general (unlike ordinary sim-
plices). The generality of the shapes of framed regular cells provides unique combinatorial
representatives in a way that is unthinkable with simplicial structures and unknown with
any other class of shapes: a flat framed regular cell complex has a computable unique
minimal cell structure. Having a computably unique representation of these complexes
makes algorithmically decidable almost any question about them; for instance, it follows
that framed homeomorphism of these complexes is decidable, in stark contrast to the
classical (nonframed simplicial) situation. In this and other related respects, working with
framed regular cells and their complexes provides, finally, a computable framework for
combinatorial models of spaces.

I.2 Combinatorializability of topological phenomena

Combinatorics is primarily concerned with discrete, and often finite, structures whose
constituents can be counted. Topology, by contrast, is primarily concerned with the
continuous structure of spaces. The ‘combinatorializability’ of topological phenomena
refers to the ability to faithfully encode continuous objects (spaces, manifolds, continuous
maps, bordisms, et cetera) in discrete or finite data structures. This faithful encoding
depends both on having a combinatorial representation of the object in question, and
on knowing that representation is unique up to some specified combinatorial equivalence
relation.

There are by now various known instances of topological phenomena that cannot
be faithfully combinatorialized, or even combinatorialized at all, giving an impression
of a mysterious and insurmountable divide between topological spaces and any discrete
representations of those spaces. A headline instance of this divide is the disproven
‘Hauptvermutung’ [RCS+96], a conjecture that, roughly speaking, claimed that ‘topological
isomorphism’ (meaning homeomorphism) coincides with ‘combinatorial isomorphism’
(meaning piecewise linear homeomorphism). This conjecture would in particular imply
that combinatorial spaces (that is, geometric realizations of simplicial complexes) that
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are homeomorphic are also piecewise linear homeomorphic. This intuitive, presumptive
claim was eventually disproven [Mil61] by the explicit construction of homeomorphic finite
simplicial complexes that are not piecewise linear homeomorphic.

A flurry of results followed in subsequent decades [KS69] [Aki69] [HM74] [KS77] [Fre82]
[Don83], quantifying the divide not only between the ‘continuous’ and the ‘combinatorial’,
but also between the ‘combinatorial’ and the ‘smooth’ conceptions of space. Recently, a
disproof of the triangulation conjecture [Man16] established an especially stark gap, that
in every dimension greater than 4 there exist compact topological manifolds that do not
even admit a triangulation. (It will be pertinent later that most instances of the classical
topological–combinatorial gap rely on certain infinitary or ‘wild’ topological constructions.)
By contrast, smooth manifolds always admit triangulations and all triangulations of a
smooth manifold are ‘combinatorially isomorphic’. However, smooth manifolds that are
not smoothly isomorphic may nevertheless be combinatorially isomorphic [Mil56], and
combinatorial manifolds need not admit any smooth structure [Ker60].

One might dream of a topological foundations or combinatorial framework in which
the mismatch between the continuous, combinatorial, and smooth conceptions of space
would, at least to some extent, be lessened. One could imagine, for instance, a discrete,
perhaps infinitary, combinatorial theory that faithfully represents a delineated class of
relevant continuous phenomena, or a discrete, perhaps finitary, combinatorial theory
that suitably encodes smooth behavior. Each of these two comparative visions has been
pursued, to some but not complete satisfaction: for instance, an ‘o-minimal’ approach
to tame topology provides a method for excluding certain wild topological structures
[Gro97] [Shi14], while a ‘matroid’ perspective aims for a direct combinatorial description
of smooth structures [Mac91].

The second central theme of this book is that, in contrast to the classical gap between
topological and combinatorial phenomena, in our framed combinatorial setting there is a
faithful comparison between framed topological and framed combinatorial phenomena.
Furthermore, we expect framed combinatorial structures also faithfully encode all framed
smooth phenomena, and therefore will provide an unexpected unification of the continuous,
combinatorial, and smooth perspectives on space. The ‘framed topological’ side of these
comparisons will be a class of tame topological structures called ‘flat framed stratifications’.
These stratifications are ‘flat’ and ‘framed’ by an embedding in standard euclidean space,
and they are tame in that we insist the stratification admit a refining ‘mesh’, which is a
cellulation by framed regular cells; this cellulation requirement is analogous to working
with triangulable spaces and therefore excluding, a priori, certain wild behavior. These
mesh cellulations are iterated constructible bundles of stratified 1-manifolds, and will be
a precise topological counterpart of the iterated constructible combinatorial structure of
trusses mentioned earlier.

The chain of associations, from a flat framed stratification to its mesh cellulation to
the corresponding combinatorial truss, does not by itself necessarily ensure a faithful
combinatorialization of flat framed stratified topology. As a space can have various inequiv-
alent triangulations, a flat framed stratification could in theory have various inequivalent
meshes (and therefore corresponding trusses)—however, we will prove, crucially, that such
a stratification always has a unique coarsest compatible mesh. This uniqueness is an
unexpected and stark counterpoint to the classical situation: given two triangulations of
a space, traditionally one aims (and fails) to construct a mutual refinement and thereby
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verify their combinatorial equivalence; now instead, given two mesh cellulations of a
stratification, we construct a canonical mutual coarsening and thus establish the desired
combinatorial equivalence. The proof of this canonical coarsening relies, of course, on
the generality of the shapes of framed regular cells, by contrast with the constrained
shapes of classical simplices. This canonical coarsening provides the desired faithful
combinatorialization of topological phenomena in flat framed euclidean space; indeed,
we will establish the ‘flat framed Hauptvermutung’, that for flat framed stratifications,
framed homeomorphism classes coincide with framed piecewise linear homeomorphism
classes.

Regarding the combinatorialization of smooth phenomena, we will conjecture that
any smooth manifold can be represented as a flat framed stratification (via a generic
embedding in euclidean space) and that the resulting combinatorial representation as a
truss faithfully encodes the smooth structure. We will revisit the context and plausibility
of this smooth combinatorialization conjecture in the outlook, Section I.5 below.

I.3 Overview

We collect and summarize our main theorems, and along the way further describe and
illustrate our core definitions. Recall that a framed simplex is an ordinary simplex together
with frame, that is a choice of order of its spine vectors. More generally, a framed regular
cell is an ordinary regular cell together with a suitably compatible choice of frames on
each simplex in the cell’s face poset. Though it is impossible to classify regular cells, by
contrast framed regular cells are classifiable. The classifying combinatorial structure will
be a special case of the notion of ‘trusses’, which are iterated constructible poset bundles
defined as follows.

Definition 1 (Trusses). A ‘1-truss’ is a fence poset equipped with a total ‘frame’ order
on its elements. An ‘n-truss’ is a length-n tower of constructible bundles of 1-trusses.

The notions of ‘1-truss’, their ‘constructible bundles’, and ‘n-truss’ are given more precisely
in, respectively, Definition 2.1.6, Definition 2.1.54, and Definition 2.3.1. Elements of a
1-truss that are targets of poset arrows are called ‘singular’ or ‘dimension 0’, while elements
that are sources of poset arrows are called ‘regular’ or ‘dimension 1’. A 1-truss is ‘closed’
if both its endpoints are singular, and ‘open’ if both are regular; an n-truss is ‘closed’ or
‘open’ if all its fiber 1-trusses are closed or open respectively. In Fig. I.1 we illustrate a
closed 2-truss and an open 3-truss; singular elements are red, regular elements are blue,
and the frame orders are indicated by green arrows.

Figure I.1: A closed 2-truss and an open 3-truss.
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A closed truss is called a ‘truss block’ if its total poset has an initial element; these
truss blocks provide the combinatorial correlate of framed regular cells.

Theorem 2 (Classification of framed regular cells). The category of framed regular cells
is equivalent to the category of truss blocks.

This result will appear as Theorem 3.0.1. Given a framed regular cell, the total poset
of the classifying truss block is the face poset of the cell; by sequentially projecting out
frame vectors, this poset determines a tower of 1-truss bundles. In Fig. I.2 we illustrate a
few framed regular cells and their corresponding truss blocks.

Figure I.2: Framed regular cells and their classifying truss blocks.

The classification of framed regular cells by truss blocks implies a corresponding
classification for framed regular cell complexes. As a simplicial set is a presheaf on the
category of simplices, similarly a ‘truss block set’ is a presheaf on the category of truss
blocks; a simplicial set is regular if all its simplices embed into its realization, and similarly
a truss block set is regular if all its blocks embed into its realization.

Theorem 3 (Classification of framed regular cell complexes). The category of framed
regular cell complexes is equivalent to the category of regular truss block sets.

This result appears in the main text as Theorem 3.0.3.

The face poset of a framed regular cell is a truss block; the geometric realization of a
truss block is a framed regular cell. More general trusses also have geometric realizations
as ‘meshes’, which are iterated constructible bundles of stratified lines, analogous to
Definition 1, as follows.

Definition 4 (Meshes). A ‘1-mesh’ is a contractible 1- or 0-manifold, stratified by open
intervals and points, and equipped with a framing. An ‘n-mesh’ is a length-n tower of
constructible bundles of 1-meshes.

The notions of ‘1-mesh’, their ‘constructible bundles’, and ‘n-mesh’ are given more precisely
in, respectively, in Definition 4.1.7, Definition 4.1.20, and Definition 4.1.46. An n-mesh is
‘closed’ if its total space is compact, and is ‘open’ if its total space is an open disc. In
Fig. I.3 we illustrate a closed 2-mesh and an open 3-mesh.
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Figure I.3: A closed 2-mesh and an open 3-mesh.

The correspondence of meshes and trusses is at the core of our combinatorialization of
topological phenomena.

Theorem 5 (Equivalence of meshes and trusses). The ∞-category of closed, respectively
open, meshes is weakly equivalent to the discrete category of closed, respectively open,
trusses.

This result appears in a more precise form as Theorem 4.2.1. Recall the entrance path
poset of a stratified space has an element for each stratum and an arrow indicating when
a stratum intersects the closure of another stratum. The above equivalence takes a mesh,
a tower of stratified spaces, to the truss given by the tower of corresponding entrance
path posets. As an illustration, note that the meshes in Fig. I.3 yield, on application of
entrance path posets, the trusses in Fig. I.1.

A closed mesh will be called a mesh cell if it is the closure of a single stratum. Naturally,
Theorem 5 restricts to an equivalence of mesh cells and truss blocks. Combining this
equivalence with the earlier Theorem 2, relating truss blocks and framed regular cells,
yields a correspondence of mesh cells and framed regular cells.

Corollary 6 (Equivalence of mesh cells and framed regular cells). The ∞-category of
mesh cells is weakly equivalent to the discrete category of framed regular cells.

This result appears as Corollary 4.2.76. Note well that regular cells are at root combina-
torial objects and they come with a canonical piecewise linear structure, whereas mesh
cells are purely topological objects and a priori have no piecewise linear structure; thus
this seemingly innocuous result provides a fundamental bridge between the topological
and piecewise linear contexts.

Recall that a basic unsolvable problem of classical combinatorial topology is to classify
subdivisions of the n-simplex. By contrast, leveraging the above connection between
framed regular cells and mesh cells, we can classify framed subdivisions of framed regular
cells.

Theorem 7 (Classification of subdivisions of framed regular cells). A framed regular
cell complex framed subdivides a framed regular cell if and only if, as a framed stratified
space, the closed mesh corresponding to the regular cell complex refines the closed mesh
cell corresponding to the regular cell.

This result appears in more precise form as Corollary 4.2.81. The theorem may appear
to translate a piecewise linear classification problem (concerning regular complexes) into
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a topological classification problem (concerning meshes), but because of the equivalence
of meshes and trusses established in Theorem 5, classifying refinements of mesh cells is
algorithmically decidable via the combinatorics of trusses. Fig. I.4 illustrates a framed
subdivision of a framed regular cell, of the sort classified by the previous result.

Figure I.4: The subdivision of a framed regular cell.

The combinatorial category of closed trusses is isomorphic, via dualizing the truss
posets, to the category of open trusses. For instance, under this isomorphism the closed
3-truss in Fig. I.2 corresponds to the open 3-truss in Fig. I.1. By the equivalence of trusses
and meshes established in Theorem 5, the self-duality of trusses translates to a self-duality
of meshes, as follows.

Corollary 8 (Dualization of meshes). The ∞-category of closed meshes is weakly equiva-
lent to the ∞-category of open meshes.

This self-duality appears later as Corollary 4.2.9, and is a crucial advantage meshes have
over previously known shape categories. Note that the entrance path poset of the dual
n-mesh is dual to the entrance path poset of the original mesh, and so the dimensions of
all strata in the mesh are dualized—the collection of geometric shapes and their incidences
is completely reorganized. Fig. I.5 illustrates a pair of dual 2-meshes.

Figure I.5: Dualization of meshes.

Meshes, built up from mesh cells and their duals, are a flexible, computationally
tractable class of highly structured stratifications; they furthermore provide access to
a much broader, almost completely general class of stratifications by considering those
stratifications that admit a refinement by a mesh, as follows.

Definition 9 (Flat framed stratifications). A ‘flat n-framed stratification’ is a stratification
of a subspace of Rn that admits a refinement by an n-mesh.

This definition will appear in a more precise form in Definition 5.0.1. In Fig. I.6 we
illustrate two flat framed stratifications of an open 4-cube, by depicting three pertinent
slices. The first stratification is the classical third Reidemeister move, and the second is the
classical swallowtail singularity; that these indeed admit mesh refinements is illustrated in
a moment in Fig. I.7 and Fig. I.8.
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Figure I.6: Two flat framed stratifications of the 4-cube.

At the heart of the computability of our combinatorial model of stratified framed
topology is the completely unexpected fact that among the set of all refining meshes of a
flat framed stratification, there is always a canonical coarsest choice. Heuristically, the
coarsest refining mesh of a stratification is built up just from the indispensable critical
loci of certain projections of the strata. Needless to say, this situation is in stark contrast
to any simplicial model of (stratified) topology, in which two triangulations almost never
have a mutual coarsening and typically do not even admit a mutual refinement, preventing
any canonical or computable comparison.

Theorem 10 (Coarsest meshes of flat framed stratifications). Any flat framed stratification
has a unique refining mesh that is coarser than any other refining mesh.

This will be established as Theorem 5.1.19. In Fig. I.7 and Fig. I.8 we depict the coarsest
mesh for the third Reidemeister move and for the swallowtail singularity.

A flat framed stratification is refined by a mesh, and a mesh is combinatorialized by
a truss; to complete the combinatorialization of flat framed stratifications, we translate
the initial stratification into a stratified structure on the truss. A ‘stratified poset’ is a
poset together with a ‘stratification map’ to another poset (encoding the set of strata and
the combinatorial entrance paths between them); a ‘stratified truss’ is a truss together
with a stratification of its total poset. Furthermore, a stratified truss is ‘normalized’ if it
cannot be simplified while preserving the stratification; this property of being normalized
corresponds to a mesh being maximally coarsened while still refining a given stratification.

Theorem 11 (Classification of flat framed stratifications). Framed stratified homeomor-
phism classes of flat framed stratifications are in bijective correspondence with isomorphism
classes of normalized stratified trusses.

This will be established as Theorem 5.0.4. Fig. I.9 illustrates a flat framed stratification, its
coarsest refining mesh, and the corresponding normalized stratified truss; the stratification
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Figure I.7: The coarsest mesh refining the third Reidemeister move.

Figure I.8: The coarsest mesh refining the swallowtail singularity.

on the truss records which strata of the mesh assemble into each stratum of the initial
flat framed stratification.

Flat framed stratifications are intrinsically topological structures, considered up to
homeomorphism, while stratified trusses are intrinsically combinatorial or piecewise linear
structures, considered up to combinatorial or piecewise linear equivalence—the classifica-
tion of framed stratifications by stratified trusses thus provides a faithful bridge between
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Figure I.9: A flat framed stratification, its coarsest mesh, and its normalized stratified
truss.

the topological and piecewise linear contexts. Recall the classical, false Hauptvermutung,
that homeomorphic simplicial complexes are piecewise linear homeomorphic. The failure
of correspondence between the topological and the piecewise linear remains even for
subspaces (or substratifications) of euclidean space: given two piecewise linear embedded
triangulated spaces in euclidean space that are ambient homeomorphic, they need not be
ambient piecewise linear homeomorphic. By contrast, in the framed setting we will have a
tight correspondence between the topological and piecewise linear, as follows.

Theorem 12 (Flat framed Hauptvermutung). Flat framed piecewise linear stratifica-
tions that are framed stratified homeomorphic are also piecewise linear framed stratified
homeomorphic.

This result will be established later as Corollary 5.0.7. Having a combinatorial or piecewise
linear handle on framed stratifications, via stratified trusses, furthermore resolves the
fundamental decidability problem for framed homeomorphism.

Theorem 13 (Decidability of framed stratified homeomorphism). Given two flat framed
stratifications, one can algorithmically decide whether they are framed stratified homeo-
morphic.

This is recorded later as Corollary 5.0.11.
One would hope to extend the above computable combinatorialization of framed

topological phenomena to framed smooth phenomena; indeed we expect this is possible,
as follows.

Conjecture 14 (Framed homeomorphism implies diffeomorphism). Given two smooth
compact manifolds smoothly embedded in euclidean space, and defining flat framed stratifi-
cations there, if they are flat framed homeomorphic then they are diffeomorphic.

Conjecture 15 (Framed stratifications are dense in smooth embeddings). Any smooth
embedding of a smooth compact manifold into euclidean space has an arbitrarily small
perturbation that is a flat framed stratification.

These conjectures reappear later as Conjecture 5.3.6 and Conjecture 5.3.7. Because
flat framed stratifications can be faithfully combinatorialized as stratified trusses, these
conjectures together imply that there is a sound and complete combinatorial representation
of smooth structures on manifolds.
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I.4 Outline

Chapter 1 introduces framed combinatorial structures. The first such structure, ‘framed
simplices’ is a combinatorial analog of classical framed vector spaces. We then introduce
a complementary notion of ‘proframed simplices’ as an analog of a tower of vector space
projections, and these are related to framed simplices by taking ‘gradients’ and ‘integrals’.A
‘framed simplicial complex’ will be a collection of compatibly framed simplices, while
a ‘proframed simplicial complex’ will directly be a tower of projections of simplicial
complexes. We finally generalized framed and proframed simplicial complexes to ‘framed
and proframed regular cell complexes’.

In Chapter 2, we develop our fundamental combinatorial notion of ‘trusses’, as certain
iterated constructible bundles of posets. This development begins with ‘1-trusses’, which
are framed fence posets, morphisms between them called ‘1-truss bordisms’, and families
of them called ‘1-truss bundles’. 1-truss bundles over simplices turn out to have an
unexpected total order on the top-dimensional simplices in their total posets, and this
leads to a crucial method of ‘truss induction’. Finally we describe ‘n-trusses’, as iterated
1-truss bundles, their corresponding ‘n-truss bordisms’ and ‘n-truss bundles’, and their
elementary constituents ‘n-truss blocks’.

Chapter 3 proves the equivalence of the category of truss blocks and the category
of framed regular cells, and more generally the equivalence of the category of regular
presheaves on truss blocks and the category of framed regular cell complexes, as stated
in Theorem 2 and Theorem 3 above. Truss blocks are translated into regular cells by an
appropriate geometric realization of the total posets of the blocks; the converse translation
entails the more technical construction of a tower of 1-truss bundles from the framing
information on the regular cell.

In Chapter 4, we introduce our fundamental stratified topological notion of ‘meshes’,
as certain iterated constructible bundles of stratified manifolds. From the outset, meshes
appear as a topological analog of the combinatorial structure of trusses, and the notions of
‘1-mesh’, ‘1-mesh bundle’, and ‘n-mesh’ parallel the corresponding truss notions. Indeed,
we prove, as claimed in Theorem 5, that the topologically enriched category of meshes
is weakly equivalent to the discrete category of trusses; one direction constructs an
entrance path truss combinatorially encoding a mesh, and the other direction produces
a classifying mesh geometrically realizing a truss. This fundamental translation allows
us to establish the equivalence of mesh cells and framed regular cells (Corollary 6), the
classification of subdivisions of framed regular cells (Theorem 7), and the self-duality of
meshes (Corollary 8).

Finally, Chapter 5 radically broadens the class of stratifications under investigation, in-
troducing ‘flat framed stratifications’ as those stratifications that admit a mesh refinement.
The core work of the chapter is the proof that every flat framed stratification has a coarsest
refining mesh, as claimed in Theorem 10. We leverage that result to establish the combi-
natorial classification of flat framed stratification in terms of normalized stratified trusses
(Theorem 11). We then bridge the topological to piecewise linear chasm, proving the flat
framed Hauptvermutung (Theorem 12) that homeomorphic flat framed stratifications are
piecewise linear homeomorphic. As a final application we establish the decidability of
framed stratified homeomorphism (Theorem 13). In the final portion of the chapter, we
will describe a future outlook for framed combinatorial topology, including theories of
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transversality and manifold diagrams, and of combinatorial tangles and singularities.
Appendix A provides a detailed discussion of classical linear frames, corresponding

notions of indframes and proframes, the generalizations to partial and embedded frames,
indframes, and proframes, and the affine analogs of these structures. Appendix B reviews
and elaborates various elementary notions from stratified topology.

Chapter 1
combinatorial

frames, gradients,
integrals, fr.
cell complexes

Chapter 2
iterated constructible

1-dimensional
poset bundles

Chapter 3
classifying structures

from §1 by those from §2

Chapter 4
iterated constructible

R-trivializable stratified
bundles, relation to §2

Chapter 5
stratifications of flat

framed space, applications

Appendix A
Classical analogues

of combina-
torial frames,

gradients, integrals

Appendix B
basic notions from
stratified topology,

conical and cellulable
stratifications

Figure I.10: Chapter dependencies and partitioning.

Reader’s guide The structure of chapters in this book is not linear: the graph of the
main logical dependencies (which ignores some other, less significant interactions between
chapters) is shown in Fig. I.10. The figure also indicates that the ‘space of chapters’ can be
covered by two (overlapping) open sets: firstly, Chapter 1, 2, 3 and Appendix A together
explore ‘affine combinatorial notions of framings’, their classifying inductive structure
as well as their relation to classical linear algebraic notions. Relatedly, but working in
a different direction, Chapter 2, 4, 5 and Appendix B study local ‘flat’ framed space
(whose framings admit trivializations in Rn) and stratifications thereof, such as embedded
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manifolds M ↪→ Rn. The second part has several immediate applications that we sketch
in the next section, and the reader interested in those may and can, for instance, only
engage with the second open set of chapters.

I.5 Outlook

We briefly summarize our immediate outlook for framed combinatorial topology beyond
the present book; a more detailed discussion of these future directions appears in the final
Section 5.3.

Flat framed stratifications are already highly, if implicitly, structured by their canonical
mesh refinements and the relation of that refinement to the ambient frame on euclidean
space. However, the stratification itself need not be in any sort of generic or transverse
relation to the ambient frame; for certain theoretical and computational purposes, it is
essential to restrict attention to appropriately transverse stratifications. We can define
and detect a transverse stratification in purely topological, as opposed to smooth, terms,
by insisting that every stratum project by a local homeomorphism to the corresponding
stage of the ambient euclidean proframe. We dub these transverse stratifications ‘manifold
diagrams’; indeed our definition provides a solution to the long-standing search for a
formal generalization of ‘string diagrams’ to all higher dimensions. This notion of manifold
diagrams is as powerful as one could hope: first, because of the combinatorializability
of flat framed stratifications, manifold diagrams are also completely combinatorializable,
into an appropriate notion of transverse trusses; second, using the dualization of meshes,
manifold diagrams naturally dualize to a notion of higher cell pasting diagrams that
formalizes arbitrary composability structures in higher categories.

Leveraging the theory of manifold diagrams, we can identify a combinatorially tractable
class of tame tangles, namely those embeddings of manifolds in euclidean space that admit
refinements to manifold diagrams. Of course we expect any embedding of a manifold has
an arbitrarily small deformation to a tame tangle, and so nothing is lost by excluding
more wild behaviors. Our combinatorial encoding of (tame) tangles immediately provides
a novel computational toolkit: we can stratify the space of tangles by algorithmically
computable local or global complexity measures, and formalize computable notions of
tangle perturbation, simplification, and stability. Having a robust algorithmic approach
to tangles is already novel in dimension 4, but indeed our definitions and tools apply
in all dimensions and all codimensions. The divergence of our theory from the classical
view of tangles becomes especially stark in higher dimensions. A sufficiently small
open neighborhood in a tangle is called a ‘tangle singularity’, or just a ‘singularity’ for
brief. The traditional view has been that singularity classification becomes profoundly
unmanageable as the dimension increases: first arise uncountable continuous moduli of
distinct singularity types, then the moduli space of singularities itself becomes infinite
dimensional, and generally demons abound. By contrast, we see a natural equivalence
relation on singularities (not just tame ones, because we expect we can account for wild
ones as well via perturbation methods) for which there is a countable, algorithmically
computable classification in all dimensions.

That context of manifold diagrams and tangle singularities considered, there arise
various open problems and directions for investigation. For instance: classify perturbation-
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stable singularities. A ‘perturbation-stable singularity’ is one that cannot be simplified by
small deformations, and is therefore in a sense an ‘elementary singularity’; this stability
condition is straightforward to formalize using the combinatorial complexity measures
at our disposal. We expect that the set of isomorphism classes of perturbation-stable
singularities in any fixed dimension is finite, but the structure of this classification remains
mysterious as the dimension grows. Complementary to singularities, which are the
most local sort of tangles, are ‘tangle homotopies’, or ‘homotopies’ for brief, which are
disconnected tangles encoding the ways manifolds can pass by one another at a distance
in euclidean space. As there are distinguished elementary singularities, namely those
that are perturbation-stable, similarly there are ‘elementary homotopies’, namely those
that cannot be deformed into a composite of simpler homotopies. Naturally we may
then pose the problem: classify elementary homotopies. Again, we expect that the set
of isomorphism classes of elementary homotopies in any fixed dimension is finite, but a
precise classification remains unknown even in relatively low dimensions.

Given a sufficiently generic k-dimensional tangle Mk in euclidean space Rn, the
composite map Mk ↪→ Rn → Rm (where the last map is the standard projection in the
canonical proframe of euclidean space) should be a prototypical ‘m-Morse function’, in the
sense that all its local singularities and global homotopies would be, in an appropriate sense,
elementary. Less precisely than the previous problems, we may ask for the development
of a direct definition of m-Morse functions (without reference to tangle embeddings),
which retains the combinatorial and computational flavor of our tangles and manifold
diagrams, and therefore admits a tractable classification and attendant application to
smooth manifold topology. We expect not only that such a combinatorial higher Morse
theory exists, but that the resulting combinatorial invariants detect, for instance, all
smooth structures on manifolds. The realization of such an expectation depends, most
likely, on the validity of our aforementioned conjectures about framed homeomorphism and
framed stratifications—indeed they would imply that every combinatorially tame tangle
has a canonical smooth structure and that every smooth tangle has such a combinatorially
tame representation.
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CHAPTER 1
Framed combinatorial structures

In this chapter, we introduce notions of framings on classical combinatorial structures.
We start by defining frames on simplices in Section 1.1, and introduce core definitions
for the ‘affine combinatorics’ of framed simplices. We then generalize our discussion to a
notion of framings on simplicial complexes in Section 1.2, in which framings of complexes
will be pieced together from the frames of each individual simplex of the complex. In a
yet further generalization, we will then introduce framings on regular cell complexes in
Section 1.3. As it turns out, the generalization from ‘framed simplices’ to ‘framed regular
cells’ is less by choice than it is a crucial step in the theory of framed combinatorial
topology, on which many later results will depend.

1.1 Framed simplices

The notion of a frame on a simplex, and later on other combinatorial objects, is of course
inspired by and modeled on the classical notion of frames. Classically, a ‘trivialization’
of an m-dimensional vector space V is specified by a linear isomorphism V ∼−→ Rm.
Preimages of standard unit vectors ei ∈ Rm under this trivialization define an ordered list
of (v1, v2, ..., vm) in V called a ‘frame’ of V .

The guiding intuition in the translation of frames in linear algebra into the combina-
torics of simplices, is that directed edges of simplices play the role of vectors. However,
m-simplices are combinatorially specified by sets of vertices and thus they do not have
a distinguished origin. Moreover, their vectors (i.e. directed edges) are ‘affine’ in that
different vectors may start at different points in the simplex. This observation has im-
portant implications for the translation of classical intuition of frames in linear algebra
into the combinatorics of simplices, and we will highlight this by speaking of the ‘affine
combinatorics’ of framed simplices.

The basic analogy of vectors in a vector space with ‘vectors’ in a simplex will lead
to a notion of ‘frames’ on a simplex as follows. We say two vectors in a simplex are
‘composable’ if the endpoint of the first vector is the starting point of the second vector;
in this case, their ‘composite’ is the unique directed edge starting at the starting point of
the first vector and ending in the endpoint of the second vector. For instance, given a
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4-simplex S = {a, b, c, d}, the directed edges d → b and b → c compose to the directed
edge d → c. A ‘basis’ of an m-simplex is a set of m vectors such that all other vectors
(up to reversing their direction) can be written as composites of vectors in the basis. A
‘frame’ of an m-simplex is an ordered basis.

To further explore the analogy to classical linear frames and trivializations, we can
rephrase the notion of simplicial frames as follows. Observe that the elements of any
basis of an m-simplex S must be the elements of a chain of m composable vectors in the
simplex; we call such a chain a ‘spine’ of S. A choice of basis therefore determines an
identification S ∼= [m] of S with the ordered standard simplex [m] = (0 < 1 < ... < m)
(given by mapping the spine of S to the standard spine of [m]). Conversely, any such
identification S ∼= [m] determines a basis in this way. A frame of an m-simplex S is then
an identification S ∼= [m] together with a choice of order on the set of standard spine
vectors spine[m] of [m]. The standard simplex [m] has of course the canonical identity
identification with itself, and so we refer to the simplex [m] with an order F of its spine
vector set spine[m] as a ‘framed standard simplex’ ([m],F).

Framed standard simplices ([m],F) with any choice of frame F will play the role of
euclidean space Rm with its standard frame {e1, e2, ..., en}. The fact that there is not
only one ‘framed standard euclidean space Rm’ but Sm-many ‘framed standard simplices
([m],F)’ reflects the fact that several affine constellations of standard basis vectors can
arise: for instance, for the standard basis vectors e1 and e2 in R2, chaining e1 with e2

forms the spine e1 ◦ e2 of a ‘standard simplex’, whereas chaining e2 with e1 forms the
spine e2 ◦ e1 of a different ‘standard simplex’—see Fig. 1.1. The affine combinatorics of
framed simplices accounts for both of these configurations.

Figure 1.1: Standard vectors spanning distinct standard simplices.

We briefly outline this section. In Section 1.1.1 we begin by describing the combinatorial
counterparts of classical linear algebraic notions, and then define ‘frames’ on simplices
together with several generalizations to ‘embedded’ and ‘partial’ frames. In Section 1.1.2
we recast these definitions in terms of so-called ‘proframes’ of simplices. The fact that
‘frames’ and ‘proframes’ are indeed equivalent structures on simplices is discussed in
Section 1.1.3, where we compare the two notions via so-called ‘gradient’ and ‘integration’
functors. Note that the combinatorial notions of ‘embedded’ and ‘partial’ frames (and
‘proframes’) introduced here, may as well be understood in purely classical linear algebraic
terms as we explain in Appendix A.

1.1.1 Frames on simplices Before giving the definition of frames on simplices, we
specify some basic terminology and notation.
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Terminology 1.1.1 (Combinatorial simplices). An ‘ordered m-simplex’ is a totally ordered
poset with m+ 1 elements. An ‘m-simplex’ (for clarity also referred to as an ‘unordered
m-simplex’) is a set with m+ 1 elements.

Notation 1.1.2 (Category of ordered simplices). We will denote the category of ordered
simplices by ∆; its objects are the ordered simplices, and its morphisms are the order-
preserving maps.

Notation 1.1.3 (Category of unordered simplices). We will denote the category of simplices
by ∆; its objects are the unordered simplices S and its morphisms are all functions.

Terminology 1.1.4 (Face maps and degeneracy maps). An injective map of (ordered or
unordered) simplices is called a ‘face map’, and a surjective map of simplices is called a
‘degeneracy map’.

Terminology 1.1.5 (Unordering ordered simplices). The ‘unordering’ functor (−)un : ∆→ ∆
forgets the order of ordered simplices.

Notation 1.1.6 (Maps between ordered and unordered simplices). Maps S → T or T → S
between an unordered simplex S and an ordered simplex T will be parsed as maps S → T un

resp. T un → S.

Terminology 1.1.7 (Standard simplex). The ‘ordered standard m-simplex’ [m] is the poset
(0 < 1 < · · · < m); considering posets as categories, this simplex is, equivalently, the
category (0→ 1→ · · · → m).

Since it will be used so frequently, we usually refer to ordered standard m-simplex simply
as the ‘m-simplex [m]’. Every ordered m-simplex S is canonically isomorphic to the
standard m-simplex [m]. We may therefore work with a skeleton of ∆ as follows.

Notation 1.1.8 (The skeleton of standard simplices). Abusing notation, we denote the
skeleton of ∆ containing only standard simplices [m] for m ∈ N again by ∆.

Terminology 1.1.9 (Unordered standard simplices). The unordering [m]un of the standard
simplex [m] is the ‘unordered standard m-simplex’ {0, 1, ...,m}.
Terminology 1.1.10 (Sets of numerals). The ‘set of numerals’ or ‘numeral set’ m is the
ordered set {1 < 2 < · · · < m}.
Notation 1.1.11 (Category of numeral sets). We will denote the category of numeral
sets by ∇; its objects are the numeral sets m for m ∈ N, and its morphisms are the
order-preserving functions.

We next introduce combinatorial notions which mirror ordinary notions from linear
and affine algebra. In the most elementary case, this is the correspondence of (nonzero)
vectors in a vector space V to (non-degenerate) 1-simplices in a simplex S, as follows.

Terminology 1.1.12 (Simplicial vectors). A ‘vector’ v in an (ordered or unordered) simplex
S is a map v : [1]→ S. We assume by default that v is ‘non-degenerate’ (or ‘nonzero’),
meaning v is injective, and otherwise say that v is a ‘degenerate’ (or ‘zero’) vector. It will
be useful to also refer to the set of all zero vectors of S, which we call the ‘affine zero
vector’ of S and denote by 0aff .
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Terminology 1.1.13 (Spine vectors of ordered simplices). A ‘spine vector’ in an ordered
simplex is a non-degenerate vector that cannot written as the composite of more than
one non-degenerate vector. The set of spine vectors of the standard simplex is denoted
spine[m]; this set spine[m] = {(0 → 1), (1 → 2), . . . , (m − 1 → m)} may be canonically
identified with the numeral set m, by mapping the spine vector (i− 1→ i) to the numeral
element i.

Note that the realization |S| of any simplex S is naturally carries affine structure (see
Appendix A.2 for a brief recollection of affine spaces). Passing to the associated vector
spaces of affine spaces, allows to translate ‘simplicial vectors’ to ordinary ‘linear vectors’
as follows.

Notation 1.1.14 (Realizations of vectors in a simplex). Given a vector v in S, we can
realize v to an affine vector |v| = ∆1 → |S| in the realized simplex |S|. Forgetting the
vector’s base point, we obtain an ordinary vector ~v in the associated vector space ~V (S) of
S (that is, ~v = unbase |v| using Notation A.2.3).

The role of ‘linear projections’ of vector spaces will be played by ‘degeneracies’ of
simplices. (Indeed, note that any degeneracy F : S → T of simplices induces a linear
projection ~V (S)→ ~V (T ) of associated vector spaces, defined to map ~v to ~w if w = F (v).)
Degeneracies admit the following ‘affine’ notion of kernels.

Terminology 1.1.15 (Affine kernels of simplicial degeneracy maps). For a degeneracy
T → S, the ‘affine kernel’ U = keraff(S → T ) is the subset of vectors in S that are mapped
to zero vectors in T by the degeneracy.

We write S � S/U for the simplicial degeneracy of S whose affine kernel is U , and U S
to indicate that U is an affine kernel. Importantly, note that affine kernels U of S cannot,
in general, be canonically expressed as simplicial face maps into S; that is, the degeneracy
S � S/U does not have a canonically ‘splitting’ by a simplicial face S/U ↪→ S (i.e. such
that (S/U ↪→ S � S/U) = id).

Analogous to linear embeddings into Rn being canonically split, the situation slightly
improves when the target simplex T ∼= [n] is the standard n-simplex as we will now see.
In the presence of order (and thus of spine vectors) we first adapt the notion of affine
kernels as follows.

Terminology 1.1.16 (Affine kernels for ordered simplices). Given a degeneracy f : [m]→ [k],
the ‘affine kernel’ keraff(f) is the subset of spine vectors in spine[m] that are mapped to
zero vectors by f .

Note that, in fact, any subset U ⊂ spine[m] of spine vectors in [m] determines and is
determined by a degeneracy f : [m]� [k] with affine kernel U = keraff f . This leads to
the following notion of affine faces which is ‘formally dual’ to that of degeneracies.

Terminology 1.1.17 (Affine faces). An ‘affine face’ f : [n] [m] is an ordered map
spine[n] ↪→ spine[m]. Its ‘affine image’ imaff(f) is its image of spine vectors in spine[m],
and its ‘affine cokernel’ cokeraff(f) is the complement of that image.

Remark 1.1.18 (Formal duality of degeneracies and affine faces). There is a correspondence
between degeneracies g : [n]� [m] and affine faces f : [m] [n] determined by equating
their kernels resp. cokernels: ker(g) = cokeraff(f). Given a degeneracy g : [n]� [m] we
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also write split(g) : spine[m] ↪→ spine[n] for the map on spine vectors of its corresponding
affine face, and refer to split(g) as the affine face that ‘splits’ g.

Given an unordered k-simplex T , we write T [n] to mean a pair consisting of an
ordering T ∼= [k] and an affine face [k] [n]. The affine combinatorial notions of
‘simplicial projections’ (i.e. degeneracies) and of ‘simplicial subspaces’ (i.e. affine faces)
combine to a notion of ‘affine simplicial map’ as follows.

Terminology 1.1.19 (Affine simplicial maps). An ‘affine map’ S → [n] of an m-simplex to
the standard simplex [n] is a sequence S � T [n] consisting of a degeneracy S � T ,
and identification T ∼= [k] (where k is the dimension of T ), and an affine face [k] [n].
The ‘affine image’ im(S � T [n]) of such an affine map is the subset of the spine
vector set spine[m] given by the affine image imaff([k] [n]).

The above combinatorial counterparts to classical linear algebraic notions will allow us
to mirror many classical definitions, including that of linear frames, in purely combinatorial
terms. Recall a linear frame in an m-dimensional vector space V can be specified by
a linear trivialization V ∼−→ Rm. We will, in fact, also be interested in the following
generalizations of linear trivializations, which allow for more general types of maps from
V to an euclidean space.

Terminology 1.1.20 (Partial, embedded, and embedded partial trivializations). A linear
projection V � Rk will be called a ‘k-partial trivialization’ (for its relation to ‘partial’
frames of V , see Appendix A.1). A linear subspace V ↪→ Rn will be called an ‘n-embedded
trivialization’ (for its relation to ‘embedded’ frames of V ). Yet more generally, a general
linear map V → Rn with k-dimensional image will be called an ‘n-embedded k-partial
trivialization’ (for its relation to ‘embedded partial’ frames of V ).

The role of these notions of ‘generalized trivializations’ will be fundamental later on: when
defining framed simplicial complexes in Section 1.2 by patching together global framings
from local frames, n-embeddings of frames will allow to compare frames of simplices of
any dimensions (serving a similar role to local trivializations of n-dimensional tangential
structure of manifolds).

For the translation of linear (partial, embedded and embedded partial) trivializations
into combinatorial definition, there now remains only one central difference: namely,
instead of just one ‘framed standard’ model Rn, we will find an Sn-worth of ‘framed
standard’ simplices—this is the set of standard n-simplices with spine order (that is, a
total order F of the spine vector set spine[n]). Taking this difference into account, a
summary of the translation of linear trivializations (and their generalizations) into affine
combinatorial structures is given in Fig. 1.2. The subsequent sections will give an in-depth
discussion of these structures.

1.1.1.1 The definition of frames We introduce frames on simplices, a combinatorial
analog of orthonormal frames of euclidean vector spaces, and of linear frames of general
vector spaces up to orthoequivalence. The role of frame vectors will be played by the
spine vectors of a simplex. As a linear frame is an ordered list of its frame vectors, a
simplicial frame will be an ordered collection of spine vectors.
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Linear algebra Affine combinatorics

m-dimensional vector space V unordered m-simplex S

nonzero vectors v in V directed edges v in S

the zero vector 0 in V vertices x in S

vector space projections V � V ′ simplicial degeneracies S � S′

subspaces (W ↪→ V ) affine faces T S

framed standard Rm standard simplex [m] with spine order

linear trivialization V ∼−→ Rm isomorphism S ∼= [m] with affine image order

partial triv. V �W ∼−→ Rk degeneracy S � T ∼= [k] with aff. image order

n-embedded triv. V ↪→ Rn affine face S [n] with aff. image order

n-embd. partial triv. V �W ↪→ Rn affine map S � T [n] with aff. image order

Figure 1.2: The analogy between notions in linear algebra and notions in affine combina-
torics.

Definition 1.1.21 (Frame on the standard simplex). A frame F of the standard
m-simplex [m] is a bijection F : spine[m]→ m from the set spine[m] of spine vectors of
the simplex to the set of numerals m = {1, 2, . . . ,m}.

We may of course equivalently think of a frame F in terms of the inverse function
F−1 : m → spine[m] from the set of numerals to the spine, or more concretely as an
ordered list (v1, v2, ..., vm) of spine vectors vi = F−1(i) of [m]. In particular, F does
provide an order on spine vector in [m] as recorded in Fig. 1.2. Following the table further,
frames of unordered simplices can now be defined as follows.

Definition 1.1.22 (Frame on a simplex). A frame of an m-simplex S is an isomorphism
S ∼= [m] together with a frame F on [m].

We usually denote framed simplices S by tuples (S ∼= [m],F). We may also keep the
isomorphism S ∼= [m] implicit, and simply say that F is a frame on S.

Example 1.1.23 (Frames on simplices). In Fig. 1.3 we illustrate a few framedm-simplices
(S ∼= [m],F). The frame F : spine[m] → m is indicated in two ways, as follows. Firstly,
the spine vector v ∈ spine[m] is labeled by its numeral value F(v) ∈ m. Secondly, the
labeled spine vectors, thought of as vectors in the linear space spanned by the picture
of the simplex, are translated so their sources are coincident, and the resulting labeled
‘coordinate frame’ is drawn in or near the simplex.

A linear embedding of a framed simplex into euclidean space may preserve the frame
structure in the following sense.

Terminology 1.1.24 (The standard oriented components of euclidean space). For all i < n,
the image of the linear subspaces 0n−i × Ri ↪→ 0n−i−1 × Ri+1 (with both domain and
codomain being subspaces of Rn) has two components ε−i and ε+i given by 0n−i−1×R<0×Ri
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Figure 1.3: Framed simplices.

resp. 0n−i−1 ×R>0 ×Ri. We call ε−i and ε+i the ‘ith negative’ resp. ‘ith positive standard
component’ of Rn.

Definition 1.1.25 (Framed realization of a framed simplex). A framed realization of
a framed m-simplex (S ∼= [m],F) (with frame vectors vi = F−1(i)) is a linear embedding
rF : |S| ↪→ Rm of the geometric m-simplex |S| into Rm such that ~rF(~vi) lies in the ith
positive standard component ε+i ⊂ Rm, for all i ∈ m.1

Example 1.1.26 (Framed realization of a framed simplex). In Fig. 1.4 we illustrate
framed realizations of two framed 2-simplices.

Figure 1.4: Framed realization of framed simplices.

Remark 1.1.27 (Understanding frames in classical linear algebraic terms). The set of all
framed realizations of a given framed simplex (S ∼= [m],F) describes a certain equivalence
class of linear trivializations |S| ↪→ Rm of the underlying nonframed simplex S (this is
formalized in Observation A.2.11).

We next mention the following generalization of frames to ‘partial’ frames. Instead
of a frame on the ‘complete’ simplex S, we may consider a frame on S that is defined
everywhere but on a subspace U S.

Definition 1.1.28 (Partial frame on a simplex). A k-partial frame on an m-simplex S
is a degeneracy S � T together with a frame (T ∼= [k],F).

Note in particular, that the frame F provides an ordering of the affine image of the affine
map S � T ∼= [k] (namely, the image is spine[k]), which matches the structure recorded
in Fig. 1.2. We usually denote partially framed simplices S by tuples (S � T ∼= [k],F) or,
more simply, by tuples (S � [k],F) (note, up to canonical ismorphism, T is redundant).
Note that in an m-partial frame of an m-simplex (S � [m],F) the degeneracy S � [m]

1Technically, by ‘linear embedding’ |S| ↪→ Rm we mean an ‘affine embedding’ in the sense of Remark A.2.1.
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must be an isomorphism, and thus m-partial frames of m-simplices are frames on m-
simplices.

Terminology 1.1.29 (Unframed subspace). The ‘unframed subspace’ of a k-partially framed
simplex (S � [k],F) is the affine kernel U = keraff(S � [k]).

Example 1.1.30 (Partial frames on simplices). In Fig. 1.5 we illustrate a few k-partially
framed m-simplices (S � [k],F): we depict degeneracies S � [k] by highlighting their
unframed subspace (in orange) and illustrate the framed simplices ([k],F) as in Exam-
ple 1.1.23. Note that the degeneracy S � [k] can equivalently be expressed as a partial
order on S (indicated in green), and the frame F may then be indicated labeling vectors v
in S with i ∈ k whenever w = (S � T )(v) ∈ spine[k] and F(w) = i (indicated in purple).

Figure 1.5: Partially framed simplices.

A linear embedding of a partially framed simplex into euclidean space may preserve
the frame structure in the following sense.

Definition 1.1.31 (Framed realization of a partially framed simplex). Consider a k-
partially framed m-simplex (S � [k],F) with unframed subspace U = keraff(S � T ). A
framed realization of ([m],F) is a linear map rF : ∆m → Rk of the standard geometric
m-simplex ∆m to Rk such that ~rF(~v) = 0 ∈ Rk, for v ∈ U , and such that ~rF(~v) ∈ ε+i ⊂ Rk
whenever w = (S � T )(v) ∈ spine[k] and F(w) = i.

Example 1.1.32 (Framed realization of a partially framed simplex). In Fig. 1.6 we
illustrate the framed realizations of a 1-partially framed 2-simplex and of a 2-partially
framed 3-simplex.

Figure 1.6: Framed realization of partially framed simplices.

Remark 1.1.33 (Understanding partial frames in classical affine algebraic terms). The
set of all framed realizations of a given k-partial framed simplex (S � [k],F) describes a
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certain equivalence class of linear trivializations |S| → Rk of the underlying nonframed
simplex S (this is formalized in Observation A.2.14).

1.1.1.2 Embedded frames We introduce a combinatorial analog of the notion of
linear embedded trivializations. Recall, linear embedded trivializations are linear vector
space inclusions V ↪→ Rn which, if V is euclidean, up to orthoequivalence are represented
by orthonormal n-embedded frames on V , that is, by ordered lists of vectors (v1, v2, ..., vn)
of which exactly dim(V ) are nonzero and form an orthonormal basis of V .

Definition 1.1.34 (Embedded frame on the standard simplex). An n-embedded frame
F of the standard m-simplex [m] is an injective function F : spine[m] ↪→ n from the
spine of the simplex into the set of numerals {1, 2, . . . , n}.

We may of course equivalently think of an n-embedded frame F of [m] in terms of the
partial inverse function F−1 : n→ spine[m] from the set of numerals to the spine, or more
concretely as an ordered list (v1, v2, ..., vn) where vi = 0aff if F−1 is undefined on i, and
vi = F−1(i) otherwise. Note that an m-embedded framed m-simplex is the same as a
framed m-simplex as previously defined. For general simplices, we introduce the following.

Definition 1.1.35 (Embedded frame on a simplex). An n-embedded frame of an
m-simplex S is an isomorphism S ∼= [m] together with an n-embedded frame F on
[m].

We usually denote n-embedded framed simplices S by tuples (S ∼= [n],F). In line with
Fig. 1.2, we remark that there is the following equivalent definition of embedded frames.

Remark 1.1.36 (Embedded frames via simplicial subspaces). An n-embedded frame F of
an m-simplex S is equivalently given by an affine face S ∼= [m] [n] together with an
ordering of the image of that affine face.

Example 1.1.37 (Embedded frames on simplices). In Fig. 1.7 we illustrate a few n-
embedded framed m-simplices (S ∼= [m],F). As before, the frame F : spine[m] ↪→ n of [m]
is indicated in two ways: the spine vector v ∈ spine[m] is labeled by its numeral value
F(v) ∈ n, and the m labeled spine vectors are translated into a labeled coordinate frame.

Figure 1.7: Embedded framed simplices.

A linear embedding of a framed simplex into euclidean space may preserve the frame
structure in the following sense.

Definition 1.1.38 (Framed realization of an embedded framed simplex). A framed
realization of an n-embedded framed m-simplex (S ∼= [m],F) (with nonzero frame
vectors vi = F−1(i), i ∈ im(F)) is a linear embedding rF : |S| ↪→ Rn of the geometric
m-simplex |S| into Rn such that ~rF(~vi) ∈ ε+i ⊂ Rm, for all i ∈ im(F).
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Example 1.1.39 (Framed realization of embedded framed simplices). In Fig. 1.8 we
illustrate framed realizations of two 3-embedded framed simplices; note that the framed
realizations of the 3-embedded framed 1-simplex (shown on the right) must yield affine
vectors that, after translating their base points to the origin, lie in the component ε+i
(which consists of vectors in the 〈e2, e3〉-plane with strictly positive 2-component).

Figure 1.8: Framed realization of embedded framed simplices.

Remark 1.1.40 (Understanding embedded frames in classical affine algebraic terms). The
set of all framed realizations of a given n-embedded framed simplex (S � [m],F) describes
a certain equivalence class of linear trivializations |S| ↪→ Rn of the underlying nonframed
simplex S (this is formalized in Observation A.2.11).

While we will be interested ultimately only in non-partial embedded frames, we also
mention the following generalization of embedded frames to the partial case. Instead of
an embedded frame on the ‘complete’ simplex S, we may consider an embedded frame on
S that is defined everywhere but on a subspace U S. Following Fig. 1.2 embedded
partial frames of unordered simplices can be defined as follows.

Definition 1.1.41 (Embedded partial frame on a simplex). An n-embedded k-partial
frame on an m-simplex S is a degeneracy S � T together with an n-embedded frame
(T ∼= [k],F).

We usually omit the (canonically determined) simplex T , and denote n-embedded k-
partially framed simplices S by tuples (S � [k],F) (where F is an n-embedded frame
of the standard simplex [k]). Note, in line with Fig. 1.2, we may equivalently think of
the structure of an embedded partially framed simplex as an affine map S � T [k]
together with an ordering of its affine image (see Remark 1.1.36).
Terminology 1.1.42 (Unframed subspace). The ‘unframed subspace’ of an n-embedded
partially framed simplex (S � [k],F) is the affine kernel U = keraff(S → T ).

Example 1.1.43 (Embedded partial frames on simplices). In Fig. 1.9 we illustrate a
few n-embedded k-partially framed m-simplices (S � [k],F): we depict degeneracies
S � [k] by highlighting their unframed subspace (in orange) and illustrate the framed
simplices ([k],F) as in Example 1.1.37. Note that the degeneracy S � [k] can equivalently
be expressed as a partial order on S (indicated in green), and the frame F may then be
indicated labeling vectors v in S with i ∈ n whenever w = (S � T )(v) ∈ spine[k] and
F(w) = i (indicated in purple).
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Figure 1.9: Embedded partially framed simplices.

A linear embedding of a embedded partially framed simplex into euclidean space may
preserve the frame structure in the following sense.

Definition 1.1.44 (Framed realization of a embedded partially framed simplex). Consider
a embedded partially framed m-simplex (S � [k],F) with unframed subspace U =
keraff(S � T ). A framed realization of ([m],F) is a linear embedding rF : ∆m ↪→ Rm
of the standard geometric m-simplex ∆m into Rm such that ~rF(~v) = 0 ∈ Rk, for v ∈ U ,
and such that ~rF(~v) ∈ ε+i ⊂ Rk if w = (S � T )(v) ∈ spine[k] and F(w) = i.

Example 1.1.45 (Framed realization of an embedded partially framed simplex). In
Fig. 1.10 we illustrate framed realizations of a 2-embedded 1-partial frame of the 3-simplex
and of a 3-embedded 2-partial frame of the 4-simplex (for the latter example, we think of
the central R2 plane as being embedded in R3 as indicated by the grey coordinate axis).

Figure 1.10: Framed realization of an embedded partially framed simplex.

Remark 1.1.46 (Understanding embedded partial frames in classical affine algebraic
terms). The set of all framed realizations of a given n-embedded k-partial framed simplex
(S � [k],F) describes a certain equivalence class of linear trivializations |S| → Rn of the
underlying nonframed simplex S (this is formalized in Observation A.2.14).

1.1.1.3 Restricting frames A linear trivialization V ∼−→ Rn restricts on any linear
subspace W ↪→ V to a linear n-embedded trivialization W ↪→ Rn. We discuss the
combinatorial analog of this process, that is, how frames and embedded frames of simplices
restrict to embedded frames on simplicial faces. In geometric terms, our definition can be
expressed as follows.

Remark 1.1.47 (Restricting frames in linear algebraic terms). Consider an n-embedded
framed m-simplex (S ∼= [m],F), and a simplicial j-face f : T ↪→ S. Pick any framed
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realization r : |S| ↪→ Rn. The ‘restriction’ of the n-embedded frame of S to T is
the unique n-embedded frame of T which is framed realized by the linear embedding
r ◦ |f | : |T | ↪→ |S| ↪→ Rn.

Describing the process of frame restriction in purely combinatorial terms, without
reference to the affine framed structure of Rn, is more subtle. To properly account for
the combinatorial situation, we introduce a combinatorial notion of ‘non-orthogonality’ of
simplicial vectors that we refer to as ‘kinship’.

Definition 1.1.48 (Akin simplicial vectors). The vectors v = (a→ b) and w = (c→ d)
in the simplex [m] ≡ (0→ 1→ · · · → m) are akin, denoted vÙw, if there is a vector u
that is a factor of both, i.e. such that v = ṽ ◦ u ◦ ˜̃v and w = w̃ ◦ u ◦ ˜̃w for some possibly
degenerate vectors ṽ, ˜̃v, w̃, ˜̃w.

Note that, like the relation of non-orthogonality of linear vectors in a euclidean space, the
‘kinship’ relation between simplicial vectors is reflexive and symmetric but not transitive.

Example 1.1.49 (Kinship of vectors). In Fig. 1.11 we illustrate the kinship of vectors
in the 3-simplex. To emphasize the informal conceptual relationship of this notion with
the geometry of non-orthogonality, the simplex is drawn with its three spine vectors
(highlighted in red, green, and blue) being orthogonal in the ambient euclidean 3-space.
The three red vectors are akin, the four green vectors are akin, and the three blue vectors
are akin; no other vectors are akin. Note that indeed these kinship relations are precisely
the non-orthogonal vectors of this geometric 3-simplex.

Figure 1.11: Kinship of simplicial vectors.

Using the notion of kinship, we can describe the restriction of a frame to any vector of
the standard simplex, and subsequently to any face of the standard simplex. The frame
order on the spine of the simplex plays a paramount role in this process: the frame label
of a general vector will be the lowest numeral among the frame labels of the spine vectors
akin to the given vector.

Construction 1.1.50 (Frame restriction to simplicial vectors). Given an n-embedded
frame F : spine[m] ↪→ n of the simplex [m], and a vector v : [1]→ [m] of that simplex, the
‘restriction’ F|v : spine[1] ↪→ n of the frame to the vector is the n-embedded frame of the
simplex [1] whose single label is the minimal frame label of the spine vectors akin to the
vector v, i.e. F|v(0→ 1) = min{F(w) |wÙv}.

This restriction procedure produces a plethora of combinatorial arrangements quite distinct
from any permutation of its application to the standard frame on the simplex.
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Example 1.1.51 (Frame restriction to simplicial vectors of the standard simplex). In
Fig. 1.12 we illustrate various embedded framed 3-simplices along with the corresponding
embedded framed restrictions to their 1-faces.

Figure 1.12: Restriction of embedded frames to vectors of a simplex.

The restriction of an embedded frame to any j-face of the simplex is determined
directly by the restrictions to the 1-faces, as follows.

Construction 1.1.52 (Frame restriction to simplicial faces of the standard simplex). Let
F : spine[m] ↪→ n be an n-embedded frame of the simplex [m], and let f : [j]→ [m] be a
j-face of that simplex. The ‘restriction’ F|f : spine[j] ↪→ n of the frame to the j-face is
the n-embedded frame whose label value on the spine vector v : [1]→ [j] is the numeral
F|f◦v ∈ n.

The restriction of frames on standard simplices canonically carries over to the case of
general simplices.

Notation 1.1.53 (Restricting trivializations to faces). Given a degeneracy S � [k] from
an m-simplex S to a standard simplex, and a j-face f : T ↪→ S, then we denote by
(S � [k])|f : T ∼= [j] the unique degeneracy as well as (abusing notation) by f : [j] ↪→ [k]
the unique face, which together factor the composite (S � [k]) ◦ f as f ◦ (S � [k])|f . (We
call (S � [k])|f the ‘restricted degeneracy’, or the ‘restricted isomorphism’ if S � [k] is
an isomorphism, and f : [j] ↪→ [k] the ‘induced standard face’).

Definition 1.1.54 (Frame restrictions to simplicial faces of simplices). The frame
restriction of an n-embedded framed m-simplex (S ∼= [m],F) to a simplicial j-face
f : T ↪→ S is the n-embedded frame (T ∼= [j],F|f ) of T where T ∼= [j] equals the restricted
isomorphism (S ∼= [k])|f and the n-embedded frame F|f is obtained by restricting F to
the induced standard face f : [j] ↪→ [m].

Example 1.1.55 (Frame restriction to simplicial faces). In Fig. 1.13 we depict an
embedded framed 3-simplex along with the restriction of its frame to various faces.

Figure 1.13: Restriction of an embedded frame to faces of a simplex.

One may of course similarly define frame restrictions of embedded partial frames of
simplices.
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Definition 1.1.56 (Frame restrictions to simplicial faces of simplices). The frame
restriction of an n-embedded k-partially framed m-simplex (S � [k],F) to a j-face
f : T ↪→ S is the n-embedded partial frame (T � [l],F|f ) of T where T � [l] equals the
restricted degeneracy (S ∼= [k])|f and the n-embedded frame F|f is obtained by restricting
F to the induced standard face f : [l] ↪→ [k].

The defining property of such restrictions is, in geometric terms, again the following:
pick any framed realization r : |S| ↪→ Rn. The frame restriction of the given n-embedded
partial frame of S to the face f : T ↪→ S is the unique n-embedded partial frame of T
induced by the simplicial embedded partial trivialization r ◦ |f | : |T | ↪→ |S| ↪→ Rn.

1.1.1.4 Framed maps As previously described subspaces W ↪→ V of embedded triv-
ialized vector spaces V ↪→ Rn inherit themselves an embedded trivialization W ↪→ Rn
by restricting the trivialization of V . The inclusion (W ↪→ Rn) ↪→ (V ↪→ Rn) is a proto-
typical ‘trivialization inclusion’. Conversely, one can define a ‘trivialization projection’
(V ↪→ Rn) � (W ↪→ Rn) to be a projection V � W that splits a framed trivialized
inclusion. Combinatorially, this can be translated as follows.

Definition 1.1.57 (Framed faces). Given n-embedded framed simplices (S ∼= [l],F) and
(T ∼= [m],G), framed face F : (S ∼= [l],F) ↪→ (T ∼= [m],G) is a face F : [l] ↪→ [m] such
that F = G|F .

Definition 1.1.58 (Framed degeneracies). Given n-embedded framed simplices (S ∼=
[l],F) and (T ∼= [m],G), a framed degeneracy F : (S ∼= [l],F) � (T ∼= [m],G) is a
degeneracy F : [l]� [m] such that G = F ◦ split(F ) (see Remark 1.1.18).

Framed faces and framed degeneracies are the monomorphisms resp. epimorphisms in a
category of ‘framed simplices and framed maps’; such framed maps may be uniformly
described as follows.

Definition 1.1.59 (Framed map of framed simplices). Given n-embedded framed sim-
plices (S ∼= [l],F) and (T ∼= [m],G), a framed map F : (S ∼= [l],F) → (T ∼= [m],G) is
a simplicial map F : [l] → [m] such that for every vector v : [1] → [l] in the simplex
[l], either its frame label is preserved, i.e. F|v = G|F◦v, or the vector is degenerated, i.e.
F ◦ v : [1]→ [m] is constant.

Note, injective framed maps are exactly framed faces, and a surjective framed maps are
exactly framed degeneracies.

Notation 1.1.60 (Categories of embedded framed framed simplices). Denote by FrSimpn
the category of n-embedded framed simplices and their framed maps. (Note that the
objects of this category are simplices of dimension necessarily at most n.)

Observation 1.1.61 ((Epi,mono)-factorization of framed maps). As a map of simplices
factors as a degeneracy map (epimorphism) followed by a face map (monomorphism),
similarly any framed map of framed simplices factors as a framed degeneracy map followed
by a framed face map.
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Example 1.1.62 (Framed and non-framed maps). In Fig. 1.14 we illustrate four maps
between 2-embedded framed simplices; in each case the map is a face map (with highlighted
image), an identity, or a standard simplicial degeneracy (with highlighted affine kernel).
The first map is framed, as the one frame label is preserved. The second map is not
framed, as it preserves the frame label of neither spine vector. The third map is framed,
as the first spine vector is degenerated and the other two vectors have their frame labels
preserved. The fourth map is not framed, even though every spine vector is degenerated
or has its frame label preserved, because the frame label of the non-spine vector is not
preserved.

Figure 1.14: Framed and non-framed maps of framed simplices.

Framed maps of n-embedded simplices can also be understood in geometric terms.

Remark 1.1.63 (Framed maps in linear algebraic terms). Consider n-embedded framed
simplices (S ∼= [l],F) and (T ∼= [m],G) and a simplicial map F : S → T . For framed
realizations r : |S| ↪→ Rn and q : |T | ↪→ Rn, the map F is framed if for any vector v in S
with ~r(~v) ∈ ε+i we have ~q ◦ ~F (~v) ∈ ε+i ∪ {0}.

Example 1.1.64 (Framed maps in linear algebraic terms). In Fig. 1.15, for the four
framed maps of 2-embedded framed simplices F : (S ∼= [l],F)→ (T ∼= [m],G) that were
given in Fig. 1.14, we depict framed realizations r : |S| ↪→ R2 and q : |T | ↪→ R2 of their
domain and codomains. Underneath, we depict the linear action ~F : ~V (S) → ~V (T ) on
vectors v in S (we depict vectors by their images under the embeddings ~V (S) ↪→ R2 resp.
~V (T ) ↪→ R2).

Figure 1.15: Framed and non-framed maps via framed realization.

Note that the geometric description of framed maps of embedded framed simplices im-
mediately generalizes to the case of embedded partially framed simplices. In combinatorial
terms, this may be phrased as follows.
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Definition 1.1.65 (Framed maps of embedded partially framed simplices). Given n-
embedded partially framed simplices (S � [j],F) and (T � [k],G), a framed map
F : (S � [j],F)→ (T � [k],G) is a simplicial map F : S → T that ‘descends’ to a framed
map of n-embedded simplices Fn : ([j],F) → ([k],G), that is, Fn : [k] → [j] commutes
with F and the degeneracies S � [k] and T � [j].

Note that any framed map of n-embedded partially framed simplices F : (S � [j],F)→
(T � [k],G) descends to a unique framed map of n-embedded framed simplices ([j],F)→
([k],G) in this way, and we always denote the latter map by Fn.

Notation 1.1.66 (Category of embedded partially framed simplices). Denote by PartFrSimpn
the category of n-embedded partially framed simplices and their framed maps.

Framed maps either preserve the frame label of a vector or degenerate that vector to
zero; there is a more general notion of ‘subframed map’ in which vectors may degenerate
not just to the zero vector but to any vector with more specialized frame label. We first
describe this geometric viewpoint, and then give a purely combinatorial definition of
subframed maps.

Remark 1.1.67 (Subframed maps in linear algebraic terms). Consider n-embedded framed
simplices (S ∼= [l],F) and (T ∼= [m],G) and a simplicial map F : S → T . For framed
realizations r : |S| ↪→ Rn and q : |T | ↪→ Rn, we say F is ‘subframed’ if for any vector v in S
with ~r(~v) ∈ ε+i we have ~q◦ ~F (~v) ∈ ε+i (where ε+i is the closure of the ith positive component
ε+i of Rn; note that this closure in particular contains 0 ∈ Rn, see Remark 1.1.63).

Note that subframed maps may in particular send vectors from a positive component ε+i
into a negative component ε−j ⊂ ε

+
i (where j > i).

Definition 1.1.68 (Subframed map). Given n-embedded framed simplices (S ∼= [l],F)
and (T ∼= [m],G), a subframed map F : (S ∼= [l],F)→ (T ∼= [m],G) is a simplicial map
F : S → T such that for every vector v : [1] ↪→ S in the simplex S, either its frame label
is preserved, i.e. F|v = G|F◦v, specialized, i.e. F|v < G|F◦v, or the vector is degenerated,
i.e. F ◦ v : [1]→ [m] is constant.

The definition of subframed maps extends, as with that of framed maps, to the embedded
partially framed case, by insisting that a vector without a frame label is either mapped to
zero or to again a vector without a frame label.

Example 1.1.69 (Subframed maps). In the first column of Fig. 1.16 we illustrate two
subframed maps of 2-embedded framed 1-simplices F : (S ∼= [1],F)→ (T ∼= [1],F), labeled
‘id’ and ‘−id’ respectively. In the second column, we pick framed realizations r : |S| ↪→ R2

and q : |T | ↪→ R2, and illustrated in green the image r(v) and in red the image q(w)
of the unique nonzero frame vectors v and w in S resp. T (as based vectors in R2); for
both maps, we also depict the image q ◦ F (v) (in the same picture as q(w)). In the third
column, we similarly depict the unbased action of F as a linear map ~F : ~S → ~T on the
corresponding linear vectors ~v and ~w (shown embedded in R2 via ~r : ~V (S) ↪→ R2 resp.
~q : ~V (T ) ↪→ R2). In particular, note that for the second map the vector ~v ∈ ε+1 to a vector
in ε−2 .
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Figure 1.16: Subframed maps and their geometric interpretation.

1.1.2 Proframes on simplices We now recast the definition of frames of simplices
in the form of so called ‘proframes’; these are towers of simplicial projections with
1-dimensional affine kernels. The usefulness of proframes stems from the ‘non-local’
perspective they provide: while we think of frames as choices of ‘infinitesimal’ vectors in
tangent spaces, we can think of proframes as choices of ‘extensional’ projections defined
on the entire simplex (this perspective also underlies our later discussion of gradients and
integrals, which formally relates proframes back to frames). Just as frames on simplices
have a classical analog in terms of linear frames of vector spaces, the notion of proframes
also finds an analog in classical linear algebraic terms yielding a notion of ‘linear proframes’
(discussed in more detail in Appendix A.1); the prototypical model of a linear proframe
is the standard euclidean proframe of Rn (from which all other proframes can then be
obtained via trivializations V ∼−→ Rn).
Terminology 1.1.70 (The standard euclidean proframe). The ‘standard euclidean proframe’
of Rn is the sequence of projections

Rn
πn−−� Rn−1

πn−1

−−−� Rn−2
πn−2

−−−� · · ·
π2−−� R1 π1−−� R0

where πi : Ri → Ri−1 forgets the last component of vectors in Ri.

1.1.2.1 The definition of proframes As in the case of frames, we first introduce
a combinatorial analog of (‘standard’ and ‘general’) proframes, in which the role of a
codimension-1 projection is played by codimension-1 degeneracies.

Definition 1.1.71 (Proframe on a standard simplex). A proframe P of the standard
m-simplex [m] is a sequence (pm, pm−1, . . . , p1) of surjective simplicial maps of the form

[m]
pm−−→ [m− 1]

pm−1−−−→ [m− 2] −→ · · · −→ [1]
p1−→ [0].

Definition 1.1.72 (Proframe on a simplex). A proframe of an m-simplex S is an
isomorphism S ∼= [m] together with a proframe P on [m].

We usually denote proframes on S by tuples (S ∼= [m],P), or keep the isomorphism implicit
and simply say P is a proframe on S.

Example 1.1.73 (Proframes on simplices). In Fig. 1.17 we illustrate four proframed
m-simplices (S ∼= [m],P). Each degeneracy is indicated by highlighting its affine kernel.
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Figure 1.17: Proframes on simplices.

Recall that a linear map from a framed simplex ([m],F) to euclidean space is a framed
realization when it takes each frame vector vi into the ith positive component ε+i of Rm.
There is an analogous notion of realization for proframes, as mappings into the standard
proframed euclidean space, as follows.

Definition 1.1.74 (Proframed realization of a proframed simplex). A proframed real-
ization of a proframed simplex (S ∼= [m],P = (pm, pm−1, . . . , p1)) is a sequence of linear
embeddings rPi : ∆i ↪→ Ri, giving a commutative diagram,

|S| ∼= ∆m ∆m−1 ... ∆1 ∆0

Rm Rm−1 ... R1 R0

pm

rPm

pm−1

rPm−1

p2 p1

rP1 rP0

πm πm−1 π2 π1

such that, for all i, rPi embeds the unique kernel vectors v = keraff(pi) orientation-
preservingly into the R-fiber of πi over the point rPi−1 ◦ pi(v).

Example 1.1.75 (Proframed realization of a proframed simplex). In Fig. 1.18 we illustrate
a proframed realization of a proframed 2-simplex.

Figure 1.18: Proframed realization of a proframed simplex.

Remark 1.1.76 (Relations of proframed and framed realizations). In Section 1.1.3 we will
show that proframes P and frames F on the simplex [m] are in correspondence (i.e. they
define the same structure on [m]); for corresponding proframes P and frames F on [m], a
proframed realization {rPi } of P determines is determined by a framed realization rF of F
by setting rPm = rF.
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A partial frame of a simplex was a frame of a quotient of the simplex by a simplicial
subspace (the ‘unframed subspace’); similarly, a partial proframe of a simplex will be a
proframe of a ‘quotient’ of the simplex, as follows.

Definition 1.1.77 (Partial proframe on a simplex). A k-partial proframe on an m-
simplex S is a degeneracy S � [k] together with a proframe P = (pk, pk−1, . . . , p1) of
[k].

We usually denote k-partial proframe P on a simplex S by tuples (S � [k],P). Analogous
to the case of partial frames, we refer to the affine kernel U = keraff(S � [k]) as the
‘unframed subspace’ of (S � [k],P). Note that in an m-partial proframe of an m-simplex
(S � [m],P) the degeneracy S � [m] must be an isomorphism, and thus m-partial
proframes of m-simplices are proframes on m-simplices.

Example 1.1.78 (Partial proframes on simplices). In Fig. 1.19 we depict a few partially
proframed simplices. As before, each degeneracy is given by highlighting its affine kernel.

Figure 1.19: Partial proframes on simplices.

The notion of proframed realization adapts to the partial case as follows: a ‘proframed
realization’ of a k-partially proframed m-simplex (S � [k],P) is simply a proframed
realization {rPi } of ([k],P) which now further determines a composite rP = rPk ◦ |S � [k]|
mapping |S| to Rk. Remark 1.1.76 will also apply with evident adjustments: a proframed
realization {rPi } of a k-partially proframed simplex (S � [k],P) determines and is
determined by a framed realization rF of the corresponding k-partially framed simplex
(S � [m],F) by setting rP = rF.

1.1.2.2 Embedded proframes We introduce ‘n-embedded proframes’ as a combina-
torial analog of our earlier notion of ‘linear n-embedded proframes’. As in the linear case,
while a proframed m-simplex is a sequence of codimension-1 degeneracies, an n-embedded
proframed m-simplex will be a sequence of n degeneracies each either of codimension-1 or
codimension-0. Again, we introduce both ‘standard’ and ‘general’ notions of embedded
proframes.
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Definition 1.1.79 (Embedded proframe on a standard simplex). An n-embedded
proframe P of the standard m-simplex [m] is a sequence (pn, pn−1, . . . , p1) of surjec-
tive simplicial maps

[m] = [mn]
pn−→ [mn−1]

pn−1−−−→ [mn−2]
pn−2−−−→ · · · p2−→ [m1]

p1−→ [m0] = [0]

where for all i, either mi−1 = mi or mi−1 = mi − 1.

Definition 1.1.80 (Embedded proframe on simplex). An n-embedded proframe of
an m-simplex S is an isomorphism S ∼= [m] together with an n-embedded proframe P on
[m].

We usually denote n-embedded proframed simplices by tuples (S ∼= [m],P) (where P is an
n-embedded proframe of [m]). Note that an m-embedded proframe on the m-simplex is
the same as a proframe on the m-simplex as previously defined.

Example 1.1.81 (Embedded proframes). In Fig. 1.20 we illustrate a few n-embedded
proframed m-simplices (S ∼= [m],P). As before, each degeneracy is given by highlighting
its affine kernel.

Figure 1.20: Embedded proframes on simplices.

As a proframe of an m-simplex has a notion of proframed realizations given by
embeddings into the standard proframe of euclidean m-space, similarly an n-embedded
proframe on an m-simplex has proframed realizations given by embeddings into the
standard proframe of euclidean n-space, as follows.

Definition 1.1.82 (Proframed realization of an embedded proframed simplex). A proframed
realization of an n-embedded proframedm-simplex (S ∼= [m],P) with P = (pn, pn−1, . . . , p1)
is a sequence of linear embeddings rPi : ∆mi ↪→ Ri, giving a commutative diagram,

|S| ∼= ∆mn ∆mn−1 ... ∆m1 ∆m0

Rn Rn−1 ... R1 R0

pn

rPn

pn−1

rPn−1

p2 p1

rP1 rP0

πn πn−1 π2 π1

such that rPi orientation-preservingly embeds kernel vectors v = keraff(pi) (for all i for
which v exists) into the R-fiber of πi over the point rPi−1 ◦ pi(v).
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Figure 1.21: Proframed realization of an embedded proframed simplex.

Example 1.1.83 (Proframed realization of an embedded proframed simplex). In Fig. 1.21
we illustrate a proframed realization of a 3-embedded proframed 2-simplex.

The relation of proframed and framed realizations as described in Remark 1.1.76 generalizes
to the embedded case: for corresponding n-embedded proframes P and n-embedded
frames F on [m], a proframed realization {rPi } of P determines is determined by a framed
realization rF of F by setting rPn = rF. We will revisit this observation in more formal
terms in Remark 1.1.115.

Recall, a k-partial proframe of an m-simplex is a degeneracy to the k-simplex followed
by a proframe of that simplex. Similarly, an n-embedded k-partial proframe of an m-
simplex is a degeneracy to the k-simplex followed by an n-embedded proframe of that
simplex.

Definition 1.1.84 (Embedded partial proframe on a simplex). An n-embedded k-
partial proframe on an m-simplex S is a degeneracy S � [k] together with an n-
embedded proframe P = (pn, pn−1, . . . , p1) of [k].

We usually denote n-embedded k-partial proframe P on a simplex S by tuples (S � [k],P),
and refer to the affine kernel U = keraff(S � [k]) as the ‘unframed subspace’ of (S � [k],P).
Of course, an n-embedded m-proframe of an m-simplex is the same structure as an n-
embedded proframe of an m-simplex as previously defined

Example 1.1.85 (Embedded partial proframes). In Fig. 1.22 we illustrate three embedded
partial proframes. As before, we depict degeneracies by highlighting their affine kernels.

The notion of proframed realization of embedded proframes adapts to the partial
case as follows: a proframed realization of an n-embedded k-partially proframed m-
simplex (S � [k],P) is simply a proframed realization {rPi } of the n-embedded proframe
([k],P) which further determines a composite rP = rPk ◦ |S � [k]| mapping |S| to Rn.
Remark 1.1.76 will apply with evident adjustments: a proframed realization {rPi } of a
k-partially proframed simplex (S � [k],P) determines and is determined by a framed
realization rF of the corresponding k-partially framed simplex (S � [m],F) by setting
rP = rF.
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Figure 1.22: Embedded partial proframes on simplices.

We remark that one can also define a notion ‘indframes’ which is dual to that of
proframes. The duality can also be phrased in classical linear algebraic terms (see
Observation A.1.5). Just as a proframe is given by a sequence of simplicial projections, an
indframe is given by a sequence simplicial subspaces (i.e. of affine faces). The equivalence
follos from the correspondence of affine faces and degeneracies (see UUU Unlike proframes,
however, indframes cannot be canonically expressed in terms of ordinary (i.e. non-affine)
simplicial maps (which reflects the classical case of ‘projections’ and ‘subspaces’ of affine
spaces, see Observation A.2.6). This observation leads to proframes on simplices being
an inherently more natural structure to work with combinatorially. Nonetheless, for
completeness, we record notions of indframes on simplices as follows.

1.1.2.3 Restricting proframes Recall that the frame labels of the spine vectors of
a framed simplex propagate via a kinship relation to frame labels on all vectors, and
thereby determine the restriction of a frame to any face of the simplex. A proframe on a
simplex similarly restricts to any face; as the proframe is encoded directly in the simplicial
sequence, without any explicit frame labels, the restriction procedure is especially direct,
as follows.

Construction 1.1.86 (Proframe restriction in standard simplices). Let P = ([mn]
pn−→

[mn−1]
pn−1−−−→ · · · p1−→ [m0]) be an n-embedded proframe of the standard m-simplex [m],

and let f : [j]→ [m] be a j-face of [m]. The ‘restriction’ P|f of the proframe to the j-face
is the sequence given by the upper row in the diagram

[j] = [jn] [jn−1] · · · [j1] [j0] = [0]

[m] = [mn] [mn−1] · · · [m1] [m0] = [0]

f∗npn

f=fn

f∗n−1pn−1

fn−1

f∗2 p2 f∗1 p1

f1 f0

pn pn−1 p2 p1

where, inductively, fi−1 ◦f∗i pi is defined as the image factorization of the map pi ◦fi.
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In other words, the restricted proframe P|f is the ‘simplicial restriction sequence’ of the
proframe P by the map f , analogous to our earlier notion of ‘restriction sequences’ of
sequences of vector space projections (see Terminology A.1.11).

Definition 1.1.87 (Proframe restrictions to simplicial faces). The proframe restriction
an n-embedded proframed m-simplex (S ∼= [m],P) to a j-face f : T ↪→ S is the n-
embedded proframed l-simplex (T ∼= [j],P|f ) where T ∼= [j] is the restricted isomorphism
(S ∼= [m]|f , and P|f is the restriction of P to the induced standard face f : [j] ↪→ [m] (see
Notation 1.1.53).

Example 1.1.88 (Proframe restriction to simplicial faces). In Fig. 1.23 we depict a
4-embedded proframed 3-simplex, along with three of its faces and the proframes they
inherit by restriction of the given proframe sequence.

Figure 1.23: Restricting an embedded proframe to the faces of a simplex.

Remark 1.1.89 (Proframe restriction of partial proframes). Definition 1.1.87 applies with
the evident adjustments to the case of embedded partially proframed simplices. Namely,
the ‘proframe restriction’ an n-embedded partially proframed m-simplex (S � [k],P) to a
j-face f : T ↪→ S is the n-embedded partially proframed l-simplex (T � [l],P|f ) where
T � [j] is the restricted degeneracy (S � [m]|f , and P|f is the restriction of P to the
induced standard face f : [l] ↪→ [k].

Remark 1.1.90 (Proframe restriction via proframed realization). For an embedded proframed
simplex (S ∼= [m],P), the proframe restriction to any simplicial j-face f : T ↪→ S is de-
termined geometrically by a proframe realization {rPi : ∆mi ↪→ Ri} of the simplex, as
follows. The restricted embedded proframe Q ≡ P|f is the unique embedded proframe Q

on T ∼= [j] that has a proframed realization {rQi : ∆ji ↪→ Ri} whose top map factors as
the face f followed by the ambient proframed realization rPn , i.e. rQn = rPn ◦ |f |. A similar
remark applies to embedded partial proframes.

1.1.2.4 Proframed maps Recall that a framed map is a map of simplices that, for
each vector of the source, either preserves the frame label of the vector or degenerates the
vector. Proframed maps similarly are maps, now of simplicial sequences, that for each
vector of the source, either preserve the proframe of the vector or degenerate that vector,
as follows.
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Definition 1.1.91 (Proframed maps). Given n-embedded proframed simplices (S ∼=
[l],P = (pn, . . . , p1)) and (T ∼= [m],Q = (qn, . . . , q1)), a proframed map F : (S ∼=
[l],P)→ (T ∼= [m],Q) is a map of sequences

[l] = [ln] [ln−1] · · · [l1] [l0] = [0]

[m] = [mn] [mn−1] · · · [m1] [m0] = [0]

Fn

pn

Fn−1

pn−1

· · ·

p2

F1

p1

F0

qn qn−1 q2 q1

such that for every vector v : [1]→ [l], either its proframe is preserved, i.e. P|v = Q|Fn◦v,
or the vector is degenerated, i.e. Fn ◦ v : [1]→ [m] is constant.

Terminology 1.1.92 (Proframed face and proframed degeneracy maps). An injective
proframed map is called a ‘proframed face map’, and a surjective proframed map is called
a ‘proframed degeneracy map’.

Observation 1.1.93 (Inclusions of proframe restrictions are proframed faces). Given a
proframed simplex ([m],Q) and a face f : [l] ↪→ [m] of the simplex, the inclusion of the
restriction ([l],Q|f ) ↪→ ([m],Q) is a proframed face, and every proframed face is of this
form.

Observation 1.1.94 ((Epi,mono)-factorization of proframed maps). Every proframed map
factors as a proframed degeneracy followed by a proframed face.

Example 1.1.95 (Proframed maps). In Fig. 1.24 we illustrate proframed and non-
proframed maps of proframed simplices. Degeneracies in proframes are indicated as usual
by highlighting their affine kernels. Top-level map (which, in a maps of sequences of
surjective maps, determine all other maps) coincide with the maps in Fig. 1.15. The first
map of sequences is proframed and injective, thus is a proframed face. The second map is
not a map of sequences (the upper square does not commute as indicated). The third map
of sequences is proframed and surjective, thus is a proframed degeneracy. The last map,
despite being a map of sequences, that is forming a commutative diagram as depicted, is
not a proframed map: the map does not preserve the proframe of the diagonal vector of
the 2-simplex of the source, i.e. the map restricted to that vector is not an isomorphism
onto its image.v

Figure 1.24: Proframed and non-proframed maps.

Notation 1.1.96 (Category of proframed simplices). Denote by ProFrSimpn the category
of n-embedded proframed simplices and their proframed maps.
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The definition of proframed maps generalizes naturally from the embedded to the
embedded partial case.

Definition 1.1.97 (Proframed maps of partially proframed simplices). Given an n-
embedded partially proframed simplices (S � [k],P) and (T � [j],Q) a proframed
map F : (S � [k],P)→ (T � [j],Q) is a simplicial map F : S → T that descends to a
proframed map (Fn, Fn−1, ..., F0) : ([k],P)→ ([j],Q) whose top component Fn : [k]→ [j]
commutes with F and the degeneracies S � [k] and T � [j].

Note that any proframed map F : (S � [k],P) → (T � [j],Q) must descend to a
unique proframed map ([k],P)→ ([j],Q) whose components will always be denoted by
(Fn, Fn−1, ..., F0).

Notation 1.1.98 (Category of partially proframed simplices). Denote by PartProFrSimpn
the category of n-embedded partially proframed simplices and their proframed maps.

Of course, we may regard proframed maps of proframed simplices as proframed maps
of partially proframed simplices; thus ProFrSimpn is a full and faithful subcategory of
PartProFrSimpn.

Remark 1.1.99 (Subproframed maps). Recall from Remark 1.1.67 and Definition 1.1.68 the
notion of subframed map of framed simplices, in which framed vectors are allowed to spe-
cialize to have frame labels in lower strata of the standard stratification. The corresponding
notion of ‘subproframed map’ of (partially) proframed simplices is remarkably simple: a sub-
proframed map F : (S � [k],P = (pn, ..., p1))→ (T � [j],Q = (qn, ..., q1)) is a collection
of maps (F, Fn, ..., F0) of unordered simplices F : S → T and Fi : [ki]

un → [ji]
un forming a

commutative diagram (i.e. Fn◦(S � [k]) = (T � [j])◦F and Fi−1◦puni = quni ◦Fi+1). This
does not require any further conditions on conditions on vectors: instead, the structure of
the sequence itself controls the specialization of frame vectors without explicit mention of
an order on frame labels or the standard stratification of frame vectors.

1.1.3 Gradient frames and integral proframes We conceive of frames as an in-
finitesimal notion, concerning ‘tangential’ vectors, and of proframes as extensional notion,
concerning quotients of space. (This contrast becomes visible, for instance, in the classical
case of frames and proframes on affine spaces, see Remark A.2.5 resp. Remark A.2.7.) We
will thus refer to the passage from frames to proframes as ‘integration’, and to a converse
operation as taking a ‘gradient’.

1.1.3.1 Gradients and integrals for simplices We introduce the gradient frame of
a proframe, and conversely the integral proframe of a frame.

Notation 1.1.100 (Composite degeneracies in proframes). For an n-embedded proframe
P = (pn, . . . , p1) of the m-simplex [m], we abbreviate the composite pipi+1 · · · pn : [m]→
[ki−1] by p≥i and similarly the composite pi+1 · · · pn : [m]→ [ki] by p>i.

Terminology 1.1.101 (Gradient frame of a proframed standard simplex). Given an n-
embedded proframed m-simplex ([m],P = (pn, . . . , p1)), its ‘gradient’ ∇P is the n-
embedded framed m-simplex ([m],∇P : spine[m] −7−↪→ n) with frame label i on the spine
vector keraff(p≥i)\ keraff(p>i) (when that complement is nonempty).
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In other words, if the spine vector v ∈ spine[m] projects to a spine vector p>iv ∈ spine[ki]
and the degeneracy pi : [ki] → [ki−1] collapses that vector p>iv, then the spine vector
v ∈ spine[m] is given the frame label i.

Terminology 1.1.102 (Integral proframe of a framed standard simplex). Given an n-
embedded framed m-simplex ([m],F : spine[m] ↪→ n), an ‘integral’ ∫ F is an n-embedded
proframed m-simplex ([m], ∫ F) whose gradient is ([m],F).

Construction 1.1.103 (Integral proframes of framed standard simplices exist). Given an
n-embedded framed m-simplex ([m],F : spine[m] ↪→ n), inductively set pi : [ki]→ [ki−1]
to be the unique simplicial map collapsing the spine vector p>i(F−1(i)) i.e. the spine
vector that has frame label i; if there is no spine vector with frame label i, then pi is taken
to be the identity. The sequence of degeneracies P = (pn, pn−1, . . . , p1) is an n-embedded
k-partial proframe of the m-simplex, and has the frame F as its gradient.

Observation 1.1.104 (Gradient and integral are inverse). By definition, or equivalently by
the construction of the integral in the previous observation, the integral is right-inverse
to the gradient; similarly, taking the integral of the gradient of a proframe evidently
reconstructs that proframe, and so the integral is also left-inverse to the gradient. That is,
for any n-embedded proframe P and any n-embedded frame F, we have

∇∫ F = F and ∫ ∇P = P.

The gradients and integrals now carry over to the case of general simplices (and the
case of partial frames and proframes) as follows.

Definition 1.1.105 (Gradient of a proframed simplex). Given an n-embedded partially
proframed simplex (S � [k],P) its gradient is the n-embedded partially framed simplex
(S � [k],∇P).

Definition 1.1.106 (Integral of a framed simplex). Given an n-embedded partially
framed simplex (S � [k],F) its integral is the n-embedded partially proframed simplex
(S � [k], ∫ P).

Example 1.1.107 (Gradient frame and integral proframe for a simplex). In Fig. 1.25 we
illustrate a 4-embedded 3-proframed 4-simplex and its corresponding gradient 3-embedded
2-framed 4-simplex; equivalently, that framed simplex integrates to that proframed simplex.
As further examples, note that the four embedded framed simplices in Fig. 1.7 are, in
order, the gradients of the four embedded proframed simplices in Fig. 1.20. Similarly, the
three embedded partially framed simplices in Fig. 1.9 are, in order, the gradients of the
three embedded proframed simplices in Fig. 1.22.

1.1.3.2 Gradients and integrals for maps The gradient–integral relation between
frames and proframes applies also to maps.

Observation 1.1.108 (Gradients and integrals respect restriction). Given an n-embedded
partially proframed simplex (S � [k],P) and an n-embedded partially framed simplex
(S � [k],F), and a face f : [j] → [m], the gradient of the restriction to the face is the
restriction of the gradient, and similarly for the integrals:

∇(P|f ) = (∇P)|f and ∫(F|f ) = (∫ F)|f .
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Figure 1.25: The gradient frame and the integral proframe of a simplex.

Example 1.1.109 (Gradients and integrals respect restriction). The framed simplex in
Fig. 1.13 is the gradient of the proframed simplex in Fig. 1.23, and the gradients of the
restricted proframes in the latter figure are the restricted frames in the former figure.
Conversely, the integrals of the simplex and its restrictions in the former figure are the
simplex and restrictions in the latter figure.

Terminology 1.1.110 (Gradient framed map of a proframed map). Given an n-embedded
partially proframed simplex (S � [j],P), an n-embedded partially proframed simplex
(T � [k],Q), and a proframed map F : (S � [j],P) → (T � [k],Q), the ‘gradient’ ∇F
is simply the framed map (S � [j],∇P)→ (T � [k],∇Q) determined by the simplicial
map F : S → T .

Terminology 1.1.111 (Integral proframed map of a framed map). Given an n-embedded
partially framed simplex (S � [j],F), an n-embedded partially framed simplex (T �
[k],G), and a framed map F : (S � [j],F)→ (T � [k],G), an ‘integral’ ∫ F is a proframed
map (S � [j], ∫ F)→ (T � [k], ∫ G) whose gradient is the framed map F .

Example 1.1.112 (Gradient framed maps and integral proframed maps). The two framed
maps in Example 1.1.62 are the gradients of the two proframed maps in Example 1.1.95,
or equivalently the latter maps are the integrals of the former maps.

As there exists a unique integral proframe of any framed simplex, similarly there exists
a unique integral proframed map of any framed map. Altogether, we have an equivalence
of categories, as follows.

Proposition 1.1.113 (Correspondence of partial frames and partial proframes). Gradient
and integration are inverse isomorphic functors between the category of n-embedded partially
proframed simplices with proframed maps and the category of n-embedded partially framed
simplices with framed maps:

∇ : PartProFrSimpn
∼= PartFrSimpn : ∫ .

In practice we will be focused on a special case of this correspondence, namely between
n-embedded frames and n-embedded proframes.
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Corollary 1.1.114 (Correspondence of frames and proframes). Gradient and integration
are inverse isomorphic functors between the categories of n-embedded framed respectively
proframed simplices and framed respectively proframed maps:

∇ : ProFrSimpn
∼= FrSimpn : ∫ .

Remark 1.1.115 (Correspondence of framed and proframed realizations). Given an n-
embedded proframed simplex (S ∼= [m],P) with gradient framed simplex (S ∼= [m],F =
∇P), then any proframed realization {rPi : ∆mi ↪→ Ri} determines is and determined by
a framed realization rF : |S| ∼= ∆mn ↪→ Rn by setting rPn = rF.

1.2 Framed simplicial complexes

Our goal in this section will be to introduce a combinatorial notion of ‘framings’ on
simplicial complexes. This is a globalization of the notion of frames on simplices introduced
in the previous section: just as manifolds are spaces that are locally modeled on euclidean
space, simplicial complexes are modeled on simplices; and just as framed manifolds are
locally modeled on framed euclidean space (i.e. endowed with a continuous choice of
frames in each tangent spaces), framed simplicial complexes will be modeled on framed
simplices. The notion of framed simplicial complexes has two important features which
distinguish the combinatorial approach to framings from the classical geometric approach
to framings of manifolds.

Firstly, framings of simplicial complexes are not ‘local linear’ structures but ‘piecewise
affine’ structures in the following sense. As previously discussed, simplices are not
infinitesimal geometric objects but are extended affine spaces; frames of simplices are,
correspondingly, ‘affine frames’, i.e. frames not based at any specific point of the simplex
but defined ‘up to translation’. We will define framings on simplicial complexes by piecing
together affine frames of each of their simplices, and in this sense framings will be ‘piecewise
affine’. This stands in contrast to the classical ‘tangential’ notion of framings which defines
framings locally, i.e. by picking a frame in the tangent space of each point.

Secondly, simplicial complexes are naturally ‘singular spaces’ and generally not mani-
folds. As a consequence, framed simplicial complex will in fact provide a combinatorial
model of ‘framed singular spaces’ and not just of classical ‘framed manifolds’. Classically,
‘singular spaces’ are gluings of ‘manifold strata’, and singular spaces themselves need not
be manifolds. The question of framing singular spaces is subtle since the usual machinery
of tangent spaces relies on local euclidean trivializations; these need not exist everywhere
in singular spaces. We will not attempt to geometrically define ‘framed singular spaces’,
but instead focus on leveraging the tools of affine combinatorics: namely, in combinatorial
terms, individual open simplices will play to role of (‘pieced’) manifold strata, and the
question of how framings can transition between strata of different dimension will find an
answer using the notion of ‘n-embedded’ frames developed in the preceding section.

Note ‘framed singular spaces’ arise naturally in familiar situations: on the left in
Fig. 1.26, we depict a ‘Morse saddle point’ given by a function from the 2-disk to R1.
Up to choosing a Riemannian structure, this defines a gradient vector field (indicated by
red arrows) everywhere except at the central critical point; if we regard this point as a
0-dimensional stratum with 0-dimensional frame (and its complement as a 2-dimensional
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stratum with 1-dimensional frame given by the gradient vector field), then this is an
example of a ‘framed singular space’. Combinatorially, this can be modelled by a sequence

Figure 1.26: A ‘1-framed singular space’ modelled by a partial 1-framed simplicial complex.

of surjective maps of simplicial complexes as shown on the right. Note that restricting this
sequence to any simplex, yields a 1-embedded partially proframed 2-simplex as previously
defined, and thus, by passing to gradient frames, a 1-embedded partially framed simplex
(indicated by directing edges in red)2. The resulting simplicial complex, now with each
simplex endowed with the structure of a 1-embedded partial frame, yields our first example
of a (partial) 1-framed simplicial complex, and it models the ‘1-framed singular space’ to
its left.

We outline this section. We introduce a combinatorial notion of framings in Section 1.2.1
following by a notion of proframings in Section 1.2.1.3; both notions will be straight-forward
generalizations of our earlier notions of framed resp. proframed simplices. As in the case of
simplices, the relation of the framed and proframed simplicial complexes can be described
in terms of via ‘gradient framings’ and ‘integral proframings’, which we will discuss in
Section 1.2.2; importantly, the global setting of framed simplicial complexes, integral
proframings generally need not exists or not be unique if they exist. In Section 1.2.3
we will then introduce a combinatorial notion of (locally) flat framings, which provide
an important class of ‘uniquely integrable’ framings; local flatness yields a condition for
combinatorial framings to be ‘locally trivializable’ and thus ‘free of singularities’, which is
therefore analogous to classical tangential framings of manifolds as discussed above.

1.2.1 Framings and proframings on simplicial complexes

1.2.1.1 Simplicial complexes Before giving the definition of framings on simplicial
complexes, we specify some basic terminology and notation.

Terminology 1.2.1 (Simplicial sets). A ‘simplicial set X’ is a presheaf X : ∆op → Set on
the simplex category ∆. The ‘category of simplicial sets’ is the category of presheaves on
∆, and is usually denoted by SSet.

We will tacitly Yoneda embed ∆→ SSet and, abusing notation, use the simplex [k] ∈ ∆
to also denote the representable simplicial set that it defines under this embedding (this
is sometimes denoted by ∆[k] in the literature). The set of maps x : [k]→ X provides the
set of k-simplices in a simplicial set X.

Terminology 1.2.2 (Non-degenerate simplices). A simplex x : [k]→ X in a simplicial set
X is ‘non-degenerate’ if there is no non-identity degeneracy map d : [k] → [j] through
which x factors; otherwise, x is ‘degenerate’.
2Following previous notation, each directed edge should also carry the frame label ‘1’, see Example 1.1.30.
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In piecewise linear topology one commonly uses the following weaker notion in place of
simplicial sets.

Terminology 1.2.3 (Simplicial complexes). A ‘simplicial complex’ consists of a set of
vertices K[0] together with a list of subsets K[1],K[2]... of the vertex powerset ℘K[0]
with the property that elements in K[i] are sets of cardinality (i+ 1) and any subset of
an element in K[i] is an element in some K[j], j ≤ i. Elements of K[i] are also called
i-simplices of K. Maps of simplicial complexes K → L, called ‘simplicial maps’, are maps
of vertex sets f : K[0]→ L[0] whose image on each i-simplex x ∈ K[i] yields a j-simplex
f(x) ∈ L[j] (for some j). The category of simplicial complexes and their simplicial maps
will be denoted by SimpCplx.

Just as simplicial sets, simplicial complexes may be characterized as (certain) presheaves
as follows.

Remark 1.2.4 (Simplicial complexes as presheaves). Recall the category ∆ of unordered
simplices (see Notation 1.1.3). Every simplicial complex K gives rise to a presheaf
K : ∆op → Set by defining K(S) to be the set of functions x : S → K[0] whose image
im(x) lies in some K[j], and defining K(f : S′ → S) to act by precomposition with f .
This construction gives rise to a full and faithful embedding of SimpCplx into the category
PSh(∆) of presheaves on ∆.

Again, we will tacitly Yoneda embedded simplices in ∆ into presheaves PSh(∆). Note
that the Yoneda embedding ∆→ PSh(∆) lands in the subcategory SimpCplx ↪→ PSh(∆),
making simplices in particular simplicial complexes.

Recall the ‘unordering’ functor (−)un : ∆ → ∆ which forgets orders (see Terminol-
ogy 1.1.5). This extends to simplicial sets as follows.

Terminology 1.2.5 (Unordering functor). The ‘unordering functor’ (−)un : SSet→ PSh(∆)
forgets the order of vertices in each simplex: formally, this can be defined as the left
adjoint to precomposing presheaves with (−)un : ∆→ ∆.

Rourke and Sanderson introduce ‘ordered simplicial complexes’ for simplicial complex
with an order on their objects [RS71, §1]; we will use the same term for the following more
general notion, which requires each simplex in a simplicial complex to be (consistently)
ordered, but this ‘local’ order need not induce a ‘global’ order on the set of objects.

Terminology 1.2.6 (Ordered simplicial complexes). A simplicial set X is called an ‘ordered
simplicial complex’ if its unordering Xun is an ordinary simplicial complex.

Ordered simplicial complexes can be more explicitly described: a simplicial set X is an
ordered simplicial complex if each non-degenerate simplex in K can be uniquely identified
by its set of vertices (as a subset of K[0]).

Remark 1.2.7 (Non-degenerate simplices inject into complexes). A simplex x ∈ K[m] in an
ordered simplicial complex is non-degenerate if and only if the presheaf map x : [m]→ K
is an injection. A similar observation holds in the case of simplicial complexes.

Terminology 1.2.8 (The category of ordered simplicial complexes). The ‘category of ordered
simplicial complexes’ SimpCplxord is the full subcategory of SSet consisting of ordered
simplicial complexes. Its morphisms will be called ‘ordered simplicial maps’.
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Terminology 1.2.9 (Ordering unordered simplicial complexes and their maps). An ‘ordering’
of a simplicial complex K (resp. of a simplicial map F : K → L) is a choice of a preimage
Kord of K (resp. a preimage F ord : Kord → Lord of F ) under the unordering functor.
For fixed orderings Kord and Lord of simplicial complexes K and L, a simplicial map
F : K → L is said to be ‘order-preserving’ if it has a (necessarily unique) ordering
F ord : Kord → Lord.

The standard ordering of the unordered standard simplex [m]un is the (ordered) standard
simplex [m].

1.2.1.2 The definition of framings We now introduce framings on ordinary sim-
plicial complexes. Recall the definition of embedded frames F of m-simplices S from
Definition 1.1.34 which endows S with an isomorphism S ∼= [m] together with an n-
embedded frame F of [m] (given by an injection F : spine[m] ↪→ n). Recall also, for a
j-face f : T ↪→ S, such an n-embedded frame of S restricts to an n-embedded frame of T
defined by the restricted isomorphism (S ∼= [m])|f : T ∼= [j] and the restricted n-embedded
frame F|f (see Definition 1.1.54).

Definition 1.2.10 (Framings of simplicial complexes). An n-framing (α,F) of a sim-
plicial complex K endows each m-simplex x : S ↪→ K with an n-embedded frame
(αx : S ∼= [m],Fx) such that, for any j-face f : T ↪→ S, the restriction of the chosen frame
of x to the face f coincides with the chosen frame of x ◦ f ; that is, αx◦f = αx|f and
Fx◦f = Fx|f .

The following observation will simplify the data of framings.

Observation 1.2.11 (Isomorphism data of framings is an ordering). An n-framing (α,F)
of a simplicial complex K gives rise to an ordering of K; indeed, for each m-simplex
x : S ↪→ K in K, an order on the vertices of S is determined by the isomorphism
αx : S ∼= [m] and together (since choices of αx are compatible with faces) these orderings
of vertices of simplices determine an ordering of K itself. This has an inverse: any ordering
of K restricts to an ordering of each simplex x : S ↪→ K, and thus yields (compatible)
isomorphisms S ∼= [m].

We therefore obtain the following equivalent way of phrasing the notion of n-framings.

Remark 1.2.12 (Framings of simplicial complexes by orderings). To define an n-framing F

of a simplicial complex K we may equivalently specify an ordering of K together with an
n-embedded frame Fx of [m] for each (order-preserving) m-simplex x : [m] ↪→ K, such
that, for any face f : [k] ↪→ [m], we have Fx◦f = Fx|f .
We will henceforth adopt this more concise reformulation of n-framings in terms of
orderings (as recorded by Remark 1.2.12). We refer to the pair (K,F), of a simplicial
complex and an n-framing on it, as an ‘n-framed simplicial complex’. Note that the
ordering of K itself will be implicit in our notation, and we adopt the following convention.

Convention 1.2.13 (Keeping orderings implicit). Given a framed simplicial complex (K,F),
when considering K as an ‘ordered simplicial complex’ (for instance, when considering
maps [m]→ K) we will always assume this ordering to be the ordering of K provided by
the n-framing F.
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Note that a simplicial complex K cannot contain simplices of dimension greater than n in
order for it to admit an n-framing.

Example 1.2.14 (Framings and non-framings on simplicial complexes). In Fig. 1.27, on
top, we depict three simplicial complexes consisting of one, two and three 2-simplices
respectively. Underneath each we depict an ordering, underneath which we depict several
choices of frames for individual simplices (to depict these we use coordinate frame notation
as introduced in Example 1.1.37). Not all choices lead to framings: for the indicated
simplices in blue and in red the compatibility of frame choices with face restrictions is not
met.

Figure 1.27: Simplicial complexes with orderings, framings and non-framings.

Remark 1.2.15 (1-Skeletal notation). Instead of depicting frames Fx separately for each
simplex x in K (as in the previous example) it suffices to give frame labels of 1-simplices:
indeed, each simplex frame is determined the frames of its spine, and the compatibility
condition in the definition of framed simplicial complexes ensures that if two simplices
share a spine vector that vector must carry the same label in both of their frames.3

Example 1.2.16 (More framings on simplicial complexes). We depict three framed
simplicial complexes in Fig. 1.28. Observe the difference between the second and third
example: the second example realizes to the annulus S1 ×D1 while the their example
realizes to the Mobius band. Note that the framing of the Mobius band, in a sense, is
‘singular’ as it ‘flips’ when traversing the band; we will later describe this as a failure of
local flatness of the framing (see Remark 1.2.54).

Definition 1.2.17 (Restrictions). Given an n-framed simplicial complex (K,F) and a
simplicial subcomplex L ↪→ K, the restriction F|L of F to L is the n-framing of L
3The converse is not true: we cannot ‘only’ label 1-simplices in a simplicial complex with frame labels in
n to define an n-framing—we must also check that such a labeling defines valid frames for each k-simplex
in the complex, k > 1.
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Figure 1.28: Framed simplicial complexes depicted using 1-skeletal notation.

obtained by restricting the ordering of K to L, and setting (F|L)x = Fx for simplices
x : [k] ↪→ L ↪→ K.

Framings of simplicial complex can similarly be defined in the ‘partial’ case.

Definition 1.2.18 (Partial framings of simplicial complexes). A partial n-framing
(α,F) of a simplicial complex K endows each m-simplex x : S ↪→ K with an n-embedded
partial frame (αx : S � [k],Fx) such that, for any j-face f : T ↪→ S, the restriction of the
chosen n-embedded partial frame of x to the face f coincides with the chosen n-embedded
partial frame of x ◦ f ; that is, αx◦f = αx|f and Fx◦f = Fx|f .

Note that a ‘partial n-framed simplicial complex’ (K,F) may now have m-simplices of
any dimension m. Note also that Observation 1.2.11 no longer holds: a partial framing
need not determine an ordering on a simplicial complex. Going forward, we will be mainly
interested in the non-partial case of framings; nonetheless, all subsequent definitions have
analogs in the partial case as well.

Example 1.2.19 (A familiar partial framing). An example of a partial 1-framing was
depicted and discussed earlier in Fig. 1.26.

We next define maps of framed simplicial complexes. This straight-forwardly generalizes
the notion of framed maps of framed simplices (see Definition 1.1.59).

Definition 1.2.20 (Framed maps of framed simplicial complexes). Consider n-framed
simplicial complexes (K,F) and (L,G). A framed simplicial map F : (K,F)→ (L,G)
(or simply, a ‘framed map’) is a simplicial map F : K → L that restricts on all simplices
x : [k] ↪→ K and y = im(F ◦ x) : [l] ↪→ L to a framed map F : ([k],Fx) → ([l],Gy) of
n-embedded framed simplices.

In particular, note that any framed map F : (K,F)→ (L,G) is order-preserving. When
referring to the ordering of F , we will speak of the ‘ordered simplicial map’ F : K → L.

Notation 1.2.21 (The category of framed simplicial complexes). The category of n-framed
simplicial complexes and framed maps will be denoted by FrSimpCplxn.
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Definition 1.2.22 (Unframing framed simplicial complexes). The unframing functor
Unframe : FrSimpCplxn → SimpCplx takes a framed simplicial complex (K,F) to the
simplicial complex K, and a framed map F : (K,F) → (L,G) to the simplicial map
F : K → L.

Remark 1.2.23 (Subframed maps of framed simplicial complexes). The notion of ‘subframed
maps of framed simplices’ described in Definition 1.1.68 also generalizes to framed simplicial
complexes. A ‘subframed maps of framed simplicial complexes’ F : (K,F)→ (L,G) is a
simplicial map F : K → L that restricts on all simplices x : [k] ↪→ K and y = im(F ◦ x) :
[l] ↪→ L to a subframed map F : ([k]un ∼= [k],Fx)→ ([l]un ∼= [l],Gy). Note, unlike framed
maps, subframed maps need not be order-preserving.

1.2.1.3 The definition of proframings We next introduce proframings on simplicial
complexes. The definition takes a ‘global route to framings’: a proframing endows a
simplicial complex with a sequence of simplicial surjections defined on the entire complex
(we also refer to these surjections as ‘simplicial projections’). In particular, the definition
of n-proframings differs from that of n-framings in that n-proframings do not merely
require compatible choices of proframes on each simplex (however, such ‘local’ proframes
can be derived from the definition). The ‘global nature’ of proframings will make them
a useful tool for describing global properties of framings; most importantly, we will see
that ‘globally flat’ framings can be completely understood in terms of certain proframings,
which will underlie their later ‘constructible classification’ (in Chapter 3).

Definition 1.2.24 (Proframings of simplicial complexes). An n-proframing of a sim-
plicial complex K is a ordering of K together with a sequence P of ordered simplicial
surjections

K = Kn
pn−→ Kn−1

pn−1−−−→ ...
p2−→ [K1]

p1−→ K0 = [0]

such that on each simplex x : [m] ↪→ K the restricted sequence P|x is an n-embedded
proframe of [m].

We will refer to the pair (K,P) of a simplicial complex with an n-proframing P =
(pn, pn−1, ..., p1) on it, as an ‘n-proframed simplicial complex’.

Example 1.2.25 (Proframings of simplicial complexes). In Fig. 1.29 we depict three
sequences of simplicial surjections. Each projection pi is suggested as a geometric projec-
tion, but we also highlight affine kernels of pi on each simplex (in blue). While the first
three sequences define proframings, the last sequence fails to do so as it fails to be an
2-embedded proframe when restricted to its central 2-simplex.

As in the case of framings, we can further generalize the definition of proframings to
allow for partial proframes.

Definition 1.2.26 (Partial proframing). An partial n-proframing of a simplicial com-
plex K is a sequence of surjective simplicial maps (all but the first of which are ordered
simplicial maps)

K � Kn
pn−→ Kn−1

pn−1−−−→ ...
p2−→ K1

p1−→ K0 = [0]
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Figure 1.29: Two 2-proframings on a simplicial complex with two 2-simplices.

such that, on each m-simplex x : S ↪→ K of K, the sequence restricts to an n-embedded
partial proframe of S.

Example 1.2.27 (A familiar partial proframing). The sequence of ordered simplicial
maps depicted earlier in Fig. 1.26 is, in fact, a partial 1-proframing.

While many subsequent definitions also apply (with evident adjustments) to partial
proframings, we will henceforth be interested only in the non-partial case.

Remark 1.2.28 (Goodbye partiality). This will, in fact, be last time that we will mention
partial (pro)framings in this book. Ultimately, neither notion will play a role for us here,
and instead, our focus will lie with (combinatorial) geometric objects in which frames
span all ‘tangential directions’. Nonetheless, partial (pro)framings provide a natural and
useful generalization of (pro)framings—whose applications, however, go beyond the scope
of this present work.

We next define maps of proframed simplicial complexes. This generalizes our earlier
definition of proframed maps of embedded proframed simplices (see Definition 1.1.91).

Definition 1.2.29 (Maps of proframings). Given n-proframed simplicial complexes
(K,P) and (L,Q), a proframed simplicial map F : (K,P) → (L,Q) is a map of
sequences (Fn, Fn−1, ..., F1, F0) : P → Q (consisting of cellular maps Fi) which, on a
simplex x : [k] ↪→ K with image y = im(Fn ◦ x) : [l] ↪→ L, restricts to a proframed map
F : P|x → Q|y of n-embedded proframed simplices.

Notation 1.2.30 (Category of proframings). The category of n-proframed simplicial com-
plexes and their proframed maps will be denoted by ProFrSimpCplxn.

Notation 1.2.31 (Truncations of proframings). Given an n-proframing P = (Kn
pn−→

Kn−1
pn−1−−−→ ...

p1−→ K0) of K, its i-truncation P≤i (for i ≤ n) is the i-proframing
(Ki

pi−→ Ki−1
pi−1−−−→ ...

p1−→ K0) of the simplicial complex Kun
i . Similarly truncating maps,

one obtains functors (−)≤i : ProFrSimpCplxn → ProFrSimpCplxi.

Definition 1.2.32 (Restrictions of proframings). Given an n-proframing P of K and a
subcomplex L ↪→ K, the restriction P|L of P to L is the n-proframing of L obtained by
restricting the sequence P to L.
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1.2.2 Gradient framings and integral proframings

1.2.2.1 Gradient framings From each proframed simplicial complex we can extract
a framed simplicial complexes by the following ‘gradient’ operation, which generalizes
gradients of framed simplices as described in Terminology 1.1.101.

Definition 1.2.33 (Gradients of proframed simplicial complexes). Given an n-proframing
P of a simplicial complex K, the gradient framing ∇P is the n-framing of K with the
same ordering as P, and with an n-embedded frame ∇Px on each simplex x : [m] ↪→ K
given by the gradient frame ∇P|x.

The fact that choices of frames in the gradient framing ∇P are compatible with face
restrictions follows from the compatibility of gradient frames with face restrictions (see
Observation 1.1.108).

Definition 1.2.34 (Gradients of proframed maps). Given a proframed map F = (Fn, Fn−1, ..., F1, F0) :
(K,P) → (L,Q) of n-proframed simplicial complexes, the gradient framed map
∇F : (K,∇P) → (K,∇Q) is the framed map determined by the simplicial map
Fn : K → L.

Terminology 1.2.35 (The gradient framing functor). The construction of gradients on
proframings and their maps yield the ‘gradient framing’ functor

∇ : ProFrSimpCplxn → FrSimpCplxn.

Example 1.2.36 (Proframings and their gradients). We depict three 2-proframings in
Fig. 1.30 together with their gradients framings; note that the gradient framings recover
our examples from Example 1.2.16.

Figure 1.30: Proframed simplicial complexes with their gradient framings.

1.2.2.2 Integral proframings The ‘converse’ to taking gradients is taking integrals.
However, not all framings are ‘integrable’—and if they are, they need not have unique
integral proframings. Only in special cases will there be a correspondence between framings
and proframings via gradients and integrals (noteworthily, in the case of ‘flat framings’
which we will discuss shortly).
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Definition 1.2.37 (Integrating proframings). Given an n-framed simplicial complex
(K,F), an integral proframing (K,P) of (Kn,F) is an n-proframing whose gradient
n-framing ∇P recovers F.

Example 1.2.38 (A framing with two proframings). In Fig. 1.31 we depict a 2-framed
simplicial complex on the left; to its right we depict two different integral 2-proframings
P = (p2, p1) and Q = (q2, q1).

Figure 1.31: A 2-framing with two different integral proframings.

Example 1.2.39 (A non-integrable framing). In Fig. 1.32 we depict two 2-framings of
the boundary ∂[2]un of the unordered 2-simplex [2]un: neither framing admits an integral
proframing.

Figure 1.32: Two framings without integral proframings.

We remark that the failure of integrability in the previous example may be explained by
the following more general observation (which we state without proof).

Remark 1.2.40 (Integrating simplex boundary framings). An n-framing F of the unordered
simplex boundary ∂[m]un is integrable if and only if it is the restriction of some n-framing
F̄ of the unordered m-simplex [m]un; that is, F = F̄

∣∣
∂[m]un

.

1.2.3 Flat framings and flat proframings In this section we discuss ‘flat framings’:
these provide an important class of integrable framings for which, as it will turn out,
the correspondence between framings and proframings will be fully restored. Intuitively,
flatness can be thought of as requiring framed spaces to ‘trivialize’ as framed subspaces of
standard framed euclidean space.

1.2.3.1 Flat framings We start by generalizing the definition of framed realizations
of n-embedded framed simplices to the case of framed simplicial complexes (see Defini-
tion 1.1.38).

Definition 1.2.41 (Framed realization). Given an n-framed simplicial complex (K,F),
a linear embedding r : |K| ↪→ Rn (that is, an embedding that is linear on each simplex) is
called a framed realization of K if for each simplex x : [m] ↪→ K the restriction r ◦ |x|
is a framed realization of ([m],F|x).
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Remark 1.2.42 (Flat framings are determined by their framed realizations). Since any
framed realization r : |S| ↪→ Rn of an n-embedded framed simplex (S ∼= [m],F) determines
both the isomorphism S ∼= [m] and the frame F on [m] uniquely, it follows that any framed
realization of r : |K| ↪→ Rn of an n-framed simplicial complex (K,F) determines the
framing F of K uniquely. We may therefore depict framed simplicial complexes by their
framed realizations: this is illustrated in Fig. 1.33, where we depict a framed realization
r : |K| ↪→ R2 on the left, together with the induced 2-framing F on the right.

Figure 1.33: Flat framings are determined by their framed realizations.

We will be interested in framed realizations that are sufficiently regular in that they have
‘framed bounded’ images. The appropriate framed notion of bounds is spelled out in the
following definition.

Terminology 1.2.43 (Framed half-spaces). Recall the projection πi : Ri → Ri−1 which
forgets the last coordinate of Ri. Given continuous section γ : Ri−1 → Ri of πi, the ‘upper
half-space’ Rn≥γ of Rn is the subspace of Rn of points x such that π>i(x) ≥ γ ◦π>i−1(x) in
the R-fiber of πi over π>i−1(x) (here, π>i abbreviates the composite πi+1 ◦ ... ◦ πn−1 ◦ πn).
Similarly one defines the ‘lower half-space’ Rn≤γ .

Definition 1.2.44 (Framed bounded subspaces). A framed bounded subspace S of
Rn is a compact subspace of the form

S =
⋂
i≤n

(Rn≥γ−i ∩ Rn≤γ+i )

where γ±i are sections of πi such that γ−i ≤ γ+
i . We call γ−i resp. γ−i the ‘lower’ resp.

‘upper ith bound’ of S.

Example 1.2.45 (Framed half-spaces and bounded subspaces). In Fig. 1.34 we depict a
set of framed bounds γ±1 and γ±2 together with their corresponding half-spaces. Intersecting
these half-spaces yields the shown framed bounded subspace of R2.

We may combine the notions of framed realizations and framed bounds into the following
terminology.

Terminology 1.2.46 (Bounded framed realization). A framed realization of a framed
simplicial complex is called a ‘framed bounded realization’ if its image is framed bounded.

Definition 1.2.47 (Flat framings). A framed simplicial complex (K,F) is flat if it admits
a framed bounded realization r : |K| ↪→ Rn.

Notation 1.2.48 (Category of flat framings). Denote the full subcategory of FrSimpCplxn
consisting of flat framings by FlatFrSimpCplxn.
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Figure 1.34: Framed half-spaces bounding a framed bounded subspace of R2.

Example 1.2.49 (Flat framings). In the upper row of Fig. 1.35 we depict examples of
flat framings. The first framing admits a framed bounded realization with bounds as
given in Fig. 1.34; one checks that the other framings similarly admit framed bounded
realizations. In the lower row of Fig. 1.35 we depict non-examples of flat framings; the
first framing fails to be flat since no framed realization into R1 exists. The second example
embeds in R2 but its image is not bounded continuously in the sense of Definition 1.2.44.
The third framing does not admit a framed realization in R2 (note that directions of the
left and right vertical 1-simplices are ‘reversed’). The fourth example again fails to admit
a framed bounded realization; while the last example fails to admit a framed realization
in R3.

Figure 1.35: Flat and non-flat framed simplicial complexes.

We may further impose flatness locally. This can be used to recover classical intuition
about framings of manifolds as we will see.
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Terminology 1.2.50 (Stars). Recall the ordinary notion of ‘stars’ star(x) of vertices x in
simplicial complexes U : this is defined as the minimal subcomplex star(x) of U containing
all simplices that have x as a vertex.

Definition 1.2.51 (Local flatness). We say an n-framing (K,F) of simplicial complex
K is locally flat if for each vertex x ∈ K the restricted n-framing (star(x),F|star(x)) is
flat.

Remark 1.2.52 (Flatness implies local flatness). It is true that each flat framing is in
particular locally flat.

Example 1.2.53 (Locally flat framed triangulated 1-manifolds). In Fig. 1.36 on the
left we depict two locally flat 1-framed simplicial complexes (K,F) each triangulating a
connected 1-manifold. On the right we depict two framed simplicial complex that are not
locally flat framed.

Figure 1.36: Examples and non-examples of locally flat framed triangulated 1-manifolds.

We can now revisit our earlier example of the Mobius band, adding the following insight.

Remark 1.2.54 (Frameability of Mobius band revisited). Recall the last two framed
simplicial complexes from Fig. 1.28: the first example is locally flat, while the second (the
‘Mobius band’) isn’t. In fact, the Mobius band is not ‘locally flat 2-frameable’, in the
sense that no triangulation admits a locally flat framing.

1.2.3.2 Flat proframings In this section we discuss an alternative characterization
of flatness in the context of proframings. The two definitions of flatness will turn out to
coincide in a precise sense, and this comparison will underlie the later classification of
framed combinatorial structures in Chapter 3.

Terminology 1.2.55 (Section and spacers simplices). Let (K,P) be an n-proframed simplicial
complex, and pick a simplex x : [m] ↪→ Ki in some Ki, 1 ≤ i ≤ n. Assume the restriction
P≤i|x of the truncation P≤i is an i-proframe of [m] of the form (pi, ..., p1). We call x a
‘section simplex’ of P if pi = id, and a ‘spacer simplex’ if pi 6= id.

Terminology 1.2.56 (Upper and lower sections of spacers). Consider an n-proframed
simplicial complex (K,P) and a spacer simplex x : [m] ↪→ Ki. The top projection pi
of the restricted truncated proframe P≤i|x = (pi, ..., p1) equals a jth degeneracy map
sj : [m]→ [m−1] (1 ≤ j ≤ m). Precomposing with simplicial face maps dk : [m−1] ↪→ [m],
we obtain the (m− 1)-simplices ∂−x := x ◦ dj+1 : [m− 1] ↪→ Ki, called the ‘lower section
of x in P’, and ∂+x := x ◦ dj : [m− 1] ↪→ Ki, called the ‘upper section of x in P’.

Observe that, given a spacer simplex x in a proframed simplicial complex (K,P), its upper
and lower sections ∂±x are indeed section simplices in (K,P).
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Example 1.2.57 (Sections and spacers). In Fig. 1.37 we illustrate 2-proframed simplicial
complex K = K2 → K1 → K0. We highlight two spacer simplices in K2 (in blue), and
their respective upper and lower sections (in red).

Figure 1.37: Sections and spacers in a proframed simplicial complex.

Terminology 1.2.58 (Fiber complexes and categories). Consider an n-proframed simplicial
complex (K,P), with P = (pn, ..., p1), and a k-simplex z : [k] ↪→ Ki−1.

1. The ‘fiber’ Kz over z is the subset of non-degenerate simplices in Ki that are mapped
to z by pi.

2. The ‘fiber complex’ Φ∆
1 Kz of the fiber over z is the ordered simplicial complex

whose vertices are sections x ∈ Kz over z and whose 1-simplices y : x− → x+ are
spacers y ∈ Kz with ∂±y = x±.

3. The ‘fiber category’ Φ1Kz is the free category on the complex Φ∆
1 Kz (with vertices

as objects, and edges as generating morphisms).

Construction 1.2.59 (Transition functors of fiber categories). For an n-proframed
simplicial complex (K,P), consider simplices z : [k] ↪→ Ki−1 and w : [l] ↪→ Ki−1 such
that w is a face of z (that is, w factors through z as a face [l] ↪→ [k]). Note that each
simplex x ∈ Kz restricts over w to a simplex x|w⊂z ∈ Kw: this restriction takes sections
to sections, while spacers restrict either to spacers or to sections. The restriction thus
induces the ‘transition functor’ −|w⊂z : Φ1Kz → Φ1Kw.

Example 1.2.60 (Fiber categories and transition functors). In Fig. 1.38, for the profram-
ing given in the previous Fig. 1.37, we colored each simplex in K1, and depicted its fiber
category in the corresponding color (with a point for each object, and an arrow for each
morphisms). We also indicated the transition functors between them (by mapping arrows
‘7→’).

Fiber transition functors relate fiber categories across fibers. In order to define flat
proframings, we will be interested in the case where fibers are ‘linear’, and transitions
functors glue fibers onto fibers, as follows.

Definition 1.2.61 (Flat proframings). An n-proframed simplicial complex (K,P) is said
to be flat (or to have ‘flat proframing’) if the following holds.

1. Fibers are linear : For any simplex z : [k] ↪→ Ki, the fiber category Φ1Kz is a total
order.
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Figure 1.38: Fiber categories and transition functors.

2. Fiber transition is endpoint-preserving : For simplices w ⊂ z in Ki the transition func-
tor −|w⊂z is endpoint-preserving (meaning it preserves least and greatest elements
as a map of total orders).

Terminology 1.2.62 (Linear complexes). The ‘finite linear simplicial complex with j edges’
lin[j] is the ordered simplicial complex with j + 1 vertices {0, 1, ..., j} and j directed
1-simplices i→ i+ 1.
Observation 1.2.63 (Fiber complexes in flat proframings are linear). The first condition
in Definition 1.2.61 is equivalent to the condition that all fiber complexes Φ∆

1 Kz are
linear.
Notation 1.2.64 (Categories of flat proframings). Denote the full subcategory of ProFrSimpCplxn
consisting of flat proframings by FlatProFrSimpCplxn.

Example 1.2.65 (Flat proframings). In Fig. 1.39 we depict six 2-proframings (in each
case highlight in blue the kernels of projection). The first example is not flat since it has
non-linear fiber categories; the third example is not flat since its transition functors are
not endpoint-preserving; the fifth example is not flat since, again, it has non-linear fiber
categories (this time already at level 1 of the sequence).

Figure 1.39: Flat and non-flat proframings of simplicial complexes.

Finally, just as flat n-framed simplicial complexes have framed realizations, flat
proframed simplicial complexes ‘proframed realizations’. These now embed in the standard
euclidean n-proframe Π = (πn, πn−1, ..., π1) (see Terminology 1.1.70).
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Remark 1.2.66 (Flat proframings admit proframed realizations). Any flat n-proframed
simplicial complex (K,P) admits a ‘proframed realization’, by which we mean an em-
bedding of sequences r = (rn, rn−1, ..., r1, r0) : |P| ↪→ Π, with components ri : |Ki| ↪→ Ri,
which restricts on each simplex x : [m] ↪→ K to a proframed realization in the sense of
Definition 1.1.82. As in the case of framed realization, note that any proframed realization
of (K,P) determines the proframing P of K uniquely. A proframed realization of a
3-proframed simplicial complex is illustrated in Fig. 1.40.

Figure 1.40: Flat proframings are determined by their proframed realizations.

1.2.3.3 Equivalence of flat framings and flat proframings Flatness fully restores
the correspondence of framings and proframings. We record this in several statements
below (all of which will be proven later in Chapter 3).

Proposition 1.2.67 (Gradients of flat proframings are flat). Given a flat n-proframed
simplicial complex (K,P) its gradient n-framing ∇P is a flat n-framing.

Proposition 1.2.68 (Flat framings have flat integral proframings). Every flat n-framing
(K,F) has a essentially unique integral flat n-proframing

∫
F.

Theorem 1.2.69 (Correspondence of flat proframings and flat framings). The gradient
framing functor restricts to an equivalence of categories

∇ : FlatProFrSimpCplxn ' FlatFrSimpCplxn .

The inverse to ∇ will be called ‘ integration’, and denoted by ∫ .

The theorem parallels (and, in fact, generalizes) the correspondence of framed simplices and
proframed simplices that we’ve seen in Corollary 1.1.114. The proofs of Proposition 1.2.67,
Proposition 1.2.68 and Theorem 1.2.69 will be deferred until Section 3.1.1.

1.3 Framed regular cell complexes

In the final section of this chapter, we will introduce n-framings on regular cell complexes.
Our goal will be the definition of a category of ‘n-framed regular cell complexes’ FrCellCplxn,
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fitting into the following diagram of categories (in which vertical arrows are fully faithful
embeddings of categories, while horizontal arrows forget framing structures)

FrSimpCplxn SimpCplx

FrCellCplxn CellCplx

Unframe

Unframe .

Regular cell complexes, as we recall in Section 1.3.1, are complexes of cells of general
‘polytopic shape’: in Fig. 1.41 we illustrate shapes of regular cells in dimension 2 and 3.
Despite their generality, regular cell complexes, unlike their non-regular counterpart, are

Figure 1.41: An illustration of regular 2-cells and 3-cells.

combinatorializable. The fundamental property of regular cell complexes that enables this
combinatorialization is the ‘homotopical triviality’ of cell attachments (see Remark 1.3.5).
This entails that one can describe a class of so-called ‘cellular’ posets, which are exactly
the entrance path posets of regular cell complexes; in fact, geometric realizations of cellular
posets recover the homeomorphism type of their corresponding regular cell complexes.
The resulting translation between regular cell complexes and cellular posets provides the
claimed combinatorialization of regular cell complexes. Crucially however, the combinato-
rialization is (computably) intractable in the following sense: given a poset, there can be
no general algorithm to determine if that poset is cellular. In particular, it is impossible
to algorithmically write down a list classifying ‘all the shapes’ of regular cells (such as
those in Fig. 1.41) up to some general bound in, say, the number boundary cells. By
framing regular cells this intractibility will find a natural resolution.

The definition of framed regular cells will directly rely on our previous work on
framings of simplicial complexes. Namely, an n-framed regular cell will be an n-framing
of the simplicial complex that underlies the cellular poset of the cell (with the additional
condition that the framing is flat on the cell itself as well as on each subcell in its
boundary). Our approach therefore combines the following two ingredients: firstly, use
to the correspondence of regular cells and cellular posets to endow regular cells with
canonical ‘piecewise linear’ structure; secondly, require simplicial framings on cells to be
flat. The second condition assures that framings of cells are ‘trivial’ (in the sense that
the framed cell is framed realizable as a subspace of Rn) which, heuristically, reflects that
framed regular cells, just like framed simplices, will play the role of ‘small’, and therefore
‘trivializable’ framed pieces from which larger framed spaces will be built.

In contrast to the case of nonframed regular cells, framed regular cells can now be
computably recognized and classified. The classification will be constructed in Chapter 3.

60



At the same time, the generality of framed regular cells, as opposed to mere framed
simplices, will be at the very heart of fundamental results in framed combinatorial topology—
for instance, working with framed cells will enable the construction of ‘canonical cellulations’
of flat framed stratifications, as we will explain in Chapter 5 (see also Example 1.3.65 in
this section). This will highlight that the passage from framed simplices to framed regular
cells is not ‘by choice’, but of central importance in framed combinatorial topology.

We outline this section. After recalling regular cell complexes and related notions in
Section 1.3.1, we will first introduce notions of both framings and proframings of regular
cells in Section 1.3.2. In Section 1.3.3 we will obtain a notion of ‘framed space’ by defining
framings (resp. proframings) on regular cell complexes by compatibly endowing each cell
with a framing (resp. considering sequences of surjective cellular maps). We will further
discuss an important special case of framed regular cell complexes that are themselves
flat, which will later resurface in the construction of canonical cellulation of flat framed
stratifications. A diagram summarizing the categories defined in this chapter can be found
at the end of the section in Fig. 1.64.

1.3.1 Regular cell complexes We start by recalling definitions and facts about regular
cell complex. Our subsequent goal will be the introduction of a ‘combinatorial’ category
CellCplx of regular cell complexes, generalizing that of simplicial complexes SimpCplx.

1.3.1.1 Regular cell complexes as cellular posets

Definition 1.3.1 (Regular cell complexes). A regular cell complex is a stratification
whose strata are open disks (also called ‘open cells’) while closures of strata are closed
disks (also called ‘closed cells’).

Terminology 1.3.2 (Cellulations). In analogy to the notion of ‘triangulation’, we speak of
‘cellulation’ when decomposing a space into a regular cell complex. (More generally, the
term is used in the context of cellulable stratifications, see Appendix B.3.)

A simplicial complex is a simple type of regular cell complex in which each n-dimensional
cell has exactly (n+ 1) faces of dimension (n− 1).

Definition 1.3.3 (Entrance path posets of regular cell complexes). The entrance path
poset EntrX of a regular cell complex X is the poset whose objects are the open cells x
in X, with an arrow x→ y whenever the closure x contains y.

Entrance path posets of regular cell complexes are graded by dimension, that is, they
admit a functor dim : EntrX → Nop with discrete preimages, mapping each cell to its
dimension. Cells of a regular cell complex X which are minimal elements in EntrX will be
called ‘facets’—these are exactly cells which are not contained in any other cell’s boundary.

It will further be useful to think of regular cell complexes as stratified (i.e. ‘singular’)
spaces.

Definition 1.3.4 (Regular cell complexes as stratified spaces). The cell stratification
cellX of a regular cell complex X is the stratification of the space underlying X whose
strata are the open cells of X.
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Note that the definition of entrance path posets of regular cell complexes is consistent
with that of stratified spaces (see Definition B.1.6), that is, EntrX = Entr (cellX). In
particular, the characteristic function cellX : X → EntrX (see Definition B.1.13) takes
points in the open cell x of X to the object x ∈ EntrX. As an aside, we remark that
regular cell complex have the following properties as stratifications.

Remark 1.3.5 (The homotopical triviality of cell attachments). Regular cell complexes are,
as stratified spaces, conically stratified (see Proposition B.3.20). They thus have ‘entrance
path ∞-categories’ (see Definition B.3.9) which is a higher categorical analog of entrance
path posets. Importantly, reflecting the ‘homotopical triviality’ of cell attachments, the
entrance path ∞-categories of regular cell complexes are in fact 0-truncated, and thus
equivalent to their entrance path posets (see Observation B.3.22).

Understanding regular cell complexes as stratifications means they inherit the following
notion of maps. Recall a stratified map is a map that maps strata into strata; equivalently,
this means stratified maps factor through characteristic maps by a map of entrance path
posets (see Definition B.2.1).

Definition 1.3.6 (Maps of regular cell complexes). A map of regular cell complexes
F : X → Y is a stratified map F : cellX → cellY .

Notation 1.3.7 (Regular cell complexes as stratified spaces). We henceforth notationally
identify X and cellX, thinking of regular cell complexes in terms of their cell stratifications.

Remark 1.3.8 (Functoriality of entrance path posets). Note that entrance path poset
construction is functorial: for any map of regular cell complexes F : X → Y we obtain
a poset map Entr(F ) : Entr(X) → Entr(Y ), mapping a cell of X to the cell in Y that
contains the image F (x).

While ‘entrance path posets’ extract posets from regular cell complexes (and more
generally, from stratifications) we can, conversely, turn posets into stratifications by the
following notion of ‘classifying stratifications’.

Terminology 1.3.9 (Upper and strict upper closures). Given a poset P and an element
x ∈ P , then the ‘strict upper closure’ P>x of x in P is the full subposet with objects
y ∈ P with y > x. Similarly, the ‘upper closure’ P≥x is the full subposet of objects y ∈ P
with y ≥ x.
Terminology 1.3.10 (Classifying spaces of posets). Recall, the ‘classifying space’ |P | of a
poset P is the geometric realization of the nerve NP of P . (Abusing terminology, we also
refer to |P | itself as the ‘geometric realization’ of P , and say P ‘realizes’ to |P |.)
Terminology 1.3.11 (Classifying stratification of posets). Given a poset P , the ‘classifying
stratification’ CStrP of P (also called the ‘stratified realization’ of P ) is the stratification
of |P | whose strata are given subspaces str(x) :=

∣∣P≥x∣∣\ |P>x| for x ∈ P ; its characteristic
function, denoted by CStrP : |P | → P , takes points in str(x) to x.

Terminology 1.3.12 (Classifying stratified maps of posets maps). Given a poset map
F : P → Q, the ‘classifying stratified map’ CStrF : CStrP → CStrQ maps vertices
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p ∈ |P | to vertices F (p) ∈ |Q|, and linearly extends this mapping to all other simplices in
|P |.
An alternative phrasing of classifying stratifications, based on an explicit definition of
classifying spaces, can be found in Construction B.1.41 (for maps, see also Construc-
tion B.2.14).

Example 1.3.13 (Classifying stratifications). We illustrate three classifying stratifications
in Fig. 1.42: from left to right, we depict the classifying stratifications CStrP of the
1-simplex P = [1], the 2-simplex P = [2] and the product of two 1-simplices P = [1]× [1].

Figure 1.42: Classifying stratifications of posets.

The class of posets that can be obtained as entrance path posets of regular cell
complexes will be described by so-called ‘cellular posets’

Definition 1.3.14 (Cellular posets). A poset (X,≤) is called cellular if the realization
|X>x| of the strict upper closure of any x ∈ P is homeomorphic to a sphere.

Example 1.3.15 (Cellular and non-cellular posets). In Fig. 1.43 we depict cellular posets,
as well as posets which fail to be cellular. Note, in particular, even if upper closures P≥x

realizes to topological balls it need not be the case that strict upper closures P>x realize
to spheres.

Figure 1.43: Cellular and non-cellular posets.

Centrally, classifying stratifications of cellular posets are exactly regular cell complexes as
recorded in the following result.

Proposition 1.3.16 (Regular cell complexes are classifying stratifications of cellular
posets). Regular cell complexes are exactly classifying stratifications of cellular posets, in
the following sense.

1. The classifying stratification of a cellular poset is a regular cell complex.
2. The entrance path poset of a regular cell complex is a cellular poset.
3. Every regular cell complex X is stratified homeomorphic the classifying stratification

of its entrance path poset, that is, X ∼= CStr EntrX.4

4The isomorphism is ‘canonical up to homotopy’.
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4. Every cellular poset X is canonically homeomorphic to the entrance path poset of its
classifying stratification, that is, X ∼= Entr CStrX.

Proof. Statement (1) and (3) are discussed in [Bjö84, §3] (see also [LW69]). Statement
(2) and (4) follow from the definitions.

The correspondence of regular cell complexes (up to stratified homeomorphism) and
cellular posets provides the combinatorialization of regular cell complexes by cellular
posets, as promised earlier.

1.3.1.2 The category of combinatorial regular cell complexes Let us discuss
how to extend the combinatorialization to include maps between regular cell complexes
resp. between cellular poset. This well lead us to introduce a class of so-called ‘cellular’
maps.

Terminology 1.3.17 (Closure preservation for stratifications). A stratified map is said to
be ‘closure preserving’ if it maps closures of strata onto closures of strata.

Definition 1.3.18 (Cellular maps of regular cell complexes). A cellular map of regular
cell complexes F : X → Y is a map of regular cell complexes that is closure preserving;
that is, for each open cell x in X we have F (x) = y, where y = Entr(F )(x) is the open
cell into which x is mapped.

Notation 1.3.19 (The category of regular cell complexes and cellular maps). Denote by
CellStrat the category of regular cell complexes and their cellular maps.

Let us next discuss cellular maps for cellular posets.

Terminology 1.3.20 (Closure preservation for posets). A map of posets F : P → Q is
‘upper-closure preserving’ if for each x ∈ P there exists y ∈ Q such that the image FP≥x

equals Q≥y.

Definition 1.3.21 (Cellular maps of cellular posets). A cellular map of cellular posets
P and Q is a map of posets that is upper-closure preserving.

Notation 1.3.22 (The category of cellular posets and cellular maps). Denote by CellPos
the category of cellular posets and their cellular maps.

Example 1.3.23 (Cellular and non-cellular maps). In Fig. 1.44 we depict cellular and
non-cellular maps of regular cell complexes as well of their entrance path posets, which are
cellular posets. In each case we indicate the mapping by coloring images and preimages
in the same color.

The two definitions of cellular maps can be related by the following functors.

Observation 1.3.24 (Entrance path and classifying functors). The entrance path poset
construction (see Remark 1.3.8), as well as the classifying stratification construction (see
Terminology 1.3.11 and Terminology 1.3.12), yield functors

CellStrat CellPos
Entr

CStr

.
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Figure 1.44: Cellular and non-cellular maps.

The central observation about cellular maps is the following.

Remark 1.3.25 (The equivalence of regular cell complexes and cellular posets). For
sufficiently nice spaces, the entrance path poset construction in fact yields a functor
of topological categories Entr : Strat → Pos (see Construction B.2.21). Denote the
topological subcategory of Strat given by regular cell complexes and their cellular maps
by CellStrat . Similarly, one can consider the subcategory of Pos given by cellular posets
and cellular maps: due to the cellularity condition on maps, this subcategory in fact has
discrete hom spaces, recovering the ‘ordinary’ category CellPos. The entrance path poset
functor now restricts to a functor Entr : CellStrat → CellPos. The functor provides a ‘weak
equivalence’ of topologically enriched categories (the ‘weak inverse’ of Entr is given by the
classifying stratification functor CStr ). The category CellStrat of regular cell complexes
and their cellular maps is, in this sense, ‘combinatorializable’.

While we not prove the preceding remark (nor will we use it in any form), it motivates that
CellPos is in fact a good model for the ‘combinatorial’ category of regular cell complexes.
We record this as a definition.

Definition 1.3.26 (The combinatorial category of regular cell complexes). The ‘com-
binatorial’ category of regular cell complexes CellCplx is the category of cellular
posets and their cellular maps.

Note that the adjective ‘combinatorial’ is simply meant to highlight the combinatorial
nature of the category’s objects. We often refer to objects in CellCplx as ‘combinatorial
regular cell complexes’, which emphasizes that objects can be interpreted both in com-
binatorial terms (as cellular posets) and a stratified-topological terms (as regular cell
complexes obtained via the classifying stratification construction).

We will be particularly interested in ‘combinatorial regular cells’ as recorded by the
following terminology. Recall, the ‘depth’ of an object x in a poset measures the length k
of maximal chains x0 → x1 → ...→ xk in the poset starting at that object, x = x0.

Terminology 1.3.27 (Regular cells). A cellular poset X ∈ CellCplx is called a ‘combinatorial
regular k-cell’ (or simply, a ‘regular k-cell’ if no confusion arises) if X has an initial object
of depth k. We often denote initial elements of cells by ⊥.
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Equivalently, in stratified topological terms, a regular cell complex X is a regular k-cell if
it is the closure of a single k-dimensional cell in the complex.

We next show that the ‘combinatorial’ category of simplicial complexes SimpCplx fully
faithfully embeds in the ‘combinatorial’ category of regular cell complexes CellCplx.
Observation 1.3.28 (Simplicial complexes embed in regular cell complexes). Given a
simplicial complex K, its ‘entrance path poset’ EntrK is the poset whose objects of
EntrK are simplices x in K with an arrow x→ y whenever the simplex y is a face of the
simplex x. For a simplicial map of unordered simplicial complexes F : K → L, we obtain
a map of entrance path posets EntrF : EntrK → EntrL mapping a simplex x in K to the
simplex Fx in L. This yields the functor

Entr : SimpCplx→ CellCplx

which, in fact, is a fully faithful embedding of categories. Note if we were to allow
non-cellular poset maps in CellCplx the latter claim would fail to hold.

To end this section, let us briefly address the discrepancy between ‘topology’ and ‘PL
topology’ which is, in fact, also visible at the level of ‘combinatorial regular cell complexes’.
For this, we introduce the following PL analog of the definition of cellular posets.

Definition 1.3.29 (PL cellular posets). A poset (X,≤) is called PL cellular if the
realization |X>x| of the strict upper closure of any x ∈ P is PL homeomorphic to a PL
sphere.

Remark 1.3.30 (Cellular is not always PL cellular). Note that, while ‘PL cellular’ always
implies ‘cellular’ the converse is in general not true. Indeed, there exist triangulations
of the sphere which are not PL spheres (see [Edw80], [Bry02, Thm. 9.1]). Adjoining
a new minimal element to the entrance path poset of such a triangulation yields a
poset that is cellular but not PL cellular. In contrast, we will later on find that in the
framed setting the adjectives ‘cellular’ and ‘PL cellular’ can be used interchangeably (see
Remark 1.3.42).
Terminology 1.3.31 (The combinatorial category of regular cell complexes). The ‘(com-
binatorial) category of regular PL cell complexes’ CellCplxPL is the category of cellular
posets and their cellular maps.
Remark 1.3.32 (The discrepancy of PL and TOP and its resolution in the framed case). By
the preceding remark, we have that CellCplxPL ( CellCplx. While our notation therefore
needs to distinguish the PL from the topological case here, we will find that ‘framed’
analogs FrCellCplxPL

n and FrCellCplxn of these categories are in fact the same category,
and we shall therefore not distinguish them notationally (see Remark 1.3.42).

1.3.2 Framings and proframings on regular cells In this section we define framings
and proframings on regular cells. This will combine our discussion of framings on simplices
and simplicial complex, with the notion of ‘combinatorial regular cell complexes’, and
their category CellCplx, as discussed in detail in the previous section. The following (abuse
of) notation will reduce the amount of symbols needed in this and subsequent sections.
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Notation 1.3.33 (Structures related to cellular posets). Consider a cellular poset X ∈
CellCplx (i.e. a ‘combinatorial regular cell complex’).
1. The regular cell complex CStrX classifying X will, abusing notation, usually be referred
to simply as the ‘regular cell complex X’.
2. The simplicial complex NXun obtained by unordering the nerve of X will, abusing
notation, be referred to as the ‘(underlying) simplicial complex X’.
The abuse of notation similarly applies to maps of cellular posets F : X → Y (and
thus to subposets X ↪→ Y ), which context-dependently may be used to denote maps of
corresponding regular cell complexes and of underlying simplicial complexes.
In Fig. 1.45 we illustrate a cellular poset X, together with its corresponding regular cell
complex X and its underlying simplicial complex X.

Figure 1.45: A cellular poset, together with its corresponding regular cell complex and
underlying simplicial complex.

1.3.2.1 The definition of framed cells We now define framings on regular cells.
Recall, a regular cell is a cellular poset with an initial element (see Terminology 1.3.27).

Definition 1.3.34 (Framed regular cells). An n-framing F of a regular cell X is an
n-framing F of the simplicial complex X such that, for each x ∈ X, the framing restricts
on the upper closure X≥x of x to a flat framing F|X≥x of the simplicial subcomplex
X≥x ↪→ X.

We will refer to the pair (X,F), of a regular cell X together with an n-framing F on it, as
an ‘n-framed regular cell’.
Notation 1.3.35 (The ordered simplicial complex X). Given an n-framed regular cell
(X,F), note that the n-framing F endows the underlying simplicial complex X with an
ordering: this yields, abusing notation, the ‘ordered simplicial complex X’ (which generally
differs from the ‘nerve of X’).
Notation 1.3.36 (Restricting framings to subcells). Given an n-framed regular cell (X,F)
and x ∈ X, we abbreviate the restricted n-framing F|X≥x by F|x.

Example 1.3.37 (2-Framed regular cells). In Fig. 1.46 we illustrate several examples of
2-framed regular k-cell (X,F), for k = 1 and 2: in each case we depict three pieces of data,
namely, the regular cell complex X in the top row, the underlying simplicial complex X
in the second row, and the ordered simplicial complex X together with the framing F

(indicated by frame labels) in the third row. In the fourth row, we exploit the flatness of
F to provide an alternative illustration of the third row by framed realizations in R2 (see
Remark 1.2.42).
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Figure 1.46: Data of 2-framed regular cells.

Usually, depictions of regular cell complexes X, of their underlying simplicial complexes,
and of n-framings F on them, will be condensed into a single picture as the next remark
explains.

Remark 1.3.38 (Condensing cell structure, simplicial structure and framings). We usually
depict n-framed regular cells (X,F) by embedding the regular cell X in Rn: this, by
passing to the underlying simplicial complex X and then deriving an n-framing from
the resulting framed realization in Rn, determines all data of (X,F). We illustrate this
with further examples in Fig. 1.47: note that the first row re-illustrates exactly the four
examples given in Fig. 1.46.

Figure 1.47: 2-Framed regular cells depicted via framed realizations.

Example 1.3.39 (Non-examples of framed regular cells). In Fig. 1.48 we illustrate three
non-examples of n-framings on regular k-cells X: in each case, we separately depict the
regular cell X (as a cell complex) on top, together with a framing F on X (as a simplicial
complex) underneath it. In the leftmost example, the chosen framing fails to be flat. In
the second example, the framing is flat, but fails to be flat when restricted to either of
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the two 1-cells. Conversely, the third framing is flat when restricted to any subcell in the
boundary but not on the 2-cell itself.

Figure 1.48: Non-examples of framed regular cells.

Example 1.3.40 (The simplest 3-framed regular 3-cell). In Fig. 1.49 on the left, we
depict a framed regular 3-cell (X,F). For clarity, we also separately depict the 3-framing
F on the underlying simplicial complex X on the right.

Figure 1.49: The simplest 3-framed regular 3-cell.

The previous example is the simplest example of a 3-framed regular 3-cell (indeed, its
underlying regular cell complex is the simplest regular cell complex of the 3-ball). In
general, 3-framed regular 3-cells can be of various shapes as the next example illustrates.

Example 1.3.41 (More 3-framed regular 3-cells). We depict few more 3-framed regular
3-cells in Fig. 1.50. Note that cells in the boundary of these 3-cells yields various 3-framed
k-cells for k < 3.

Having introduced the notion of framed regular cells, let us briefly revisit two central
punchlines. Firstly, recall our earlier Remark 1.3.32 about the ‘discrepancy of topological
cells and PL cells’. In the framed setting the discrepancy disappears.

Remark 1.3.42 (Unity of framed cells and PL cells). Topological and PL cells coincide
in the framed setting, that is, given a framed regular cell (X,F) then the framing forces
X to not only be a regular cell, but in fact a regular PL cell: this will be shown in
Corollary 3.2.10. There is consequently no need to consider notions of ‘framed cells’ and
‘framed regular PL cell’ separately, as both these notions coincide.

Secondly, framed regular cells can (unlike nonframed regular cells) be classified.
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Figure 1.50: 3-framed regular 3-cells.

Remark 1.3.43 (Tractability of framed regular cells). We can recognize framed regular cell
among framed posets (here, a ‘framed poset’ is simply a poset together with a framing
of its underlying simplicial complex). We will show this by providing a ‘constructive’
classification of framed regular cells in Chapter 3.

In this way, framed regular cells provide a novel class of general shapes that is computa-
tionally tractable.

Remark 1.3.44 (Framed regular cells with degenerate faces). A yet more general, and
still tractable class of shapes can be obtained by allowing faces of framed regular cells to
‘degenerate’. While these shapes naturally appear when considering general presheafs on
framed regular cells, we will not consider them further here.

1.3.2.2 Framed cellular maps We next define framed maps of framed regular cells.
Recall, in the case of framed simplices, we defined framed maps as maps that preserve
frames on each ‘vector’; the setup crucially relied on vectors in m-simplices being generated
by their m spine vectors (which provided a ‘basis’ for the affine space of the simplex).
Unfortunately, there is no good analog for ‘spine vectors’ in the context of regular cells in
general; however, for framed regular cells, we may recover a notion of ‘final frame vectors’
for any given framed regular cell as explained below. This turns out to be just enough to
define framed maps of framed regular cell.

Terminology 1.3.45 (Final frame vectors of framed regular cells). Given an n-framed
regular k-cell (X,F) with initial element ⊥ ∈ X, a ‘final frame vector’ v is a 1-simplex in
the ordered simplicial complex X containing ⊥ as a vertex and whose frame label Fv ∈ n
is maximal among all frame labels of 1-simplices in X.

Notation 1.3.46 (Final frame vectors). Given an n-framed regular k-cell (X,F) and an
object x ∈ X, we denote by vec(x) ⊂ X the subcomplex of the ordered simplicial complex
X spanned by the final frame vectors of the cell (X≥x,F|x).

Example 1.3.47 (Final frame vectors of framed regular cells). In Fig. 1.51, for several
framed regular cells (X,F) (which reproduce selected cells from both Fig. 1.47 and
Fig. 1.50), we depict the final frame vectors by red edges; in the first row, we also
depict underneath each cell its corresponding ordered simplicial complex (but leave these
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complexes implicit in the second row). Note that, in each case, there are in fact exactly
two final frame vectors: an edge that ends in the vertex ⊥, and an edge that starts at
the vertex ⊥. We further indicate, by green and blue edges, the final frame vectors of a
selection of subcells in the given cells boundary.

Figure 1.51: Final frame vectors of framed regular cells.

Remark 1.3.48 (Final frame vectors ‘form a vector’). The observation in the preceding
example generalizes: any framed cell (X,F) has exactly two final frame vectors (if X
is non-trivial, that is, dim(X) > 0). The subcomplex vec(⊥) of the ordered simplicial
complex X is isomorphic to the linear simplicial complex ( ), while the subposet
vec(⊥) of the poset X (determined by the subcomplex vec(⊥) ⊂ X) is isomorphic to the
entrance path poset (• ← • → •) of a 1-simplex. In this sense the final frame vectors
vec(⊥) of a framed regular cell may be regarded as forming a ‘single directed 1-simplex’.
We will revisit and prove this claim in Corollary 3.1.23.

The definition of framed maps of framed regular cells now mirrors the definition of framed
maps of framed simplices (see Definition 1.1.59) as follows.

Definition 1.3.49 (Framed maps of framed regular cells). Given n-framed regular cells
(X,F) and (Y,G), a framed cellular map F : (X,F) → (Y,G) is a cellular map of
cellular posets F : X → Y , such that for all x ∈ X, either F preserves the framing
of final frame vectors vecx, that is, F restricts to a framed simplicial isomorphism
(vecx,F|vecx) ∼= (F (vecx),G|F (vecx)), or the final frame vectors are degenerated by F , i.e.
F (vecx) ⊂ Y is a point.

Example 1.3.50 (Framed cellular maps). In the upper row of Fig. 1.52 we illustrate
examples of framed maps of 2-framed regular cells; in each case we highlight image and
preimage cells in the same color. Underneath each map we also depict the corresponding
maps of simplicial complex as well as the orderings of those complexes. In the lower row
of Fig. 1.52 we similarly depict non-examples of framed maps. While all three depicted
maps are cellular they fail preserve frame vectors in the required sense; the first fails to
preserve final frame vectors of one of the two blue edges; the second fails to preserve final
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Figure 1.52: Examples and non-examples of framed cellular maps.

frame vectors of the blue 2-cells; the last fails to preserve the final frame vectors of the
left red edge.

Remark 1.3.51 (Framed maps of cell are subframed on simplices). Note that in framed
maps F : (X,F) → (Y,G) of framed regular cells, need not descend to framed maps of
framed simplicial complexes F : (X,F)→ (Y,G), but they do descend to subframed maps
of framed simplicial complexes F : (X,F)→ (Y,G) (see Remark 1.2.23); that is, F need
not preserve the simplicial ordering and may ‘specialize’ frame labels of vectors. This is
illustrated in Fig. 1.53.

Figure 1.53: A framed cellular map need not induce a framed simplicial map, but does
induce a subframed simplicial map.

Notation 1.3.52 (The category of framed regular cells). The category of n-framed regular
cells and their framed cellular maps will be denoted by FrCelln.

1.3.2.3 The definition of proframed cells Just as simplicial complexes may be
endowed both with framings or proframings, we now introduce proframings of regular cells.
Recall that proframed simplicial complexes were defined as certain sequences of surjective
ordered simplicial maps (see Definition 1.2.24). The role of surjective simplicial maps
will now be played by surjective cellular maps. The following terminology will further be
useful.

Terminology 1.3.53 (Ordering a sequence of simplicial maps). Recall from Terminol-
ogy 1.2.9, that an ‘ordering’ of a simplicial map F : K → L is an ordered simplicial map
which, after unordering, recovers F . Similarly, given a sequence of simplicial maps, an
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‘ordering’ of it is a sequence of ordered simplicial maps which, after unordering, recovers
the given sequence.

Definition 1.3.54 (Proframed regular cells). An n-proframing P of a regular cell
X is a sequence of surjective cellular maps X = Xn

pn−→ Xn−1
pn−1−−−→ ...

p1−→ X0, whose
sequence of underlying simplicial maps is endowed with an ordering, such that the
resulting sequence of ordered simplicial maps (denoted again by P) is an n-proframing of
the simplicial complex X, and with the condition that, for each x ∈ X, the restriction
P|X≥x of P to the subcomplex X≥x is flat.

We will refer to the pair (X,P), of a regular cell X together with an n-proframing P on it,
as an ‘n-proframed regular cell’. Note that ‘P’ refers, similarly to previous notation, to
multiple structures simultaneously.

Remark 1.3.55 (Notation for data of proframes). Abusing notation, we may refer to P

as a ‘sequence of cellular maps’, a ‘sequence of simplicial maps’, or a ‘sequence ordered
simplicial maps’ all of which refer to different parts of the data of the proframed cell
(X,P) (see also Notation 1.3.35).

Notation 1.3.56 (Restricting framing to subcells). We abbreviate the cell restrictions
P|X≥x by P|x.

Example 1.3.57 (2-proframed regular cells). We illustrate four 2-proframed regular
cells (X,P) in Fig. 1.54. In each case we depict the sequence of surjective cellular maps
X2 → X1 → X0 embedded in the standard proframe R2 → R1 → R0. In analogy to our
examples of framed regular cells, each cell embedding Xi ↪→ Ri represents an embedding
|Xi| ↪→ Ri of the realized underlying simplicial complex Xi, and requiring the latter
embeddings to be the components of a proframed realization (see Remark 1.2.66) fully
determines the proframing P.

Figure 1.54: 2-Proframed regular cells.

Example 1.3.58 (3-proframed regular 3-cells). Recall the ‘simplest’ 3-framed 3-cell from
Fig. 1.49. The analogous 3-proframe is depicted in Fig. 1.55 (the ‘analogy’ will be made
precise in Theorem 1.3.83). We also illustrate four (less simple) 3-proframed regular 3-cells
in Fig. 1.56.

1.3.2.4 Proframed cellular maps We define maps of proframed regular cells. Like
in the case of framed maps of framed regular cells, we are confronted with the difficulty of
regular cells not have ‘spine vectors’; as before, we will remedy this using the observation
that framed regular cells have ‘final frame vectors’. The definition of proframed maps
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Figure 1.55: The simplest 3-proframed regular 3-cell.

Figure 1.56: 3-proframed regular 3-cells.

then takes the following form, which is parallel to the earlier definition of proframed maps
of framed simplices (see Definition 1.1.91).

Definition 1.3.59 (Proframed maps). Given n-proframed regular cells (X,P = (pn, ..., p1))
and (Y,Q = (qn, ..., q1)), a proframed cellular map F : (X,P) → (Y,Q) (or simply, a
‘proframed map’) is a map of cellular poset sequences

X = Xn Xn−1 X1 X0 = [0]

Y = Yn Yn−1 · · · Y1 Y0 = [0]

Fn

pn

Fn−1

pn−1

· · ·

p2

F1

p1

F0

qn qn−1 q2 q1

where each Fi is a cellular map, and such that for every x ∈ X, either the proframing
of the final frame vectors vecx is preserved, i.e. F restricts to a proframed simplicial
isomorphism F : (vecx,P|vecx) ∼= (Fn(vecx),Q|Fn(vecx)), or the final frame vectors are
degenerated, i.e. Fn(vecx) ⊂ Yn is a point.

We will forego giving examples of proframed cellular maps here (earlier examples of framed
maps of framed regular cells may be adapted appropriately).

Notation 1.3.60 (The category of proframed cells). The category of n-proframed regular
cells and their proframed cellular maps will be denoted by ProFrCelln.
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1.3.3 Framings and proframings on regular cell complexes We now define fram-
ings and proframings of regular cell complexes, generalizing the notions of framed and
proframed regular cells introduced in the previous section. In fact, this generalization only
requires minor modifications of previous definitions, replacing ‘cells’ by ‘cell complexes’
and requiring ‘(pro)framed maps’ to be ‘(pro)framed maps on each cell’.

1.3.3.1 The definition of framings on cell complexes Framings of regular cell
complexes are framings of their simplicial complexes in which ‘all cells are flat’.

Definition 1.3.61 (Framings on cell complexes). Given a regular cell complex X, an
n-framing F of X is an n-framing of the simplicial complex X such that, for all x ∈ X,
the framing restricts on the upper closure X≥x to a flat framing F|X≥x of the simplicial
complex X≥x.

We will refer to the pair (X,F), of a regular cell complex X together with an n-framing F

on it, as an ‘n-framed regular cell complex’. As before, we will denote framings restricted
to subcells X≥x by F|x (see Notation 1.3.36).

Terminology 1.3.62 (Flat and locally flat framed regular cell complexes). An n-framed
regular cell complex (X,F) is called ‘flat’ (resp. ‘locally flat’) if the framing F of the
simplicial complex X is flat (resp. ‘locally flat’).

Example 1.3.63 (Non-flat framed regular cell complexes). Framed regular cell complexes
can be thought of as ‘gluings’ of framed regular cells: we illustrate this in two instances in
Fig. 1.57: in both cases we glue two 2-framed regular cells along their boundary is shown;
the resulting frame structure of the cell complex is indicated by moving ambient frames
‘inside’ their respective cells. Note that in the first case, the resulting cell complex realizes
to a contractible space, while in the second case it realizes to the 2-sphere. Neither of the
framed regular cell complexes is complexes flat.

Figure 1.57: Framed regular cell complexes obtained by gluing framed regular cells.

Example 1.3.64 (Locally flat cellulations of 1-manifolds). In Fig. 1.58 on the left
we depict several locally flat 1-framed regular cell complexes (X,F) each cellulating a
connected 1-manifold. On the right we depict two 1-framed regular cell complexes that
are not locally flat framed.

Example 1.3.65 (Flat cellulation of the Hopf circle). We motivate a slightly more
complicated example. Consider the ‘Hopf circle’ embedding of the circle S1 into R3,
whose image projects along π3 : R3 → R2 to the figure eight, as shown in Fig. 1.59 below.
Take any compact 3-cube I3 ⊂ R3 containing the image of the Hopf circle embedding
S1 ↪→ R3. There exist a ‘canonical framed cellulation’ of I3 by a flat 3-framed regular cell
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Figure 1.58: Locally flat and non-locally flat 1-framed cellulated 1-manifolds.

Figure 1.59: The Hopf circle embedded in R3.

complex containing the circle embedding in its 1-skeleton (here, the term ‘cellulation’ is
the cellular analog to the notion of ‘triangulation’ by simplices). This complex is shown
in Fig. 1.60: it consists of eight 3-framed 3-cells glued together as indicated (note all
framings are determined by the same flat ambient 3-frame, which is indicated only once);
we highlighted 0- and 1-cells cellulating the Hopf circle in blue. We will formally show

Figure 1.60: Cellulation the Hopf circle embedding into eight 3-framed 3-cells.

that this complex is canonical in the sense that any other cellulation by framed regular
cells must subdivide it—the precise statement for the case of the Hopf circle embedding
will be revisited in Remark 5.1.26.

Example 1.3.66 (Dualizing framed cell complexes). In Fig. 1.61 we depict another flat
3-framed regular cell complex made up of four framed 3-cell: this is the ‘geometric dual’ to
the framed cell complex given in the previous example. The two complexes can be related
by a ‘dualization operation’ which switches the roles of dimension and codimension for
each cell—we will reconsider this example more formally in Remark 4.2.87.

We next define framed maps of framed regular cell complexes; the definition mirrors
the definition of framed simplicial maps (see Definition 1.2.20).
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Figure 1.61: Dualizing the cellulation of the Hopf circle.

Definition 1.3.67 (Framed maps of framed regular cell complexes). Consider n-framed
regular cell complexes (X,F) and (Y,G). A framed cellular map F : (X,F) → (Y,G)
is a cellular map F : X → Y that restricts on all cells x ∈ X to a framed cellular map
F : (X≥x,F|x)→ (Y ≥Fx,G|Fx).

We often refer to ‘framed cellular maps’ simply as ‘framed maps’.
Notation 1.3.68 (The category of framed regular cell complexes). The category of n-
framed regular cell complexes and their framed maps will be denoted by FrCellCplxn.
The full subcategory of n-framed regular cell complexes that are flat will be denoted by
FlatFrCellCplxn.

Finally, let us compare framed regular cell complexes to framed simplicial complexes.
Recall, we set out to construct a fully faithful embedding FrSimpCplxn ↪→ FrCellCplxn
which descends to the ordinary (nonframed) embedding SimpCplx ↪→ CellCplx via functors
that forget framings. The desired embedding will be given by ‘framed’ version of the
entrance path poset construction, which we outline as follows.

Construction 1.3.69 (Framed entrance path posets). Given an n-embedded framed
simplicial complex (K,F), we construct a framed regular cell complex (EntrK,Entrfr F),
referred to as the ‘framed entrance path poset’ of (K,F), where EntrK is the entrance
path poset of K and Entrfr F is an n-framing inductively constructed as follows.

First assume K = S is an m-simplex. The case m = 0 is trivial. For m > 0,
given n-embedded framed m-simplex (S ∼= [m],F) construct the integral proframing
∫ F. Assume ∫ F is of the form (id, ..., id, pj , pj−1, ..., p1) with pj 6= id. Set P to be the
proframing (id, ..., id, id, pj−1, ..., p1) of the (m− 1)-simplex [m− 1]. Arguing inductively
in m, construct the framing Entrfr∇P of Entr[m− 1]. The framing Entrfr F is now defined
to label vectors in the kernel of Entr pj : Entr[m] → Entr[m− 1] by j ∈ n, and all other
vectors by the label that their image under Entr pj is given in the framing Entrfr∇P.

Now assume K is any simplicial complex. Then Entrfr F is the framing that, on
each simplex x : [m] ↪→ K, restricts on Entr x : Entr[m] ↪→ EntrK to the framing
(Entrfr F)

∣∣
Entr x

= Entrfr (F|x).

Construction 1.3.70 (The framed entrance path poset functor). The framed entrance
path poset functor

Entrfr : FrSimpCplxn → FrCellCplxn
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takes n-embedded framed simplicial complex (K,F) to their framed entrance path posets
(EntrK,Entrfr F), and framed simplicial maps F : (K,F)→ (L,G) to the framed cellular
map determined by the cellular map EntrF : EntrK → EntrL.

We omit a detailed verification of Construction 1.3.69 and Construction 1.3.70. The
punchline is recorded in the following observation.

Observation 1.3.71 (Framed simplicial complexes are framed regular cell complexes). The
functor Entrfr : FrSimpCplxn → FrCellCplxn is a fully faithful embedding of categories.

In this sense, framed simplicial complexes are specific framed regular cell complexes, i.e.
the latter notion is a generalization of the former notion.

1.3.3.2 The definition of proframings on cell complexes We next discuss profram-
ings of regular cell complexes. The definition is an almost verbatim generalization of the
case of proframed regular cells. Recall the notion of ‘orderings’ of sequences of simplicial
maps (see Terminology 1.3.53).

Definition 1.3.72 (Proframed regular cells). An n-proframing P of a regular cell
complex X is a sequence of surjective cellular maps X = Xn

pn−→ Xn−1
pn−1−−−→ ...

p1−→ X0,
whose sequence of underlying simplicial maps is further endowed with an ordering, such
that the resulting sequence of ordered simplicial maps (denoted again by P) is an n-
proframing of the simplicial complex X, and with the condition that, for each x ∈ X, the
restriction P|X≥x of P to the subcomplex X≥x is flat.

We will refer to the pair (X,P), of a regular cell X together with an n-proframing P on
it, as an ‘n-proframed regular cell’. As before, we usually abbreviate the cell restrictions
P|X≥x by P|x (see Notation 1.3.56).

Terminology 1.3.73 (Flat proframed regular cell complexes). An n-proframed regular cell
complex (X,P) is called ‘flat’ if the proframing P is flat.

Example 1.3.74 (Non-flat 2-proframed regular cell complexes). In Fig. 1.62 we depict
two 2-proframed regular cell complexes. (Our notation is an immediate generalization of
the case of proframed regular cells.) Neither proframing is flat.

Figure 1.62: Two 2-proframed regular cell complexes together with their gradient framings.

Example 1.3.75 (Flat 3-proframed regular cell complexes). In Fig. 1.63 we depict two
3-proframed regular cell complexes. Both of proframings are flat (and they are depicted
as proframed realized in the standard euclidean proframe).
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Figure 1.63: Proframing of the Hopf circle cellulation and a proframing of its dual.

We next define framed maps of framed regular cell complexes; the definition is directly
parallel to the definition of proframed simplicial maps (see Definition 1.2.29).

Definition 1.3.76 (Proframed maps of proframed regular cell complexes). Consider
n-proframed regular cell complexes (X,P) and (Y,Q). A proframed cellular map
F : (X,P)→ (Y,Q) is a map of sequences F = (Fn, Fn−1, ..., F1, F0) : P→ Q (consisting
of cellular maps Fi) which, for all x ∈ X, restricts to a proframed cellular map F :
(X≥x,P|x)→ (Y ≥Fx,Q|Fx).

We often refer to ‘proframed cellular maps’ simply as ‘proframed maps’.

Notation 1.3.77 (The category of proframed regular cell complexes). The category of
n-proframed regular cell complexes and their proframed cellular maps will be denoted by
ProFrCellCplxn. The full subcategory consisting of flat n-proframings will be denoted by
FlatProFrCellCplxn.

1.3.3.3 Gradient cellular framings and integral cellular proframings Parallel to
the definition of gradient framings of proframed simplicial complexes (see Definition 1.2.33),
proframed regular cell complexes too have gradient framings as follows.

Definition 1.3.78 (Gradient framings of proframed regular cell complexes). Given an
n-proframed regular cell complex (X,P), its gradient framing is the n-framed regular
cell complex (X,∇P) whose framing is given by the gradient framing ∇P of the simplicial
complex P . Further, given a proframed cellular map F = (Fn, Fn−1, ..., F1, F0) : (X,P)→
(Y,Q) its gradient map is the framed cellular map (X,∇P)→ (Y,∇Q) determined by
the cellular map Fn : X → Y .

Terminology 1.3.79 (Gradient framing functor). Gradients of proframings of regular cell
complexes and their proframed maps assemble into a ‘gradient framing’ functor as follows:

∇ : ProFrCellCplxn → FrCellCplxn.

Example 1.3.80 (Gradients of proframed regular cells). Passing to the gradient 2-
framings of the 2-proframed cell depicted in Fig. 1.54 recovers the upper four examples of
framings given in Fig. 1.47.

Example 1.3.81 (Gradients of proframed regular cell complexes). In our earlier Fig. 1.62
we depicted two 2-proframed regular cell complexes; their respective gradient framings
recover the 2-framed regular cell complexes from our earlier Fig. 1.57. Similarly, in Fig. 1.63
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we depicted two 2-proframed regular cell complexes whose respective gradient framings
recover the 2-framed regular cell complexes from our earlier Fig. 1.60 and Fig. 1.61.

Definition 1.3.82 (Integral proframings). Given an n-framed regular cell complex (X,F),
an n-proframed regular cell complex (X,P) is an integral n-proframing for (X,F) if
(X,F) is the gradient framing of (X,P).

The previous definitions leave open the question of whether each n-framed regular cell
complexes has an integral n-proframing: unlike in the case of simplices, this is now even
non-trivial in the case of framed cells, since the definition of proframed regular cells
requires a ‘sequence of surjective cellular maps’ as part of its data. Nonetheless, we have
the following result.

Theorem 1.3.83 (Equivalence of framed and proframed regular cells). The gradient
framing functor is an equivalence of categories of proframed regular cells and framed
regular cells:

∇ : ProFrCelln ∼= FrCelln.

The inverse to ∇ will be called integration, and denoted by ∫ .

The proof will be given in Section 3.1.2. The theorem may, in fact, be phrased in yet more
general form: namely, parallel to the case of simplicial complexes, the notion of framings
and proframings on regular cell complexes become equivalent when flatness is imposed.

Theorem 1.3.84 (Equivalence of flat framed and flat proframed regular cell complexes).
The gradient framing functor is an isomorphism of categories of flat proframed regular cell
complexes and flat framed regular cell complexes:

∇ : FlatProFrCellCplxn
∼= FlatFrCellCplxn

The inverse to ∇ will be called integration, and denoted by ∫ .

The proof can be found in Section 3.1.2.

Both theorems, together with our earlier results and constructions, then organize
into the diagram in Fig. 1.64, which summarizes the categories defined in this chapter.
(Note that except for the isomorphism ProFrSimpn

∼= FrSimpn, which was explained in
Corollary 1.1.114, all isomorphisms in Fig. 1.64 are yet to be constructed; we will construct
the remaining isomorphisms in Section 3.1).
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ProFrSimpn FrSimpn

ProFrCelln FrCelln FlatProFrSimpCplxn FlatFrSimpCplxn

FlatProFrCellCplxn FlatFrCellCplxn ProFrSimpCplxn FrSimpCplxn SimpCplx

ProFrCellCplxn FrCellCplxn CellCplx

Entrfr

∇
(see 1.1.114)

∫

Entrfr∇
(see 1.3.83)

∫

∇
(see 1.2.69)

Entrfr
∫

Entrfr

∇
(see 1.3.84)

∫
Entrfr

Entrfr

Unframe

Unframe

Figure 1.64: Categories of framings and proframings of simplicial complexes and cell
complexes.
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CHAPTER 2
Constructible framed combinatorics:

trusses

In this chapter we develop the basic theory of ‘trusses’: trusses are combinatorial structures
that can be obtained by iteratively building towers of ‘constructible combinatorial bundles’.
Trusses both underlie the tractable classification of framed regular cell complexes (as
discussed in Chapter 3) while also providing a link between framed combinatorics and
framed topology (as discussed in Chapter 4 and Chapter 5). Several ideas in the theory
of trusses conceptually root in, and improve upon, notions developed in [Dor18].

We will start in Section 2.1 by introducing 1-dimensional trusses, or ‘1-trusses’ as well
as their ‘bordism’ and ‘bundles’. Subsequently, in Section 2.2, we describe an important
ordering property of bundles of 1-trusses, which we will refer to as ‘truss induction’. This
in turn will allow us to describe the theory of trusses in general dimension n as discussed
in Section 2.3.

2.1 1-Trusses, 1-truss bordisms, and 1-truss bundles

1-Trusses are ‘1-dimensional’ combinatorial objects. As we will illustrate, their 1-
dimensionality has a concrete geometric interpretation: 1-trusses can be obtained by
taking the ‘framed entrance path posets’ of ‘framed stratified intervals’. Here, the notion
of ‘framed’ entrance path poset generalizes the usual notion of entrance path posets of
stratifications to the case of (appropriately) ‘framed’ stratifications. While both these
notions will be formalized only later in Chapter 4 in the context of ‘constructible framed
topology’, thinking of 1-trusses as modelling stratified intervals will be nonetheless useful
as a guiding intuition, and we will illustrate this intuition with several examples throughout
this section.

We outline the section. In Section 2.1.1 we introduce the category of 1-trusses
and their maps. We will discuss several (often geometrically motivated) notions and
constructions for 1-trusses. In particular, we define an involutive ‘dualization’ functor
on 1-trusses. In geometric terms, this will correspond to dualizing the dimension of
each stratum in a stratification. In Section 2.1.2 we then introduce a notion of 1-truss
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bordisms. In geometric terms, the notion models the behavior of ‘stratified intervals in
R-parametrized families’. Understanding 1-truss bordisms, will in turn allow us to define
1-trusses bundles in Section 2.1.3, which then provide a combinatorial model of general
‘constructible stratified line bundles’. 1-Truss bundles play a central role: by iterating
such combinatorial constructible stratified line bundles we will later build combinatorial
models of ‘n-dimensional’ stratified space, yielding the notion of ‘n-trusses’.

2.1.1 1-Trusses

2.1.1.1 1-Trusses as framed fences Recall the classical combinatorial notion of
fences (1-trusses will be a strengthening of this notion). The definition of fences finds a
concise expression via the notion of a classifying space of a category: recall this is the
space realizing the simplicial set given by the nerve of a category.

Definition 2.1.1 (Fence). A fence X is a category of countable size, whose classifying
space is a connected k-manifold where k ∈ {0, 1}.

1. If F realizes to a point we say F is trivial.
2. If F realizes to an interval we say F is linear.
3. If F realizes to a circle we say F is circular.

We call a fence X a ‘finite fence’ if it is finite as a category. For convenience, we often
extend both the class of linear and circular fences to include the trivial fence as well (and
speak of the ‘trivial linear’ resp. ‘trivial circular’ fence in this case). Note that a fence
cannot contain composable non-identity morphisms.

Example 2.1.2 (Fences). Finite fences of different types are shown in Fig. 2.1; in each
case we indicate a fence X by its classifying space |X| (where directions of morphisms in
X are recorded by directing edges of |X|).

Figure 2.1: Fences of different types.

Observation 2.1.3 (Regular cell complexes). Given a finite fence X, then the classifying
space |X| of X naturally has the structure of a regular cell complex (whose 0-cells realize
objects of X, and whose 1-cells realize morphisms of X).

Observation 2.1.4 (Height maps). Every non-trivial fence X comes equipped with ‘height
map’ X → [1] given by the unique functor whose preimages are discrete categories (the
map ‘folds the fence onto a single fence post’). Note that for trivial fences, the choice of
height map X → [1] is ambiguous!

Conversely, regular cell complexes with height maps yield fences as follows.
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Observation 2.1.5 (Non-trivial fences are regular cell complexes with height map). Any
regular cell complex X cellulating a connected 1-manifold, together with a cellwise bijective
map X → |[1]|, determines a non-trivial fence whose classifying space is X and whose
height map realizes to X → |[1]|.
The notion of 1-trusses strengthens that of fences in two ways: firstly, 1-trusses contain
the data of a ‘framing’ of the 1-manifolds that non-trivial fences cellulate (technically,
this uses the combinatorial notion of locally flat 1-framings of regular cell complexes, see
Definition 1.3.61 and Example 1.3.64); secondly, 1-trusses resolve the ambiguity of height
maps for trivial fences by introducing them as additional structure (inverting variance,
this now will be recorded by a map to [1]op, which we call the ‘dimension map’).

Definition 2.1.6 (General 1-trusses). A 1-truss (T, dim,F) is a finite fence T , together
with a poset map dim : T → [1]op as well as a locally flat 1-framing F of the correspond-
ing regular cell complex. A 1-truss is trivial resp. linear resp. circular whenever its
underlying fence is.

Example 2.1.7 (General 1-trusses). 1-Trusses of different types are shown in Fig. 2.2:
in each case we depict the underlying fence as before, we depict the dimension map by
coloring preimages of 0 in red, and preimages of 1 in blue, and we depict the locally flat
1-framing by indicating the 1-framing of each cell by a purple frame vector.

Figure 2.2: 1-Trusses of different types.

Going forward, we now make the following simplification: we will henceforth focus solely
on the case of linear trusses. While much of the theory developed here, including notions
of ‘higher-dimensional’ n-trusses, does generalize to the case of general 1-trusses as well,
our main interest and applications will ultimately lie with the linear case. We therefore
adopt the following convention.

Convention 2.1.8 (Linear 1-truss by default). We will use the term ‘1-truss’ to refer to
‘linear 1-trusses’ unless otherwise noted.

In the linear case, we may further reformulate the above definition in purely order-theoretic
terms. First, note that if a fence T is linear (which we take to include the trivial case),
then it must be a poset.5 We usually denote the resulting poset order of linear fences T
either by (T,→) or (T,E) (the latter notation being convenient for expressing ‘strictly
5 Every preorder (resp. poset) (X,≤) is equivalently a category with object set X and a single morphism
x→ y whenever x ≤ y; and every map of preorders is a functor of corresponding categories.
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less/greater’ relations using the symbols ‘C/B’). Secondly, a locally flat 1-framing F of a
linear fence T may be equivalently recorded by a total order, which we usually denote by
�. This leads us to the following definition of 1-trusses (i.e. linear 1-trusses).

Definition 2.1.9 (1-Trusses). A (linear) 1-truss (T,E,dim,�) is a finite non-empty set
T together with the following structure.

1. a partial order E called the ‘face order’ of T ,
2. a poset map dim : (T,E)→ [1]op called the ‘dimension map’ of T ,
3. a total order (T,�) called the ‘frame order’ of T , in which a succeeds b or b succeeds
a iff either aC b or bB a.

Notation 2.1.10 (1-Trusses). When working with 1-trusses, we will usually keep face orders,
dimension maps as well as frame orders implicit; that is, we will abbreviate 1-trusses
(T,E,dim,�) simply by T .

The fact that we refer to E as the ‘face order’ of T reflects the relation of 1-trusses and
(framed) stratified intervals that we alluded to earlier: under this relation, elements a of
1-trusses translate to open 1-cells of dimension dim(a), and arrows aC b translate to ‘b
being a face of a’. The next example illustrates this ‘geometric translation’ of 1-trusses.6

Example 2.1.11 (Translating 1-trusses to stratified intervals). In the upper row of
Fig. 2.3 we depict two 1-trusses T . In each case, we depict the face order by black arrows,
we color preimages of 1 of the dimension map in blue and preimages of 0 in red, and
indicate the frame order by a purple coordinate axis. Underneath each 1-truss, we depict
a stratified interval: note that each object x ∈ T corresponds to a stratum of dimension
dim(x), and the face order (T,E) can be recovered as the entrance path poset of the
stratified interval (see Definition B.1.6 for a definition of ‘entrance path posets’).

Figure 2.3: 1-Trusses and their translation to stratified intervals.

Terminology 2.1.12 (Singular and regular objects). An element p ∈ T of a 1-truss T is
called ‘singular’ if dim(p) = 0 and ‘regular’ if dim(p) = 1. We denote the subset of singular
objects T by sing(T ) resp. the subset of regular objects by reg(T ).

Remark 2.1.13 (Induced orders on singular/regular objects). Note that, endowed with
the face order both (sing(T ),E) and (reg(T ),E) are discrete orders, and endowed instead
with the frame order both (sing(T ),�) and (reg(T ),�) are total orders.

2.1.1.2 Maps of 1-trusses We next define maps between 1-trusses. In order to
simultaneously keep track of face and frame orders in the definition of 1-trusses, the
following abstraction will be useful.
6Note that the resulting translation of 1-trusses to stratified intervals is fundamentally different to our
earlier translation of fences to regular cell complexes.
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Definition 2.1.14 (Diposets and their maps). A diposet (X,E,�) is a set X with two
orders E and �. A diposet map F : (X,E,�)→ (Y,E,�) is a map of sets F : X → Y
that separately respects both orders, i.e. induces poset maps F : (X,E) → (Y,E) and
F : (X,�)→ (Y,�).

Definition 2.1.15 (1-Truss maps). A map of 1-trusses T → S is a diposet map
(T,E,�)→ (S,E,�).

Note that the preceding definition of 1-truss maps does not impose any conditions on
how maps interact with the dimension data of trusses; there are several sensible ways to
impose such conditions.

Definition 2.1.16 (Regular, singular, and balanced maps). Let F : T → S be a map of
1-trusses.

1. We call F singular if it maps singular objects of T to singular objects of S. That
is, for all x ∈ T , dim(x) ≥ dim(Fx).

2. We call F regular if it maps regular objects of T to regular objects of S. That is,
for all x ∈ T , dim(x) ≤ dim(Fx).

3. We call F balanced if it is both regular and singular. That is, for all x ∈ T ,
dim(x) = dim(Fx).

Example 2.1.17 (Maps of 1-trusses). In Fig. 2.4 we depict examples of singular, regular
and balanced maps of 1-trusses.

Figure 2.4: Four different types of maps of 1-trusses.

Notation 2.1.18 (Category of 1-trusses). The category of 1-trusses and their maps is denoted
by Trs1. The wide subcategory containing only regular respectively singular respectively
balanced maps will be denoted by Trsr1 respectively Trss1 respectively Trsrs1 .

To avoid identifying the trivial truss T with dim(a) = 0 (where a ∈ T is the single element
of T ) with the trivial truss T with dim(a) = 1 we will default to the following notion of
isomorphism.

Terminology 2.1.19 (Balanced isomorphism by default). Unless otherwise noted, the term
‘isomorphism of 1-trusses’ will by refer to isomorphisms in the category Trsrs1 , that is, to
balanced bijective truss maps.

Remark 2.1.20 (Balanced isomorphisms are unique). Observe that if two trusses are
balanced isomorphic, then the balanced isomorphism must be unique. There is thus no
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harm in thinking about 1-trusses ‘skeletally’, i.e. in terms of their balanced isomorphism
classes.7

We now distinguish balanced isomorphism classes by their ‘endpoint type’.

Definition 2.1.21 (Endpoints of 1-trusses). Given a truss (T,E, dim,�) we denote by
end−T the minimal element of (T,�), called the lower endpoint, and by end+T the
maximal element, called the upper endpoint of T .

Terminology 2.1.22 (Endpoint types of 1-trusses). Let T be a 1-truss. Then T falls in
exactly one of the following six cases of isomorphism classes in Trsrs1 .

1. If T has a single regular element, then T is the trivial open 1-truss denoted by T̄0.
2. If T has a single singular element, then T is the trivial closed 1-truss denoted by

T̊0.
For the next cases, T has more than one element.

3. If both endpoints end±T of T are regular, then T is open. If T has 2k+ 1 elements
it is denoted by T̊k.

4. If both endpoints end±T of T are singular, then T is closed. If T has 2k+1 elements
it is denoted by T̄k.

5. If end−T is regular and end+T singular, then T is half-open half-closed. If T has
2k elements it is denoted by ›

Tk.
6. If end−T is singular and end+T regular, then T is half-closed half-open. If T has

2k elements it is denoted by (Tk.

Example 2.1.23 (Types of 1-trusses). In Fig. 2.5 we illustrate each type of 1-truss with
an example.

Figure 2.5: Types of 1-trusses.

We will be mainly be interested in the case of closed (and, dually, open) trusses, because of
their relation to framed cellular geometry. We therefore introduce the following notation
for their corresponding categories.

Notation 2.1.24 (Open and closed 1-trusses). The subcategory of Trs1 containing only
open trusses (including the trivial open truss) and regular maps will be denoted by T̊rs1,
and the subcategory containing only closed trusses (including the trivial closed truss) and
singular maps by T̄rs1.
7In fact, note that (not necessarily balanced) isomorphisms between any two trusses are unique as well if
they exists; the reason for working with balanced isomorphism classes roots in their relation to ‘1-truss
bordism isomorphism classes’, as discussed later in Remark 2.1.47.
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Observation 2.1.25 (Maps that are balanced). Note that any regular map of open trusses
is balanced and, likewise, any singular map of closed trusses is balanced. In other words,
the categories T̊rs1 and T̊rsrs1 (resp. T̄rs1 and T̄rsrs1 ) are identical.

2.1.1.3 Dualization of 1-trusses Trusses admit a natural dualization operation,
which maps closed trusses to open trusses and vice-versa.

Construction 2.1.26 (Dualization of 1-trusses). The dualization functor

† : Trs1
∼= Trs1

is an involutive functor defined as follows. Given a 1-truss T ≡ (T,E,dim,�) its dual
is the 1-truss T † ≡ (T,Eop,dimop,�): that is, face order of T † is opposite to that of T ;
its dimension map is the opposite of the dimension map of T (post-composed with the
identification [1] ∼= [1]op); its frame order is equal to that of T . Similarly, the dual map
F : T † → S† of a 1-truss map F : T → S is the map that equals F as a map of underlying
sets.

Example 2.1.27 (Dualization). In Fig. 2.5, 1-trusses in the left column dualize to 1-
trusses shown in the right column; while in Fig. 2.4 the depicted regular map dualizes to
the depicted singular map.

Observation 2.1.28 (Dualization of dimension). Given a 1-truss T and an element p ∈ T ,
then p is regular (resp. singular) in T if and only if p is singular (resp. regular) in T †. In
particular, if F : T → S is a map of trusses, then F † is regular (resp. singular) if and only
if F † is singular (resp. regular).

Observation 2.1.29 (Dualization of boundary types). The preceding observation entails
that the dualization functor restricts to isomorphisms T̊rs1

∼= T̄rs1.

2.1.2 1-Truss bordisms We now introduce 1-truss bordisms. While 1-trusses geo-
metrically translate into (framed) stratified intervals as previously illustrated, 1-truss
bordisms model changes that can occur in continuous families of such intervals: these
families can be formalized in terms of (framed constructible) stratified bundles8 over the
stratified 1-simplex {1} ⊂ [0, 1], which is illustrated in two instances in Fig. 2.6. In the
first example, the generic fiber is a stratified open interval with two point strata; when
reaching the special fiber, a third point stratum spontaneously appears. In the second
example, the two point strata in the generic fiber converge into a single point stratum in
the special fiber. In both cases, we also indicate the corresponding ‘poset bundle’ obtained
by passing to entrance path posets. The notion of 1-truss bordisms will provide a unified
combinatorial description of the ‘deformations between fibers’ that may appear in such
entrance path poset bundles (while appropriately keeping track of framings and dimension
data of 1-trusses). The description of these fiber deformations plays a most central role:
it will shortly enable us to define 1-truss bundles, which in turn, ‘by iteration’, will later
8Recall, stratified bundles generalize fiber bundles in that they allow (stratified) fibers to change when
passing between strata in the base, see Definition B.2.24. The precise ‘framed constructible’ variation
alluded to here is introduced in Definition 4.1.20 under the name of ‘1-mesh bundles’.
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Figure 2.6: Continuous families of open stratified intervals as stratified bundles over the
stratified 1-simplex.

on lead us to the definition of n-truss bundles as towers of 1-truss bundles. Note that our
chosen terminology hints at a relation of ‘truss bordisms’ to ‘classical stratified bordisms’.9

2.1.2.1 Recollection on Boolean profunctors To streamline the definition of 1-
truss bordisms it is convenient to encode their general structure in terms of Boolean
profunctors between preorders. Recall, the category Bool of booleans has two objects
‘true’ (also written ‘1’) and ‘false’ (also written ‘0’), with a single non-identity arrow from
‘false’ to ‘true’. It will be useful to think of preorders as Bool-enriched categories (which
translate back to categories via the fully faithful inclusion Bool ↪→ Set).

Definition 2.1.30 (Boolean profunctors and (co)functoriality). Given two preorders X
and Y , a boolean profunctor R : X −7−→ Y is a functor R : Xop × Y → Bool. R is called
functorial if it is of the form HomY (f−,−) (for a functor f : X → Y ) and cofunctorial
if it is of the form HomX(−, f−) (for a functor f : Y → X).10

Remark 2.1.31 (Composition of boolean profunctors). Given Boolean profunctors R :
X −7−→ Y and S : Y −7−→ Z, then their composition S ◦R : X −7−→ Z is determined by setting
Z(x ∈ X, z ∈ Z) to be true if and only if there is an element y ∈ Y so that both R(x, y)
and S(y, z) are true.

Notation 2.1.32 (Category of boolean profunctors). Preorders and their boolean profunctors
form a category denoted by BoolProf.

Definition 2.1.33 (Underlying relations of boolean profunctors). The underlying re-
lation functor rel : BoolProf → Rel takes preorders to their object sets, and Boolean
profunctors R : X −7−→ Y to the relation R−1(1) ⊂ X × Y .

Remark 2.1.34 (Boolean profunctors are ‘functorial relations’). Given preorder X and Y , a
Boolean profunctor R between them may be completely encoded by its underlying relation
relR ⊂ X × Y ; in other words, the functor rel is faithful. However, the functor is not full:
the relations R ⊂ X × Y in the image of rel are exactly the ‘functorial relations’, namely
those for which {a→ a′, R(a′, b)} ⇒ R(a, b) and {b′ → b, R(a, b′)} ⇒ R(a, b).
9Most visually, this becomes apparent with later examples of (higher-dimensional) trusses underlying
stratifications such as those in Fig. 5.17.

10Frequently, (co)functorial profunctors are also called ‘(co)representable profunctors’; however, we find
this terminology badly chosen since the notion does not relate to an actual representability condition.
Moreover, the terminology does not ‘decategorify’ well to the case of relations, where one often speaks
of ‘(co)functional’ relations as mentioned in Remark 2.1.35.
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Remark 2.1.35 (Boolean profunctors of discrete preorders and (co)functionality). A boolean
profunctor R : X −7−→ Y between discrete preorders is a relation between the corresponding
sets in the ordinary sense. In this case, ‘(co)functorial profunctors’ are usually called
‘entire (co)functional relations’—keeping ‘entireness’ implicit, we will simply speak of
(co)functional relations.

Terminology 2.1.36 (Non-emptiness). We say a Boolean profunctor R : X −7−→ Y is non-
empty if there is a choice of a ∈ X, b ∈ Y for which R(a, b) holds.

Terminology 2.1.37 (Restrictions of profunctors). Given a boolean profunctors R : X −7−→ Y
and subpreorders U ↪→ X, V ↪→ Y , then R restricts to boolean profunctor between U and
V which, abusing notation, we denote again by R : U −7−→ V .

A final helpful notion for the definition of 1-truss bordisms is that of ‘bimonotonicity’ of
relations: bimotone relations of preoders do not transpose any two order-related elements.

Definition 2.1.38 (Transpositions and bimonotonicity). Consider a relation R ⊂ X × Y
between preorders X and Y (that is, R is an ordinary relation between the object sets
of X and Y ). A pair consisting of a non-identity arrow x→ x′ in X and a non-identity
arrow y → y′ in Y is called a transposition of R if both R(x, y′) and R(x′, y) are true.
If the relation R has no transpositions it is said to be bimonotone.

Example 2.1.39 (Transpositions and bimonotonicity). In Fig. 2.7 we depicted relations
R,S ⊂ X × Y between posets X ∼= Y ∼= [1]. The relation R has a transposition while S
has no transpositions and thus is bimonotone.

Figure 2.7: Transpositions and bimonotonicity of relations.

2.1.2.2 1-Truss bordisms as bimonotone bifunctional profunctors We finally
turn to a definition of 1-truss bordisms. Recall that singular (resp. regular) objects in
trusses T yield discrete subposets (sing T,E) (resp. (reg T,E)) of the face order (T,E)
(see Remark 2.1.13).

Definition 2.1.40 (1-truss bordisms of 1-trusses). A 1-truss bordism R : T −7−→ S of
1-trusses T and S is a non-empty boolean profunctor R : (T,E) −7−→ (S,E) of the face
orders of T and S subject to the following conditions.

1. Bifunctionality : The restriction R : (sing T,E) −7−→ (sing S,E) is functional, and the
restriction R : (reg T,E) −7−→ (reg S,E) is cofunctional.

2. Bimonotonicity : The relation relR of frame orders (T,�) and (S,�) is bimonotone.
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Remark 2.1.41 (Unwinding bifunctionality). The bifunctionality condition can be made
more explicit: it requires that for each singular object a ∈ sing T there is a unique singular
object singR(a) ∈ sing T such that R(a, singR(a)), and for each regular object d ∈ reg T
there is a unique regular object regR(d) ∈ reg T such that R(regR(d), d). The resulting
function singR : (sing T,E)→ (sing S,E) is called the singular function of R. Similarly,
the function regR : (reg S,E)→ (reg T,E) is called the regular function of R.

Example 2.1.42 (A 1-truss bordism). In Fig. 2.8 we depict a 1-truss bordism R : T −7−→ S.
The domain 1-truss T is drawn on the left, the codomain 1-truss S is drawn on the right,
and elements of the underlying relation of R are indicated by black lines (the ‘edges’ of
R) between objects of T and S. The fact that our choice of R is bimonotone, i.e. has no
transpositions, is witnessed by there being no crossings among its edges. The fact that R
is bifunctional is witnessed by the left-to-right function highlighted in red (providing the
singular function singR : sing(T )→ sing(S)) and the right-to-left function highlighted in
blue (providing the regular function regR : reg(S)→ reg(T )).

T SR

Figure 2.8: A 1-truss bordism R : T −7−→ S.

Remark 2.1.43 (Relation to 1-truss maps). The relationship of 1-truss bordisms to 1-truss
maps (as introduced in Definition 2.1.15) is analogous to the relationship of profunctors and
functors. In particular, while every 1-truss map descends to a functor of underlying face
orders, every 1-truss bordism will descend to a profunctor of underlying face orders.

2.1.2.3 Composition and dualization of 1-truss bordisms The fact that 1-truss
bordisms organize into a category follows from the following observation.

Observation 2.1.44 (Bimonotonicity and bifunctionality compose). The properties of
‘bimonotonicity’ and ‘bifunctionality’ in Definition 2.1.40 are preserved under composition
of Boolean profunctors. Indeed, given 1-truss bordisms, R : T −7−→ T ′ and R′ : T ′ −7−→ T ′′

then the Boolean profunctor R′ ◦R : T −7−→ T ′′ is again bifunctional (its singular function
is singR′ ◦ singR, and its regular function is regR

′ ◦ regR), as well as bimonotone (any
transposition of R′ ◦ R with respect to the frame orders of T and T ′′ would imply a
transposition in at least on of R or R′). Therefore, the Boolean profunctor R′◦R : T −7−→ T ′′

in fact defines another 1-truss bordism, which we can take to be the composite of R and
R′.
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Note further that ‘identity 1-truss bordisms’ are given by (Bool enriched) hom functors
Hom(T,E)(−,−), for any 1-truss (T,E,dim,�). Thus, 1-truss bordisms are morphisms of
the following category.

Notation 2.1.45 (The category of 1-truss bordisms). The category of 1-truss bordisms
(whose objects are 1-trusses and whose morphisms are 1-truss bordisms) will be denoted
by TBord1. The wide subcategories containing only open respectively closed 1-trusses will
be denoted by T̊Bord1 respectively by T̄Bord1.

Observation 2.1.46 (The terminal and initial 1-trusses). The terminal object of TBord1 is
the trivial closed 1-truss T̄0. The unique bordism R : T −7−→ T̄0 can be defined by setting
R(a, 0) to hold for all a ∈ T .

The initial object of TBord1 is the trivial open 1-truss T̊0. The unique bordism
R : T̊0 −7−→ T can be defined by setting R(0, a) to hold for all a ∈ T .
Remark 2.1.47 (Invertible 1-truss bordisms are unique). Given two 1-trusses, any invertible
1-truss bordism between them is unique if one exists. There is thus no harm in working
‘skeletally’, i.e. working with 1-trusses up to invertible bordisms. Further the classes
of 1-trusses up to invertible 1-truss bordisms are exactly the classes of 1-trusses up to
balanced 1-truss isomorphisms (see Remark 2.1.20).

Recall the dualization functor † on 1-trusses (and their maps) from Construction 2.1.26.
A similar dualization construction applies to the category of 1-truss bordism as follows.

Construction 2.1.48 (Dualization of 1-truss bordisms). Let R : T −7−→ S be a 1-truss
bordism. We define its dual R† : S† −7−→ T † to be the 1-truss bordism determined by
transposing the underlying relation of R; that is, R† is given by the Boolean profunctor

(S,Eop)op × (T,Eop) ∼= (T,E)op × (S,E)
R−→ Bool

One verifies that R† satisfies both bimonotonicity and bifunctionality. Dualization gives
rise to an involutive isomorphism of categories

† : TBord1 ∼= (TBord1)op

As before this restricts to an equivalence † : T̊Bord1 ∼= (T̄Bord1)op.

2.1.2.4 Properties of 1-truss bordisms We discuss several immediate properties of
1-truss bordisms.

Lemma 2.1.49 (Dimension monotonicity). Given a 1-truss bordism R : T −7−→ S and
elements a ∈ T , b ∈ S such that R(a, b) holds, then dim(b) ≤ dim(a).

Proof. We show that if R(a, b) holds and dim(a) = 0, then we must have dim(b) = 0. In
other words, R never relates singular elements of T to regular elements in S. Arguing
by contradiction, assume R(a, b) holds for singular a and regular b. Since frame orders
are total, and since b is regular, we either have b ≺ singR(a) or singR(a) ≺ b. Assume
the former case holds (the latter case is symmetric). By bimonotonicity we must have
regR(b) ≺ a. Then there exists a face order arrow a − 1 C a in (T,E) (‘a − 1’ denotes
the predecessor of a in the total order (T,�)). By profunctoriality of R this implies
that R(a− 1, singR(a)) holds. But, since we assumed R(a, b) and since b ≺ singR(a), this
contradicts bimonotonicity.
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Recall our definition and notation for endpoints of 1-trusses (see Definition 2.1.21).

Lemma 2.1.50 (Endpoint preservation). Any 1-truss bordism R : T −7−→ S must relate
lower (resp. upper) endpoints of T to lower (resp. upper) endpoints of S.

Proof. We argue in the case of lower endpoints end−T , end−S (the case of upper endpoints
is symmetric). First, assume end−S is regular. Set a := regR(end−S). We must have
a = end−T which shows the claim: indeed, if a 6= end−T then R(a−1, singR(a−1)) would
hold, which would contradict bimonotonicity (since end−S ≺ singR(a− 1)).

Next, assume end−S is singular. If end−T is singular then a dual argument to the
first case shows singR(end−T ) = end−S as claimed. If end−T is regular then we argue
as follows. If both T and S contain a single object, then R(end−T, end−S) holds since
R is assumed non-empty. Otherwise, we can assume that either T or S contain at least
two objects. We argue in the former case (the argument for the latter case is similar).
Since T has at least two elements, its lower endpoint has a successor a = end−T + 1. Set
b := singR(a). If b = end−S, then R(end−T, end−S) holds as claimed, since end−T C a
and since R is profunctorial. On the other hand, if b � end−S, then we must have
regR(end−S + 1) = end−T by bimonotonicity. Since end−S B end−S + 1, profunctoriality
of R implies again that R(end−T, end−S) holds as claimed.

As we’ve seen every 1-truss bordism R : T −7−→ S determines a ‘singular function’ singR :
(sing(T ),�)→ (sing(S),�) and a ‘regular function’ regR : (reg(S),�)→ (reg(T ),�). By
the previous Lemma 2.1.50, it follows that singR ‘preserves singular endpoints’ in the
following sense: whenever a (lower resp. upper) endpoint end±T is a singular in T , then
the image singR(end±) = end±S is a (lower resp. upper) endpoint in S, which is necessarily
singular itself. Dually, regR ‘preserves regular endpoints’ in that, whenever a (lower resp.
upper) endpoint end±S is regular in S, then the image regR(end±S) = end±T is a (lower
resp. upper) endpoint in T , which is necessarily a regular itself. In fact, frame order
preserving maps of singular resp. regular elements in trusses, which preserve singular resp.
regular endpoints in this sense, determine 1-truss bordisms as the next result records.

Lemma 2.1.51 (Singular and regular determined bordisms). Let T and S be 1-trusses.

Singular determined: Given a function f : (sing(T ),�) → (sing(S),�) that
preserves singular endpoints, there is a unique 1-truss bordism R : T −7−→ S with
singular function singR = f .

Regular determined: Given a function f : (reg(S),�)→ (reg(T ),�) that preserves
regular endpoints, there is a unique 1-truss bordism R : T −7−→ S with regular function
regR = f .

Proof. For the first case, define R(a, b) to hold if and only if either (1) the object a
is singular and b = singR(a), or (2) the object a is regular and both b ≤ singR(a + 1)
(whenever a+ 1 ∈ T ) and b ≥ singR(a− 1) (whenever a− 1 ∈ T ). For the second case,
define R(a, b) to hold if and only if either (1) the object b is regular and a = regR(b), or
(2) the object b is singular and both a ≤ regR(b+ 1) (when b+ 1 ∈ S) and a ≥ regR(b− 1)
(when b− 1 ∈ S).
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We say a relation (or Boolean profunctor) R : T −7−→ S ‘fully matches objects’ if for
each a ∈ T there exists a′ ∈ S with an R(a, a′) and for each b ∈ S there exists b′ ∈ T with
R(b′, b). The description of 1-truss bordisms in the previous lemma (and its proof) then
has the following two corollaries.

Corollary 2.1.52 (Truss bordisms fully match objects). Any 1-truss bordism R : T −7−→ S
fully matches objects.

Corollary 2.1.53 (Dependence of full matching and functionality). Consider 1-trusses
T and S, and a boolean profunctor R : (T,E) −7−→ (S,E) such that relR ⊂ (T,�)× (S,�)
is bimonotone and fully matches objects. If either R(u, v) is functional on singular objects
or cofunctional on regular objects, then R is a 1-truss bordism.

Proof. The assumptions on R imply that R satisfies exactly the conditions in one of the
two cases of Lemma 2.1.51.

2.1.3 1-Truss bundles We now define 1-truss bundles: these are bundles over posets
whose fibers are 1-trusses, and whose fiber transitions are described by 1-truss bordisms.

2.1.3.1 1-Truss bundles as collections of 1-truss bordisms

Definition 2.1.54 (1-Truss bundle). Consider posets (B,→) and (T,E), equipped with
a functor dim : (T,E) → [1]op and a second order (T,�). A 1-truss bundle is a map
of diposets p : (T,E,�) → (B,→,=) (where ‘=’ is the discrete order) satisfying the
following.

1. For every object x in B, the datum (T,E,dim,�) restricts on the fiber over x to a
1-truss p−1(x) ≡ (p−1(x),E,dim,�).

2. For every arrow x→ y in B, the fiber p−1(x→ y) is a 1-truss bordism, in the sense
that the relation

a ∼ b iff (aE b in (T,E) s.t. p(aE b) = x→ y)

is the underlying relation of a 1-truss bordism p−1(x) −7−→ p−1(y).
We call (T,E) the total poset and (B,≤) the base poset of the 1-truss bundle p. We
call E the face order, and � the frame order of the bundle.

Notation 2.1.55 (Face, dimension, and frame structure). When working with 1-truss
bundles, we will usually keep face orders, dimension maps, frame orders as well as base
poset orders implicit; that is, we will denote 1-truss bundles simply by maps p : T → B.
When needed, we will use either arrows ‘→’ or the relation symbol ‘E’ for face orders;
‘dim’ for dimension maps dim : (T,Eop)→ [1]; the relation symbol ‘�’ for frame orders;
and arrows ‘→’ for base poset orders.

Remark 2.1.56 (Frame orders are trivial across fibers). Observe that, given a 1-truss
bundle p : T → B, then objects a, b ∈ T are related in the frame order of p if and only
if a and b live in the same fiber of p: indeed, no objects between different fibers can be
frame order related since p : (T,�)→ (B,=) is a poset map, and frame orders are total
on each fiber by the condition that fibers are 1-trusses.
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Example 2.1.57 (1-Truss bundle). We illustrate a 1-truss bundle p : T → B in Fig. 2.9
(we indicate total frame orders on each fiber, obtained by restricting the frame order �
to that fiber, by a green coordinate axis). Note that we chose all such axis to point in
the same (‘upwards’) direction. Flipping this direction of frame orders on all fibers (i.e.
letting axis point downwards) would lead to another valid example.

B

T

p

Figure 2.9: A 1-truss bundle p : T → B.

Remark 2.1.58 (Z2 action on frame orders). As observed in the preceding example, Z2

acts on the frame order of 1-truss bundles by ‘flipping’ the direction of total the frame
order on every fiber. Most examples in this chapter do not change in nature under this
action. Therefore, we usually depict frame orders of bundles only ‘up to’ this Z2 action;
namely, we will parallely align all fibers of the bundle (as in Fig. 2.9) and assume all fiber
frame orders run in the ‘same direction’, but we will usually not fix this direction.

Terminology 2.1.59 (Open and closed bundles). A 1-truss bundle in which all fibers are
open (resp. closed) 1-trusses is called an ‘open’ (resp. ‘closed’) 1-truss bundle.

Terminology 2.1.60 (Singular and regular objects in bundles). Given a 1-truss bundle
p : T → B we call an element a ∈ T ‘singular’ if dim(a) = 0 and ‘regular’ if dim(a) = 1.
We denote by sing(T ) respectively by reg(T ) the full subposets of (T,E) containing all
singular respectively all regular objects.

We mention two ‘lifting’ properties of 1-truss bundles.

Observation 2.1.61 (Underlying discrete (op)fibrations). Recall the standard notion of
discrete opfibrations: a functor F : C→ D is called a discrete opfibration if for every object
c in C and every morphism of the form g : F (c)→ d in D there is a unique morphisms
h : c → c′ such that F (h) = g. Dually, one defines a discrete fibration F : C → D to
be a discrete opfibration F op : Cop → Dop after dualization. From the bifunctionality of
1-truss bordism it follows that 1-truss bundles p : T → B restrict on singular objects to a
discrete opfibration p : sing(T )→ B and, dually, on regular objects to a discrete fibration
p : reg(T )→ B.

Observation 2.1.62 (Lifts in 1-truss bundles). Consider a 1-truss bundle p : T → B. For
an object a in T and an arrow x→ y in B with p(a) = x there exists at least one object
a′ in T with an arrow a → a′ and such that p(a → a′) = (x → y). Conversely, for b
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in T and x → y in B with p(b) = y, there exists at least one b′ in T with b′ → b and
p(b′ → b) = (x→ y). Both claims follow from Corollary 2.1.52.

We remark about the following generalization of the definition given here.

Remark 2.1.63 (1-Truss bundles over categories). In Definition 2.1.54 we only consider
1-truss bundles over posets B. However, the definition works just as well for bundles over
categories B, by considering functors p : T→ B and requiring 1-truss structures on fibers
over objects and 1-truss bordism structure on fibers over morphisms as above.

2.1.3.2 Maps of 1-truss bundles Using the notion of maps of 1-trusses ‘fiberwise’,
we obtained the following notion of maps of 1-truss bundles.

Definition 2.1.64 (Maps of 1-truss bundles). For 1-truss bundles p : T → B and
q : S → C, a 1-truss bundle map F : p → q is a diposet map F : T → S such that
q ◦ F factors through p by a (necessarily unique) map G; that is, the following square
commutes:

T S

B C

F

p q

G

In the case where G = idB we say the 1-truss bundle map F is base preserving.

Note that a 1-truss bundle map F : p→ q restricts on each fiber of p to a 1-truss map: that
is, for each x ∈ B, the bundle map F restricts to a 1-truss map F : p−1(x)→ q−1G(x).

Terminology 2.1.65 (Singular, regular and balanced 1-truss bundle maps). Consider a
1-truss bundle map F : p→ q. If F maps sing(T ) to sing(S) we call F a ‘singular’ bundle
map; similarly, if it maps reg(T ) to reg(S) we call it a ‘regular’ bundle map. If F is both
singular and regular, than we call it ‘balanced’.

Note that a 1-truss bundle map F : p→ q is singular if and only if dimF (x) ≤ dimx for
all x ∈ T , and regular if and only if dimF (x) ≥ dimx for all x ∈ T .
Notation 2.1.66 (Category of 1-truss bundles and their maps). The category of 1-truss
bundles and their maps is denoted by TrsBun1. The full subcategories of open truss
bundles with regular maps resp. closed truss bundles with singular maps are denoted by
T̊rsBunr

1 resp. T̄rsBuns
1.

Notation 2.1.67 (Categories of 1-truss bundles over a fixed base). The subcategory of the
category of 1-truss bundles TrsBun1 of bundles over a fixed poset B and base preserving
maps will be denoted by Trs1(B). Similarly one defined T̊rs1(B) resp. T̄rs1(B).

Definition 2.1.68 (Restrictions of 1-truss bundles). Given a truss bundle p : T → B and
a subposet C ↪→ B, the restriction of p to C is the 1-truss bundle p|C : T |C → C obtained
by restricting p to T |C = p−1(C) ↪→ T (and all data on T is restricted accordingly). This
induces the restriction functor −|C : TrsBun1(B)→ TrsBun1(C)
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2.1.3.3 Classification and totalization for 1-truss bundles 1-Truss bundles admit
bundle classification and totalization constructions; their classifying category is the
category of 1-truss bordisms TBord1. For instance, in the simple case of the base poset
being the 1-simplex [1], observe that 1-truss bundles p : T → [1] are in correspondence
with 1-truss bordisms and thus with functors F : [1]→ TBord1. We now describe a more
general correspondence of 1-truss bundles p : T → B over a general base poset B with
functors F : B → TBord1 from B into the category of 1-truss bordisms.

Construction 2.1.69 (Classifying functors). Let p : T → B be a 1-truss bundle over
a poset B. We construct the classifying functor χp : B → TBord1 as follows. For
each object x, the image χp(x) is the 1-truss p−1(x) and for each arrow x → y, the
image χp(x→ y) is the 1-truss bordism p−1(x→ y) (as given in Definition 2.1.54). The
functoriality of χp follows from (T,E) being a poset and by the definition of Boolean
profunctor composition.

Conversely, one constructs ‘total bundles’ as follows.

Construction 2.1.70 (Totalizing bundles). Given a poset B, consider a functor F : B →
TBord1. We construct the total 1-truss bundle πF : TotF→ B as follows. The ‘total
poset’ (TotF,E) has as elements the pairs (x ∈ B, a ∈ F(x)). Morphisms (x, a) E (y, b)
are given whenever the 1-truss bordism F(x→ y) from the 1-truss F(x) to the 1-truss F(y)
relates the elements a and b. The frame order (TotF,�) is defined to relate (x, a) � (x, b)
whenever a � b in F(x). The dimension functor dim : (T,Eop) → [1] is equally defined
fiberwise; the fact that this extends to a functor on all of (T,Eop) follows since truss
bordisms are ‘dimension monotonic’ by Lemma 2.1.49.

In order to promote the preceding constructions to functors, we introduce the following
notion of ‘bundle concordance’.

Definition 2.1.71 (Concordance of 1-truss bundles). For a poset B, a 1-truss bundle
concordance u : p ⇒ q between 1-truss bundles p : T → B and q : S → B is a 1-truss
bundle u : U → B × [1] such that r|B×{0} = p and r|B×{1} = q.

If the base B is trivial, a 1-truss bundle concordance is simply a 1-truss bordism.

Remark 2.1.72 (Invertible concordance are unique). Generalizing Remark 2.1.47, observe
that, given two 1-truss bundles, any invertible concordance between them is unique if one
exists. There is thus no harm in working ‘skeletally’, i.e. working with 1-truss bundles
up to invertible concordances. Further, the classes of 1-truss bundles up to invertible
concordance are exactly the classes of 1-truss bundles up to base preserving balanced
1-truss bundle isomorphisms.

Note that, given a 1-truss bundle concordance u : p⇒ q, its classifying functor χu is a
functor B× [1]→ TBord1 restricting on B×{0} to χp and on B×{1} to χq. Equivalently,
χu is thus a natural transformation of classifying functors χp ⇒ χq. We will refer to χu
as the ‘classifying natural transformation’ of u.

Definition 2.1.73 (Categories of 1-truss bundle concordances). For a poset B, define
the category of concordances of 1-truss bundles over B, denoted by TrsConc1(B),
to have 1-truss bundles over B as objects, and 1-truss bundle concordances as morphisms.
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Composition of two truss concordances u : p ⇒ q and v : q ⇒ r is determined by the
condition that χu◦v = χv ◦ χu.11

With these definitions in place, we obtain the following equivalence of categories.

Construction 2.1.74 (Classification and totalization functors). Given a poset, we define
the classification functor

χ− : TrsConc1(B)→ Fun(B,TBord1)

to map 1-truss bundles p : T → B to their classifying functor χp, and concordances
u : p⇒ q to their classifying natural transformations χu : χp ⇒ χq. Conversely, we define
the totalization functor

π− : Fun(B,TBord1)→ TrsConc1(B)

to take functors F : B → TBord1 to their total 1-truss bundles πF, and natural transfor-
mations α : B × [1]→ TBord1 to their total 1-truss bundles πα.

Observation 2.1.75 (Classification and totalization are inverse). Classification and total-
ization functors provide an equivalence of categories.

Example 2.1.76 (The composition of 1-truss bordisms as a truss bundle over the
2-simplex). Two composable 1-truss bordisms R1 : T0 → T1 and R2 : T1 → T2 together
with their composite R2 ◦R1 : T0 → T2 evidently define a functor [2]→ TBord1 from the
poset [2] to the category of 1-truss bordisms; by the above construction this situation
can be equivalently considered as a 1-truss bundle over the 2-simplex. For example, in
Fig. 2.10 we illustrate truss bordisms R1 and R2, along with the corresponding bundle
p : T → [2] on the right.

The classification and totalization constructions described here for 1-truss bundles, are of
course analogous to many of the classical combinatorial instances of these constructions
(see for instance [Bén00], [Str01]). In particular, they generalize to 1-truss bundles over
categories, as the following remark records.

Remark 2.1.77 (Classifying 1-truss bundles over categories). Recall from Remark 2.1.63
that we can define 1-truss bundles p : T→ B over a base category B as well. The above
classification/totalization construction immediately carries over to this case, and shows
that 1-truss bundles over B are (up to bundle concordance isomorphism) precisely classified
by functors B→ TBord1 (up to natural isomorphism).

2.1.3.4 Pullback, dualization, and suspension of 1-truss bundles With notions
of classification and totalization at hand, we now describe several further constructions on
1-truss bundles. Firstly, 1-truss bundles may be pulled back along poset maps into their
base as follows.
11Explicitly, working skeletally (that is, identifying 1-truss bundles up to invertible concordances, see
Remark 2.1.72), this can be defined by setting v ◦ u = πχv◦χu

.
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T

p

R1 R2

[2]

Figure 2.10: 1-Truss bordisms composition as a bundle over the 2-simplex.

Definition 2.1.78 (Pullback 1-truss bundles). Let p : T → B be a 1-truss bundle with
classifying map χp : B → TBord1. Consider a map of posets F : C → B. We define
the pullback F ∗p : F ∗T → C of p along F to be the total 1-truss bundle πχpF of the
composite functor χp◦F : C → TBord1. The canonical 1-truss bundle map F ∗p→ p, which
is fiberwise given by isomorphisms (F ∗p)−1y ∼= p−1F (y), will be denoted by TotF .

Notation 2.1.79 (Pullback of 1-truss bundles). A pullback of 1-truss bundles will often be
indicated by a ‘pullback square’

S T

C B

y
TotF

q p

F

where the 1-truss bundle q is the pullback of the 1-truss bundle p along the poset map F .
Note, while ‘1-truss bundles’ and ‘poset maps’ do not live in the same category, we may
forget part of the 1-truss bundle structure and think of p and q as poset maps instead:
this then makes the above a pullback in the category of posets and poset maps.

Remark 2.1.80 (Pullbacks generalize restrictions). ) In the special case where F : C ↪→ B
is a subposet of B, the pullback bundle F ∗p equals the restriction bundle p|C .

Example 2.1.81 (Pullback 1-truss bundles). We depict the canonical pullback map
(TotF, F ) : F ∗p→ p of a 1-truss bundle pullback in Fig. 2.11 (in fact, this is a restriction
in the sense of Remark 2.1.80)).

Next, we generalize our dualization construction for 1-trusses to the case of 1-truss
bundles; this simply ‘dualizes all fibers’ of a given bundles.

Definition 2.1.82 (Dual 1-truss bundles). Given a 1-truss bundle p : T → B over B, its
dual bundle (p† : T † → Bop) is the 1-truss bundle over Bop whose total poset (T,Eop) is
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X

pF ∗p

F

TotF

Y

TF ∗T

Figure 2.11: The pullback of a 1-truss bundle p along a base poset map F .

opposite to that of p, whose dimension functor is the composite (T,Eop)
dimop

−−−→ [1] ∼= [1]op

(where dim is the dimension functor of p), and whose frame order (T,�) is equal to that
of p.

Remark 2.1.83 (Dualization via classifying functors). Using the classification and totaliza-
tion equivalence, given a 1-truss bundle p, its dual p† may equivalently be defined to have
classifying functor

(χp† : Bop → TBord1) =
(
B

χT−−→ TBord1 †−→ (TBord1)op
)op

.

(The functor † : TBord1 → (TBord1)op was defined in Construction 2.1.48.)

Definition 2.1.84 (Dual 1-truss bundle maps). Given a 1-truss bundle map F : (p :
T → B) → (q : S → C) one defines the dual bundle map F † : p† → q† by setting
F † = F op : (T,Eop)→ (S,Eop).

Note that dualization maps open 1-truss bundles to closed 1-truss bundles and vice-versa,
as well as singular bundle maps to regular ones and vice versa.

Definition 2.1.85 (Dual 1-truss bundle concordances). Given a 1-truss bundle concor-
dance u : p ⇒ q one defines the dual bundle concordance u† : p† ⇒ q† by setting u†

to be the dual bundle of u.

The preceding constructions now yield the following functors.

Observation 2.1.86 (Dualization functors on 1-truss bundles). Generalizing the dualization
functor on the category of 1-trusses, we obtain a dualization functor

† : TrsBun1
∼= TrsBun1.

This recovers our earlier Construction 2.1.26 if we restrict to TrsBun1(∗) ↪→ TrsBun1.
Similarly, generalizing the dualization functor on the category of 1-truss bordisms, we

obtain, for any poset B, a dualization functor

† : TrsConc1(B) ∼= TrsConc1(B)op.
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This recovers Construction 2.1.48 if we set B = ∗.
As a final elementary construction, we now introduce ‘suspensions’ of 1-truss bundles:

this adds new initial and final elements to a given truss bundle. We start with the case of
posets.

Construction 2.1.87 (Suspension of posets). Let X be a poset. Its suspension ΣX is
the poset obtained from X by adjoining two elements > and ⊥ and arrows x→ > and
⊥ → x for each x ∈ X.

Construction 2.1.88 (Suspension of 1-truss bundles). Let p : T → B be a 1-truss bundle.
The suspension bundle Σp : ΣT → ΣB is the 1-truss bundle

1. whose base poset is the suspension ΣB of B,
2. whose total poset (ΣT,E) is the suspension Σ(T,E) of (T,E),
3. whose dimension functor restricts on T ↪→ ΣT to the dimension functor of p while

mapping the new initial object ⊥ in ΣT to 0 and terminal object > in ΣT to 1,
4. whose frame order (ΣT,�) relates elements if and only if they are already related

in (T,�).

Remark 2.1.89 (Suspension bundles via classifying functors). Given a 1-truss bundle p, its
suspension bundle Σp is classified by the unique map χΣp : ΣB → TBord1 which restricts
on B ↪→ ΣB to χp, maps ⊥ to the initial object T̊0 in TBord1, and map > to the terminal
object T̄0 in TBord1 (see Observation 2.1.46).

Example 2.1.90 (Suspension bundles). In Fig. 2.12 we depict a 1-truss bundle p : T → B
on the left together with its suspension bundle Σp : ΣT → ΣB on the right (for clarity we
colored arrows in the total poset and in the base poset in corresponding colors).

p
Σp

T

ΣT

X ΣX

Figure 2.12: Suspension bundle Σp of a 1-truss bundle p.

2.2 Truss induction along simplices in bundles

We study simplices in total posets of 1-truss bundles and find natural linear orders on
subsets of k-simplices that lie over the same base simplex; we will refer to this linear order
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as the ‘scaffold order’ of the truss bundle. This observation will provide a useful tool in
later combinatorial proofs, by allowing us to induct along a progression of simplices in
the total poset of a bundle as determined by the scaffold order; we refer to this general
principle as ‘truss induction’.

2.2.1 Sections and spacers In analogy to notions of section and spacer simplices for
proframings (see Terminology 1.2.55) we first introduce the following distinction of section
and spacer simplexes in 1-truss bundles.

2.2.1.1 The definition of sections and spacers Recall that a k-simplexK : [k]→ P
in a poset P is called non-degenerate if it is injective on objects; otherwise we say it is
degenerate.

Definition 2.2.1 (Sections). For a 1-truss bundle p : T → B, a k-section K in p is a
non-degenerate k-simplex K : [k] ↪→ (T,E) such that the composite map pK : [k]→ B is
a non-degenerate simplex in B.

Definition 2.2.2 (Spacers). For a 1-truss bundle p : T → B, a k-spacer K in p is
a non-degenerate k-simplex K : [k] ↪→ (T,E) such that pK : [k] → B is a degenerate
simplex in B.

Terminology 2.2.3 (Simplices in bundles). Given a 1-truss bundle p : T → B, we often say
‘a simplex in p’ to mean a non-degenerate simplex [k]→ (T,E).

Note that every simplex in 1-truss bundle p is either a section or a spacer.

Terminology 2.2.4 (Base projections). Let K : [k] ↪→ T be a k-simplex in a 1-truss bundle
p : T → B. We denote by im(pK) : [m] ↪→ B the unique non-degenerate simplex in B
whose image equals that of pK : [k] ↪→ B, and call it the ‘base projection’ of K.

In the special where the base poset b is itself the m-simplex B = [m], it further makes
sense to ask for simplices in truss bundles to project to the ‘entire’ base.

Terminology 2.2.5 (Base-surjectivity). A k-simplex K : [k] ↪→ T in a 1-truss bundle
p : T → B is called ‘base-surjective’ if im(pK) = [m].

Example 2.2.6 (Base-surjective sections and spacers in 1-truss bundles). In Fig. 2.13 we
depict simplices in a 1-truss bundle p : T → B: on the left we depict a selection of sections
in p, on the right we depict a selection of spacers in p. All simplices are base-surjective.

In the case of base-surjective simplices we may simplify their visualization by solely
depicting their spine as explained by the following remark.

Remark 2.2.7 (Spine-only notation). On the left in Fig. 2.14 we depict base-surjective
sections (in blue and red) and spacers (in green and orange) of a 1-truss bundle over
the 2-simplex [2]. On the right we depict the same simplices in the same bundle using a
more convenient representation: namely, to depict p : T → [m], it suffices depict 1-truss
bordisms lying over the spine of [m] (note that this fully determines p), and similarly, to
depict simplices in p, it suffices to depict their spines T .
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B

p

T

B

p

T

Figure 2.13: Sections and spacers in a 1-truss bundle p : T → B.

T

p

[2]

p

[2]

T

Figure 2.14: Base-surjective simplices may be represented by their spine which lies in the
spine of the bundle.

The case of 1-truss bundles over simplices and their base-surjective simplices is of particular
importance: indeed, any simplex in any 1-truss bundle canonically factors as a base
surjective simplex and a bundle inclusion as follows.

Remark 2.2.8 (Factoring simplices through base-surjective simplices). LetK : [k] ↪→ T be a
k-simplex in a 1-truss bundle p : T → B. Abbreviate its base projection im(pK) : [m] ↪→ B
by F : [m] ↪→ B. Then K : [k] ↪→ T uniquely factors through the bundle pullback map
TotF : F ∗p ↪→ p as a k-simplex F ∗K : [k] ↪→ F ∗T . Note F ∗K is base-surjective. In fact,
the mapping K 7→ F ∗K yields a bijection between simplices in the bundle p whose base
projection is F and base-surjective simplices in the pullback bundle F ∗p.

In the rest of this section, we will almost exclusively work with bundles over simplices,
and assume base-surjectivity by default.

Convention 2.2.9 (Base-surjectivity by default). All sections and spacers will be assumed
to be base-surjective unless otherwise noted.

2.2.1.2 The spines of sections and spacers Sections and spacers admit concrete
combinatorial descriptions of their respective spines, as we will now explain. The funda-
mental observation is as follows.
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Observation 2.2.10 (Spines of simplices in truss bundles). consider a 1-truss bundle
p : T → [m] over the m-simplex and a k-simplex K : [k]→ T in p. Recall, if (i, a)→ (j, b)
is a morphism in T , then we must have dim(a) ≥ dim(b) (see Lemma 2.1.49). In particular,
for each spine vector (i − 1 → i) in [k] we must have dimK(i − 1) ≥ dimK(i). As a
consequence, simplices in truss bundles fall into one of three categories.

1. The chain of morphisms K(i − 1 → i) contains only regular objects K(i) (i.e.
dimK(i) = 1). Since all non-identity arrows in fibers of p run between regular and
singular objects, K must be a section simplex; we call K a ‘purely regular’ section
in this case.

2. The chain of morphisms K(i − 1 → i) contains only singular objects K(i) (i.e.
dimK(i) = 0). Similar to the previous case, K must be a section simplex; we call it
a ‘purely singular’ section in this case.

3. There is a unique morphism K(j − 1 → j) whose domain is regular and whose
codomain is singular. The index j is called the ‘transition index’ of K. All objects
K(i < j) are regular, and all objects K(i ≥ j) are singular.

The next two remarks spell out the preceding observation separately in the cases of
sections resp. spacers. Both remarks use the following ‘tuple’ notation to keep track of
base projections of total poset elements in truss bundles.

Notation 2.2.11 (Pair notation for 1-truss bundles). Given a 1-truss bundle p : T → B, we
will sometimes redundantly denote objects a ∈ T by pairs (x, a): here, x ∈ B is the object
p(a) in the base poset B, and thus a ∈ p−1(x) is lives in the 1-truss fiber over x.

Remark 2.2.12 (Spines of sections). IfK is a section simplex in a 1-truss bundle p : T → [m],
then the spine vectors K(i→ i+ 1) of K must be a chain of morphisms in T of the form

(0, a0)→ (1, a1)→ ...→ (j − 1, aj−1)→ (j, bj)→ (j + 1, bj+1)→ ...→ (m, bm)

where each ai is regular, each bj is singular and j is a unique index 0 ≤ j ≤ m + 1.
Corresponding to the first two cases of Observation 2.2.10 note the following: if j = 0
then K is purely singular, and conversely, if j = m+ 1 then K is purely regular. In either
of these boundary cases, we again refer to j as the ‘transition index’ of K.

Remark 2.2.13 (Spines of spacers). If L is a spacer in p : T → [m], then the spine vectors
L(i→ i+ 1) of L must be a chain of morphisms in T of the form

(0, a0)→ (1, a1)→ ...→ (j, aj)→ (j, bj)→ (j + 1, bj+1)→ ...→ (m, bm)

where each ai is regular, each bj is singular and j is a unique index 0 ≤ j ≤ m. Note that
in particular we must have dim(K) = m+ 1, that is, all filler simplices in bundles over the
m-simplex are of dimension (m+1). Corresponding to the third case in Observation 2.2.10,
the index j is called the transition index of K. Note that the fiber p−1(j) over j contains
two vertices L(i) of L (a regular and a singular one), and that every spacer in particular
has at least one regular and one singular vertex.

The boundary cases observed with sections (in which all elements are either regular or
singular) can be resolved by passing to suspensions. Recall the construction of suspension
bundles from Construction 2.1.88. The following notation will be useful.
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Notation 2.2.14 (Suspending simplices). For numeric convenience, we will usually identify
the suspension Σ[m] of the m-simplex [m] with the poset (−1→ 0→ 1→ ...→ (m−1)→
m→ m+ 1).

Construction 2.2.15 (Suspending sections). Let p : T → [m] be a 1-truss bundle over
the m-simplex [m], and consider a section K : [m] → T in p. Construct the suspended
section ΣK : Σ[m]→ ΣT by setting ΣK(⊥) = ⊥ and ΣK(>) = > (where ⊥ respectively
> denote newly adjoined initial respectively terminal objects); equivalently, using our
numeric notational conventions (see Notation 2.2.11 and Notation 2.2.14), this may be
written as ΣK(−1) = (−1, 0) and ΣK(m+ 1) = (m+ 1, 0). Observe that the mapping
K 7→ ΣK establishes a 1-to-1 correspondence between sections in p and in Σp: indeed,
the inverse mapping is obtained by restricting sections Σ[m] → ΣT along [m] ↪→ Σ[m]
and T ↪→ ΣT .

Note since ΣK adjoint a new regular object to the start of K and a new singular object
to the end of K it follows that ΣK always contains at least one regular and one singular
object (even if K doesn’t). In other words, suspended sections are never purely regular or
purely singular.

We now characterize sections and spacers in terms of certain morphism. We start
with the case of sections in a 1-truss bundle p, which we will show correspond to so-called
‘jump morphism’ in the suspension bundle Σp.

Definition 2.2.16 (Jump morphisms). Let p : T → [m] be a 1-truss bundle over the
m-simplex. A jump morphism f in p is a morphism (T,E) whose domain dom(f) is
regular, whose codomain cod(f) is singular and whose base projection pf is a spine vector
in [i] (that is, pf is of the form i− 1→ i for 0 < i ≤ m).

Construction 2.2.17 (Correspondence of sections in p and jump morphisms in Σp). Let
p : T → [m] be a 1-truss bundle over the m-simplex [m]. Every section K : [m] → T
in p has a ‘associated jump morphism’ f in Σp, given by f = ΣK(j − 1 → j) where j
is the transition index of K. Conversely, let f be a jump morphism in Σp lying over a
spine vector j − 1→ j in Σ[m] (use Notation 2.2.14 for objects in Σ[m]). Then f has an
‘associated section’ K : [m]→ T constructed by setting

1. for i < j, K(i) = regχp(i→j−1)(dom f),
2. for i ≥ j, K(i) = singχp(j→i)(cod f).

The constructions are mutually inverse, thus providing a correspondence between sections
in K and jump morphisms in Σp.

Example 2.2.18 (Correspondence of sections and jump morphisms). In Fig. 2.15 we
depict a bundle p : T → [2], together with its suspension Σp (highlighted in purple). We
indicate regular elements of T in blue and singular elements in red. We colored the spines
of several sections in P (using the ‘spine-only’ notation discussed in Remark 2.2.7); in
each case we then mark their associated jump morphism in Σp by a big dot of the same
color.

Next, we establish a similar correspondence between spacers and so-called ‘fiber
morphisms’ defined as follows.
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p

[2]

T ΣT

Σ[2]

Σp

Figure 2.15: Sections and their associated jump morphisms.

Definition 2.2.19 (Fiber morphisms). Let p : T → [m] be a 1-truss bundle over the
m-simplex. A fiber morphism f in p is a morphism f in (T,E) whose domain dom(f)
is regular, whose codomain cod(f) is singular, and whose base projection pf is an identity
morphism in [m].

Construction 2.2.20 (Correspondence of spacers and fiber morphisms). Let p : T → [m]
be a 1-truss bundle over the m-simplex [m]. Every spacer L : [m + 1] → T in p has a
‘associated fiber morphism’ f in p, given by f = L(j − 1→ j) where j is the transition
index of L. Conversely, let f be a fiber morphism in Σp lying the object j in [m]. Then f
has an ‘associated spacer’ L : [m+ 1]→ T constructed by setting

1. for i ≤ j, L(i) = regχp(i→j)(dom f),
2. for i > j, L(i) = singχp(j→i)(cod f).

The constructions are mutually inverse, thus providing a correspondence between spacers
in K and fiber morphisms in p.

Example 2.2.21 (Correspondence of spacers and fiber morphisms). In Fig. 2.16 we
colored the spines of several spacers in a bundle p : T → [2]; we then mark their associated
jump morphisms in p by a big dot of the same color.

p

[2]

T

Figure 2.16: Spacers and their associated fiber morphisms (indicated by dots with
corresponding color).

2.2.2 The scaffold order We now construct canonical linear orders on the sets of
sections and spacers in a 1-truss bundle over a simplex.
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Notation 2.2.22 (Set of sections and spacers). Given a 1-truss bundle p : T → [m], we
denote its sets of sections and spacers as follows.

Γp = {sections K : [m]→ T of p : T → [m] }
Ψp = {spacers L : [m+ 1]→ T of p : T → [m]}

2.2.2.1 The case of sections We first construct a total order on the set of sections
Γp of a 1-truss bundle p : T → [m] over the m-simplex: we call this order the ‘scaffold
order of sections’. Using the correspondence of sections in p and jump morphisms in the
suspension Σp (see Construction 2.2.17) one may easily visualize the scaffold order as
follows, and in fact, our formal construction of the scaffold order will directly rely on the
idea underlying this visualization.

Example 2.2.23 (Scaffold orders). In Fig. 2.17 we depict all sections in a 1-truss bundle
p : T → [2] over the 2-simplex (by coloring their spine). We also depict their corresponding
jump morphisms in Σp (by correspondingly colored dots). The scaffold order on sections
Γp, and thus on jump morphisms, is the total order indicated by a directed path (in red)
passing through all jump morphisms in order. This directed path is uniquely determined
as follows: it is (up to reversal) the unique directed path that passes through all jump
morphisms of the suspended bundle once while intersecting exactly one fiber morphism in
between any two consecutive jump morphisms. A slightly more complex example, using

T ΣT

Figure 2.17: The scaffold order on sections in a 1-truss bundle over a 2-simplex indicated
by a directed path through corresponding jump morphisms.

the same directed path notation to illustrate the scaffold order of jump morphisms (and
thus of sections), is shown in Fig. 2.18: this depicts the scaffold order of sections in a
bundle p : T → [3] over the 3-simplex.

We now formally construct the scaffold order on sections Γp. We first introduce a
‘scaffold norm’; this is a function which associates to each section K ∈ Γp a natural
number. We will show that, in fact, the scaffold norm is an injective function Γp ↪→ N;
endowing N with the standard order of natural numbers, this will then induce the scaffold
order on Γp as required.

Definition 2.2.24 (Scaffold norm of sections). Consider a 1-truss bundle p : T → [m]
and its set of sections Γp. The scaffold norm 〈−〉 is the function

〈−〉 : Γp → N

K 7→
∑
i∈[m]

num(K(i))
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Figure 2.18: The scaffold order on sections in a 1-truss bundle over a 3-simplex indicated
by a directed path.

where num : (T,�)→ (N,≤) takes elements a ∈ T to numbers i− 1 ∈ N iff a is the ith
element in the frame ordered fiber over p(a).12

Observation 2.2.25 (Suspension preserves scaffold norm). Recall the suspension operation
on sections defined in Construction 2.2.15. Observe that taking suspensions Σ : Γp → ΓΣp

preserves scaffold norm, that is, 〈K〉 = 〈ΣK〉 for K ∈ Γp.

In order to describe the image of the scaffold norm, we first construct its ‘bottom’ and
‘top sections’.

Construction 2.2.26 (Minimal and maximal values of the scaffold norm). Let p : T →
[m] be a 1-truss bundle over the m-simplex [m]. We construct sections K−p ,K

+
p : [m]→ T

of p, called the bottom respectively top sections of p, which are minimal respectively
maximal sections with respect to the scaffold norm. Namely, we define K±p to map i ∈ [m],
to the lower respectively upper endpoints of the fiber over i, that is, K±p (i) = end±p

−1(i).
The fact that this defines valid sections follows since 1-truss bordisms relate endpoints
(see Lemma 2.1.50). Further, observe that the scaffold norm indeed attains its minimal
and maximal value on (and only on) K±p (i): namely, its minimal value is

〈
K−p
〉

= 0 and
its maximal values is

〈
K+
p

〉
= #T −#B (where #T and #B are the numbers of elements

in T respectively B).

We will denote extremal values of the scaffold norm, achieved on the bottom resp. top
sections of a bundle p, by scaff±(p) :=

〈
K±p
〉
. These values bound an interval of natural

numbers, which described exactly the image of the scaffold norm.

Lemma 2.2.27 (Scaffold order of sections). Given a 1-truss bundle p, the scaffold norm
〈−〉 : Γp → N on sections is a bijection with its image; this image consist of all integers
between scaff−(p) and scaff+(p). As a result, Γp obtains a total order, called the ‘scaffold
order of sections’.

Proof of Lemma 2.2.27. In Construction 2.2.26 we showed that the scaffold norm has
unique bottom and top sections K±p . We now construct for each K 6= K+

p a successor
section s(K) with scaffold norm 〈s(K)〉 = 〈K〉 + 1, and, conversely, for each section
12In other words, num : (T,�)→ (N,≤) restricts on fibers p−1(i), i ∈ [m], to the unique isomorphisms
num : (p−1(i),�) ∼= [n] ↪→ (N,≤) of frame ordered fibers with standard simplices.
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K 6= K−p a predecessor section s(K) with scaffold norm 〈p(K)〉 = 〈K〉 − 1. Showing
that successor and predecessor section constructions are mutually inverse will prove the
claim. We can further make the following assumption (which simplifies the treatment
of the ‘boundary cases’ in Remark 2.2.12). Recall, by Construction 2.2.15 we have an
isomorphism Γp ∼= ΓΣp, and by Observation 2.2.25 this isomorphism commutes with the
scaffold norm. After potentially replacing p with its suspension Σp in the lemma, we
may therefore assume that all sections K in p : T → [m] have transition index j in the
range 0 < j < m+ 1 (in other words, p does not contain purely regular or purely singular
sections).

Let K be a section of p with jump morphism K(j − 1) → K(j) in T . Assume that
K 6= K+

p , i.e. K is not the top section. We claim that then there is either an arrow
K(j − 1) + 1 → K(j) or an arrow K(j − 1) → K(j) + 1 in T (but there can never be
both, due to bimonotonicity of 1-truss bordisms). Note, by assumption on K, there
is at least on index l ∈ [m] such that K(l) has a successor a ≡ K(l) + 1 in the fiber
over l. We verify the claim in the case where l < j (the case l ≥ j follows by the same
argument after dualizing p). Note if l < j then K(l) is regular. Thus the successor a is
singular, and is mapped by the singular function of the 1-truss bordism p−1(l → j − 1)
to a singular element b in the fiber over (j − 1). Since K(l) ≺ a, bimonotonicity implies
that K(j − 1) ≺ b. In particular, the regular element K(j − 1) has a singular successor
K(j− 1) + 1 in the fiber over j− 1 in this case. Now, again by bimonotonicity, the 1-truss
bordism p−1(j − 1→ j) must relate the singular element K(j − 1) + 1 either to K(j), or
otherwise to some singular b with K(j) ≺ b. Using the description of singular determined
1-truss bordisms (see Lemma 2.1.51), this implies there is an arrow K(j − 1)→ K(j) + 1,
which verifies the claim.

We now construct the successor section s(K) of K (still assuming K 6= K+
p ) by

distinguishing the two cases established above, namely, whether K(j − 1) + 1→ K(j) or
K(j − 1)→ K(j) + 1. Both case are illustrated in Fig. 2.19. In each case we highlight
singular elements in red, regular element in blue, and the jump morphism K(j−1)→ K(j)
of K is marked by green dot. The purple dot marks the jump morphism of the successor
section of K. In general, the successor section can now be constructed as follows.

p p

j − 2 j − 1 j j − 1 j j + 1

Case 1 Case 2

K(j − 1) K(j + 1)K(j − 2) K(j)
K(j − 1) K(j)

K(j − 1) + 1 K(j) + 1

Figure 2.19: The construction of successor sections.

Case 1 If there is an arrow K(j−1) + 1→ K(j), we construct the successor section
s(K) by setting s(K)(j − 1) = K(j − 1) + 1 and s(K)(i) = K(i) if i 6= j − 1. By
assumption on p we must have j > 1 (otherwise, s(K) would be a purely singular
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section). Profunctoriality of the 1-truss bordism p−1(j − 2→ j − 1) then implies
there is an arrow K(j−2)→ K(j−1) + 1 in T , showing that s(K) is a valid section.
Case 2 If there is an arrow K(j − 1)→ K(j) + 1 in T , we construct the successor
s(K) by setting s(K)(j) = K(j) + 1 and s(K)(i) = K(i) if i 6= j. By assumption
on p we must have j < m (otherwise, s(K) would be a purely regular section).
Profunctoriality of the 1-truss bordism p−1(j → j+ 1) then implies there is an arrow
K(j) + 1→ K(j + 1) in T , showing that s(K) is a valid section.

This completes the construction of successors. The construction of predecessor sections
p(K) of K (for K 6= K−p not equal to the bottom section) reduces the construction of
successors after passing to the opposite frame order (i.e. flipping the frame order on each
fiber of p, which amounts to reading the total posets in Fig. 2.19 upside down). One
verifies that p(s(K)) = K and similarly s(p(K)) = K, which completes the proof.

2.2.2.2 The case of spacers Similar to the case of sections, we will now show that
the set of spacers Ψp in a 1-truss bundle p : T → [m] over the m-simplex carries a natural
total order, called the ‘scaffold order of spacers’.

Example 2.2.28 (Scaffold order on spacers). Recall from Example 2.2.23 that the scaffold
norm of sections corresponds to a directed path that passes through all jump morphism
of the suspended bundle once while intersecting exactly one fiber morphism in between
any two consecutive jump morphisms—the order in which this path travels through fiber
morphisms is exactly the scaffold order on spacers! We illustrate this in Fig. 2.20 for a
truss bundle over the 2-simplex, highlighting fiber morphism by colored dots.

T ΣT

Figure 2.20: The scaffold order on spacers in a 1-truss bundle over the 2-simplex indicated
by a directed path through fiber morphisms.

Fixing a spacer and its corresponding fiber morphism in Fig. 2.20, then the ‘consecutive
jump morphism’ which the path intersects immediately before the given fiber morphisms
correspond to so-called ‘lower and upper boundary sections’ of the spacer. We formally
define these as follows.

Construction 2.2.29 (Upper and lower boundaries of spacer). For a spacer L : [m+1]→
T of a 1-truss bundle p : T → [m] we construct sections ∂−L, ∂+L : [m]→ T called the
lower boundary respectively upper boundary of L. Let j denote the transition index
of L, that is, L(j) → L(j + 1) is the fiber morphisms of L. If L(j) ≺ L(j + 1), then
we construct ∂−L as the (j + 1)th face Ldj+1 of L, and ∂+L as the jth face Ldj of L.
Otherwise, if L(j + 1) ≺ L(j), then we construct ∂−L as the jth face Ldj of L, and ∂+L
as the (j + 1)th face Ldj+1.
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Example 2.2.30 (Upper and lower boundaries). We depict two spacers L and L′ in a
1-truss bundle together with the lower and upper boundary sections ∂±L respectively
∂±L

′ in Fig. 2.21.

T

L′
∂+L

′

∂−L
′

L
∂+L

∂−L

Figure 2.21: Upper and lower boundaries of spacers.

Remark 2.2.31 (Uppers boundaries succeed lower boundaries). Note that the preceding
construction ensures that we have 〈∂+L〉 = 〈∂−L〉+ 1, that is, ∂+L is the successor of
∂−L in the totally ordered set (Γp,�) of sections in p.

In analogy to the definition of scaffold norms for sections (see Definition 2.2.24), we
introduce the following scaffold norm of spacers.

Definition 2.2.32 (Scaffold norm of spacers). Consider a 1-truss bundle p : T → [m]
and its set of spacers Ψp (see Notation 2.2.22). The scaffold norm 〈−〉 is the function

〈−〉 : Ψp →
1

2
N

L 7→ 〈∂−L〉+ 〈∂+L〉
2

where 〈∂±L〉 denotes the scaffold norm of the sections ∂±L.

In analogy to the construction of the scaffold order of sections in Lemma 2.2.27, we now
construct the scaffold order of spacers; as before, the order is induced by exhibiting Ψp as
a subset of a totally ordered set (in this case, the half integers 1

2N) via the scaffold norm
function.

Lemma 2.2.33 (Scaffold order for spacers). Let p : T → [m] be a 1-truss bundle over the
m-simplex [m]. The scaffold norm 〈−〉 : Ψp → 1

2N on spacers is a bijection with its image;
this image consist of all half integers between scaff−(p) + 1

2 and scaff+(p)− 1
2 . As a result,

Ψp obtains a total order, called the ‘scaffold order of spacers’.

Proof of Lemma 2.2.33. Note that each spacer L in p is uniquely determined by its
boundary sections ∂±L. By the previous Lemma 2.2.27 it follows that 〈−〉 : Ψp → 1

2N
is injective. To see that it is also surjective, recall from the proof of Lemma 2.2.27
the construction of successors s(K) of sections K in p that are not maximal in (Γp,�).
Inspecting the two cases for the construction of s(K), note that in case 1, the fiber
morphism s(K)(j − 1)→ K(j − 1) determines a spacer L (see Construction 2.2.20) with
∂−L = K and ∂+L = s(K). Similarly, in case 2, the fiber morphism K(j) → s(K)(j)
determines a spacer L with ∂−L = K and ∂+L = s(K). This shows any two consecutive
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sections are the boundary sections of a spacer, which thus proves surjectivity of the scaffold
norm of spacers as claimed.

Finally, as a first application of the results here, we will show that that truss bundles
satisfy conditions analogous to those imposed on flat proframings (see Definition 1.2.61).
This observation will prove useful for the later classification of framed regular cell complexes.
The following mirrors the definition of fiber categories in proframed simplicial complexes
(see Terminology 1.2.58).

Terminology 2.2.34 (Fiber categories in 1-truss bundles). Let p : T → B be a 1-truss
bundle and consider a non-degenerate simplex z : [m]→ B. The ‘fiber category’ Φ1 pz in
p (over z) is the free category whose objects are sections K in Γz∗p (that is, sections of
the pullback bundle z∗p) together with a generating morphism L : ∂−L→ ∂+L for each
spacer L in Ψz∗p.

Definition 2.2.35 (Transition functors of fiber categories). Let p : T → B be a 1-truss
bundle and consider non-degenerate simplices z : [m]→ B and y : [l]→ B such that z is
a face of y, that is, z factors through y by an injective map [m] ↪→ [l]. We can restrict
sections and spacers in the bundle y∗p along the bundle inclusion z∗p ↪→ y∗p (note sections
restrict to sections, while spacers restrict to sections or spacers). This induces a functor
−|z⊂y : Φ1 py → Φ1 pz called the fiber transition functor from y to z in p.

Observation 2.2.36 (‘Flatness’ of 1-truss bundles). For all 1-truss bundles p : T → B the
following holds.

1. All fiber categories in p are total orders.
2. All fiber transitions functors in p are endpoint preserving (and thus surjective).

Indeed, the first statement follows from Lemma 2.2.27 and Lemma 2.2.33 together with
the observation that 〈∂±L〉 = 〈L〉 ± 1

2 . The second statement follows by construction of
top and bottom sections (see Construction 2.2.26) as the reader can check.

2.3 n-Trusses, n-truss bordisms, n-truss bundles, and truss
blocks

We finally turn to the notion of n-trusses, which are ‘n-dimensional’ generalizations
of 1-trusses. Just as 1-trusses geometrically translate to (framed) stratified intervals,
n-trusses geometrically translate to certain (framed) stratified subspaces of Rn. Before
diving into the theory of n-trusses, we will define n-trusses and illustrate this geometric
translation with examples. In fact, defining n-trusses is rather straight-forward: n-trusses
are towers of 1-truss bundles over the trivial poset [0] as follows.

Definition 2.3.1 (n-Trusses). An n-truss T is a tower of 1-truss bundles

Tn
pn−→ Tn−1

pn−1−−−→ ...
p2−→ T1

p1−→ T0 = [0]

where the total poset of each pi is the base poset of pi+1. We call Tn (with face order) the
total poset of T .
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Terminology 2.3.2 (Closed and open n-trusses). We call an n-truss T closed respectively
open if all its 1-truss bundles pi are closed respectively open.

Let us illustrate n-trusses by examples. In each case we also depict the ‘corresponding
stratifications’ in Rn: for now, this correspondence may be understood to identify entrance
path posets of stratifications with face orders of the corresponding trusses. In Chapter 4
we will make the correspondence fully precise, by also accounting for framing structures
on both stratifications and trusses.

Example 2.3.3 (A closed 2-truss). In Fig. 2.22 we illustrate a closed 2-truss T . The
bundle p1 : T1 → T0 has base post T0 = [0] and therefore its total poset is simply a 1-truss
T1. In contrast, the total poset T2 of the bundle p2 : T2 → T1 looks more complicated—
nonetheless it is ‘2-dimensional’ in character as can be seen. Accordingly, the stratification
that corresponds to T can be embedded in R2 as shown on the right in Fig. 2.22—in
fact, this stratification can also be understood as flat 2-framed regular cell complex (see
Definition 1.3.61). Note that the entrance path poset (see Definition 1.3.3) of this framed
regular cell complex can be canonically identified with T2.

Figure 2.22: A closed 2-truss together with its corresponding stratification.

The previous example is an instance of a more general correspondence of closed n-trusses
and flat framed regular cell complexes: a proof of this correspondence will be the subject
of Chapter 3. The next example illustrates the case of an open 3-truss.

Example 2.3.4 (An open 3-truss). Consider the open 3-truss T shown in Fig. 2.23: note
that, in order to simplify our notation, we depicted only ‘generating’ arrows in T2 and
T3 (with all other arrows being composites of the depicted ones). To the right of T we
illustrate its corresponding stratification. Note that this now yields a stratification of the
open 3-cube embedded in R3. Note further, that objects in the total poset T3 are again in
correspondence with strata in the stratification realizing T , that is, the face order of T3

can be identified with the entrance path poset of the stratification (see Definition B.1.6).

Preview 2.3.5 (Classifying the braid). The truss in the preceding example later plays
a particularly interesting role: its corresponding stratification canonically refines the
braid13. This will formalized and generalized in Chapter 5 to a correspondence of so-called
‘stratified trusses’ and ‘flat framed stratifications’. We revisit the completed combinatorial
description of the braid in Example 5.2.22.
13Here, the ‘braid’ is the stratification of the 3-cube containing two ‘crossing’ wires.
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Figure 2.23: An open 3-truss together with its corresponding stratification.

While our Definition 2.3.1 of n-trusses is short and simple, their combinatorial theory
turns out to be rich. Moreover, properly dealing with notions such as ‘n-truss bordism’
and ‘n-truss bundles’ requires understanding a yet different aspect of truss theory, namely,
of so-called ‘labelings’ of bundles which we shall first introduce in the case of 1-truss
bundles in Section 2.3.1. Labeled truss bundles then allow to categorically organize
n-trusses in several interesting ways, as we will discuss in Section 2.3.2 (they also provide
the correct structure for capturing our later definition of ‘stratified trusses’). In the final
Section 2.3.3, we introduce the notion of ‘block’ and ‘brace’ trusses: these are the ‘building
blocks’ of n-trusses analogous to cell complexes being ‘built of cells’. More precisely,
we will see that closed (and dually, open) trusses are gluings of blocks (resp. of braces).
Importantly, considering (regular) presheaves on the category of such blocks will enable
our classification of framed regular cell complexes in Chapter 3

2.3.1 Labeled 1-trusses, bordisms, and bundles Labeled 1-trusses are 1-trusses
equipped with a ‘labeling’ in a category C as follows.

Definition 2.3.6 (Labeled 1-trusses). Let C be a ‘labeling’ category. A C-labeled 1-
truss T is a pair consisting of an ‘underlying’ truss T together with a ‘labeling’ functor
lblT : (T ,E)→ C.

Remark 2.3.7 (Labeled 1-trusses as spans). Given a C-labeled 1-truss T ≡ (T , lblT ) we
may equivalently express its data as a span

C Tot(T ) [0]
πTlblT

where the right leg πT is a 1-truss bundle with underlying 1-truss T : [0]→ TBord1 (see
Construction 2.1.70), and the left leg is the labeling functor lblT up to the canonical
identification of 1-trusses (Tot(T ),E, dim,�) ∼= (T ,E,dim,�).

Many notions from the theory of 1-trusses as developed in Section 2.1 naturally generalize
to the labeled case. In particular, we now discuss a notion of ‘labeled 1-truss bordism’,
after which we define ‘labeled 1-truss bundles’.

2.3.1.1 The definition of labeled 1-truss bordisms We define labeled 1-truss
bordism. In analogy to the definition of labeled 1-trusses, we want to equip 1-truss
bordisms with functorial ‘labeling data’ in a given category C. To make this precise, we
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will use that 1-truss bordisms R correspond to 1-truss bundles πR : Tot(R)→ [1] over the
1-simplex [1] via the classification-totalization correspondence for 1-truss bundles.

Definition 2.3.8 (Labeled 1-truss bordisms). For a category C, a C-labeled 1-truss
bordism R is a pair consisting of an ‘underlying’ 1-truss bordism R together with a
‘labeling’ functor lblR : (Tot(R),E)→ C from the total poset Tot(R) of R into C.

In other words, a C-labeled 1-truss bordism R ≡ (R, lblR) is a span of the form

C Tot(R) [1]
πRlblR

where πR is the total bundle of R : [1]→ TBord1.

Terminology 2.3.9 (Domain and codomain of labeled 1-truss bordisms). Given a C-labeled
1-truss bordism R ≡ (R, lblR), the ‘domain’ dom(R) (resp. ‘codomain’ cod(R)) of R is the
C-labeled 1-truss (Tot(R)|i, lblR : Tot(R)|i → C) obtained by restricting the totalization
TotR and the labeling lblT to the fiber over the element i = 0 (resp. over i = 1) in the
base [1]. We write this as R : dom(R) −7−→ cod(R).

The interesting question concerning the definition of labeled 1-truss bordisms is whether
labeled 1-truss bordisms have well-defined compositions.

Definition 2.3.10 (Composition of labeled 1-truss bordisms). Given two C-labeled
truss bordisms R01 and R12 which are composable (that is, cod(R01) = dom(R12)), a
composition candidate R02 of R12 and R01 is a C-labeled truss bordism for which there
exists ‘composition witness’ W ≡ (W : [2]→ TBord1, lblW : Tot(W )→ C) which restricts
on each arrow (i→ j) : [1] ↪→ [2] to Rij ; that is, Rij equals the C-labeled 1-truss bordism
(Tot(W )|i→j , lblW : Tot(W )|i→j → C).

As we now show composition candidates and composition witnesses always uniquely exist.
The proof will use ‘truss induction’ as discussed in Section 2.2.

Lemma 2.3.11 (Existence and uniqueness of composition witnesses). Composition can-
didates and witnesses of composable C-labeled 1-truss bordisms exist uniquely.

Proof. Consider C-labeled 1-truss bordisms R01 and R12, composable at a C-labeled
1-truss S = cod(R01) = dom(R12). We construct their unique composition witness
W = (W, lblW ) of (their composition candidate is determined by restricting W over
(0 → 2)). First observe, the functor W : [2] → TBord1 must be defined by setting
W (0 → 1) = R01 and W (1 → 2) = R12. The task is to see that the labeling functor
lblW : TotW → C exists uniquely.

Since W must restrict to R01 over (0 → 1), and to R12 over (1 → 2), it remains to
define lblW on arrows f in TotW lying over 0 → 2. Since 1-truss bordisms compose
as their underlying relations, any arrow f lying over 0 → 2 in [2] can be written as a
composite f = gh for some arrow g over (0→ 1) and some arrow h over (1→ 2). Any
candidate labeling lblW : TotW → C will have to satisfy that

lblW f = lblR12h ◦ lblR01g
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(thus the labeling lblW must be unique if it exists). Provided that this composition is
independent of our choice of g and h, the value lblW f is well-defined, thus completing the
definition of lblW .

Abbreviate the composite morphism lblR12g ◦ lblR01h in C by lbl(g, h). Given another
pair of arrows g′ and h′ decomposing f , we need to verify that lbl(g, h) = lbl(g′, h′). To
prove this, we use truss induction (recall, in particular, the scaffold order � on sections,
see Lemma 2.2.27). The arrows g and h (resp. g′ and h′) are the spine vectors of a section
simplex K (resp. K ′) in the bundle πW . Assume that K � K ′ (otherwise switch K and K ′

in the following). Let K = K0,K1, ...,Kk = K ′ be a chain of successor sections starting at
K and ending in K ′. Arguing inductively, we can assume k = 1, that is, K ′ = K1 = s(K).
By Lemma 2.2.33 there is a spacer L with lower boundary ∂−L = K and upper boundary
∂+L = K ′. Note that the spine L(2→ 3)◦L(1→ 2)◦L(0→ 1) of L composes both to the
spine K(1→ 2) ◦K(0→ 1) = h ◦ g of K and to the spine K ′(1→ 2) ◦K ′(0→ 1) = h′ ◦ g′
of K ′. Functoriality of the labelings lblR12 of and lblR12 now implies

lbl(g, h) = lblR12L(2→ 3) ◦ lblSL(1→ 2) ◦ lblR01L(0→ 1) = lbl(g′, h′)

(where lblS is the restriction of both lblR12 and lblR01 to the fiber over 1 ∈ [2]) as
required.

The preceding result shows that labeled 1-truss bordisms have a well-defined notion of
composition, allowing us to introduce the following category.

Definition 2.3.12 (Labeled 1-truss bordisms). Given a category C, the category of
C-labeled 1-truss bordisms TBord1

//C is the category whose objects are C-labeled
1-trusses (see Definition 2.3.6); whose morphisms are C-labeled 1-truss bordisms (see
Definition 2.3.8); and whose composition is as given in Definition 2.3.10.

Noteworthily, the definition of the category of labeled 1-truss bordisms generalizes by
allowing labelings to take values in ‘∞-categories’ as well, which we record in the following
remark (without using it later on).

Remark 2.3.13 (1-Truss bordism labeled in an ∞-category). Let C be a quasicategory (i.e.
a simplicial set in which inner horn fillers exist, see [BV06]). We define the quasicategory
TBord1

//C of ‘C-labeled 1-truss bordisms’ to be the simplicial set whose k-simplices are
given by tuples consisting of a ‘k-simplex of bordisms’ S : [k] → TBord1 together with
a ‘C-labeling’ of its total space now given by an ∞-functor lblS : Tot(S) → C. Note
that, for a simplicial map f : [l]→ [k], we obtain an l-simplex in TBord1

//C as the tuple
consisting S ◦ f : [l]→ TBord1 and the labeling lblS ◦Totf : Tot(S ◦ f)→ C. To see that
the resulting simplicial set TBord1

//C is indeed a quasicategory, i.e. as inner horn fillers, one
uses truss induction for bundles over general k-simplices (conceptually following the proof
of our earlier Lemma 2.3.11, which used truss induction only over the 2-simplex).

Remark 2.3.14 (Unlabeled 1-truss bordisms are trivially labeled). Unlabeled 1-truss
bordisms can be thought of as having ‘trivial’ labelings, i.e. labelings in the terminal
category ∗: indeed, the functor TBord1

//∗ → TBord1 mapping ∗-labeled 1-trusses T (resp.
bordisms R) to their underlying 1-truss T (resp. their underlying 1-truss bordism R) is
an isomorphism of categories.
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The construction of TBord1
//C is, in fact, functorial in the category C, yielding the

‘labeled 1-truss bordism’ functor defined below. Its behavior on functors of categories can
be described as follows.

Definition 2.3.15 (Relabeling along a functor). Consider a functor F : C→ D between
categories C and D. The F -relabeling functor between categories of labeled 1-truss
bordisms

TBord1
//F : TBord1

//C → TBord1
//D

is defined to map a C-labeled 1-truss T to the D-labeled 1-truss with underlying truss T
and labeling F ◦ lblT , and a C-labeled 1-truss bordism R to the D-labeled 1-truss bordism
with underlying 1-truss bordism R and labeling F ◦ lblR.

Terminology 2.3.16 (The label forgetting functor). Let C be a category. Relabeling by the
terminal functor C→ ∗ yields the functor

TBord1
//C→∗ : TBord1

//C → TBord1
//∗
∼= TBord1

which we call the ‘forgetful functor’ and usually abbreviate by an underline (−).

Definition 2.3.17 (The labeled 1-truss bordism functor). The labeled 1-truss bordism
functor is the endofunctor

TBord1
//− : Cat→ Cat

that takes a category C to the category TBord1
//C of C-labeled 1-truss bordisms and a

functor F : C→ D to the F -relabeling TBord1
//F : TBord1

//C → TBord1
//D.

We end our discussion of labeled 1-truss bordisms by highlighting an alternative
definition of the notion in abstract categorical terms. The reader without an inclination
for abstract categorical structures may readily skip ahead to the next section.

Terminology 2.3.18 (Vertical comma categories). For a normal pseudofunctorH : D→ Prof
from a category D into the bicategory of profunctors, and a category C, define the ‘vertical
comma bicategory’ H//C as follows: objects are tuples (d ∈ D,F : H(d)→ C); 1-morphisms
(d,F) → (d′,F′) are tuples (f : d → d′, α : H(f) ⇒ HomC(F−,F′−)); composition uses
pseudofunctoriality of H and the bicategorical structure of Prof.

To apply the notion of vertical comma categories to the case of 1-truss bordism, we
next define a functor ι : TBord1 → Prof. Recall the fully faithful inclusion Bool ↪→ Set,
mapping 0 to the empty set ∅, and 1 to the singleton set {∗}.
Terminology 2.3.19 (Inclusion of truss bordisms into ordinary profunctors). We define the
‘bordisms-as-profunctors’ pseudofunctor

ι : TBord1 → Prof

from category 1-truss bordisms to the bicategory of profunctors Prof, by mapping 1-
trusses T to the category (T,E) and 1-truss bordisms R to the post-composition of their
underlying Boolean profunctor with the inclusion Bool ↪→ Set.

117



The fact that ι is a well-defined pseudofunctor is addressed in the following remark; we
highlight that this claim relies on the rather special properties of 1-truss bordisms and a
similar definition fails for general Boolean profunctors.

Remark 2.3.20 (The specialness of 1-truss bordisms). Ordinary profunctors compose by
coends (see [Lor21, §5]). Importantly, given general Boolean profunctors R : X −7−→ Y and
S : Y −7−→ Z between preorders it need not be the case that ι(S ◦ R) ∼= (ιS) ◦ (ιR); that
is, the composition of Boolean profunctors need not coincide with their composition as
ordinary profunctors. However, in the case of 1-truss bordisms R and S, the isomorphism
ι(S ◦ R) ∼= (ιS) ◦ (ιR) always uniquely exists: this follows by explicitly evaluating the
colimit defining the profunctor composite (ιS) ◦ (ιR) and following the arguments in the
proof of Lemma 2.3.11.

Combining the above notions, we now reach the following alternative description of labeled
1-truss bordisms.

Observation 2.3.21 (Labeled 1-truss bordisms). The category of C-labeled 1-truss bordisms
is equivalent to the vertical comma category ι//C as defined above. We omit a verification
of this observation.

2.3.1.2 The definition of labeled 1-truss bundles We next generalize 1-truss bun-
dles to the labeled case; similar to the previous definitions of labeled 1-trusses and their
bordism, this now endows the total poset of a 1-truss bundle with a labeling functor as
follows.

Definition 2.3.22 (Labeled 1-truss bundles). Let C be a ‘labeling’ category and B a
‘base’ poset. A C-labeled 1-truss bundle p over B is a pair consisting of an ‘underlying’
1-truss bundle p : T → B over B together with a ‘labeling’ functor lblp : (T,E)→ C.

In other words, a C-labeled 1-truss bundle p ≡ (p, lblp) is a span of the form

C T B .
plblp

Labeled 1-truss bundles support the following notion of maps, which mirrors the definition
of maps of their unlabeled counterpart (see Definition 2.1.15).

Definition 2.3.23 (Maps of labeled 1-truss bundles). For categories C and D, let p be a
C-labeled 1-truss bundle, and q an D-labeled 1-truss bundle. Amap of C-labeled 1-truss
bundles F : p→ q is a pair consisting of an ‘underlying’ 1-truss bundle map F : p→ q,
as well as a ‘label category’ functor lblF : C→ D such that lblF ◦ lblp = lblq ◦ F .

Equivalently, one may think of labeled 1-truss bundle maps F : p→ q as maps of spans
p→ q, i.e. commuting diagrams

C T B

D S C

lblF

plblp

F

qlblq

in which F is a 1-truss bundle map p→ q.
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Terminology 2.3.24 (Singular, regular, and balanced labeled bundle maps). A labeled
1-truss bundle map F is said to be ‘singular’, ‘regular’ or ‘balanced’ if its underlying
1-truss bundle map F is

Maps of labeled 1-truss bundles compose in the obvious way, yielding the following
category.

Notation 2.3.25 (The category of labeled 1-truss bundle). The category of labeled 1-truss
bundles and their maps will be denoted by LblTrsBun1.

Remark 2.3.26 (All 1-truss bundles are trivially labeled). Every 1-truss bundle p : T → B
admits a trivial labeling T → ∗ in the terminal category ∗. A map between trivially
labeled 1-truss bundles is simply a map between their underlying 1-truss bundles. This
provides a fully faithful inclusion

TrsBun1 ↪→ LblTrsBun1

and in this sense the notion of 1-truss bundles is properly generalized by the notion of
labeled 1-truss bundles.

Terminology 2.3.27 (Label and base preserving maps). A labeled 1-truss bundle map
(F,G,H) is called ‘label preserving’ if H = idC is the identity on the labeling category C,
and ‘base preserving’ if F = idB is the identity on the base poset B.

Definition 2.3.28 (Restrictions of labeled 1-truss bundles). Given a C-labeled 1-truss
bundle p = (p : T → B, lblp : T → C) and a subposet C ↪→ B, then the restriction p|C
is the C-labeled 1-truss bundle (p

∣∣
C

: T |C → C, lblp : T |C → C).

Note for any non-identity morphisms f : [1] ↪→ B, we may think of the restriction p|f as a
C-labeled 1-truss bordism. In this sense, analogous to the unlabeled case, labeled 1-truss
bordisms describe ‘fiber transitions’ in labeled 1-truss bundles.

2.3.1.3 Classification and totalization for labeled 1-truss bundles We construct
a classification-totalization equivalence between C-labeled 1-truss bundles and their con-
cordances and functors into the category of C-labeled 1-truss bordisms (analogous to
the classification-totalization equivalence for unlabeled 1-truss bundles, see Construc-
tion 2.1.74). We start with the construction of ‘classifying functors’.

Construction 2.3.29 (Classifying functors of labeled 1-truss bundles). Consider a C-
labeled 1-truss bundle p over a poset B. Its classifying functor χp is the functor
B → TBord1

//C that maps an object x : [0] ↪→ B to the C-labeled 1-truss p|x and a
non-identity arrow f : [1] ↪→ B to the C-labeled 1-truss bordism p|f . The fact that this
constructs a functor can be checked using the uniqueness of composition witnesses (see
Lemma 2.3.11).

Conversely, one constructs ‘total bundles’ as follows.

Construction 2.3.30 (Totalizing bundles of labeled 1-truss bundles). For a poset B
and a category C, consider a functor F : B → TBord1

//C. We define its total bundle
πF ≡ (πF, lblF) to be the C-labeled 1-truss bundle
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- whose underlying bundle πF is the total 1-truss bundle πF (of the composition of F

with the label forgetting functor (−) : TBord1
//C → TBord1),

- and whose labeling functor lblF : Tot(F)→ C is determined on fibers over objects
x ∈ B as the labeling functor lblFx : Tot(Fx) → C (of the labeled 1-truss Fx)
and on fibers over non-identity arrows f : [1] → B as the labeling functor lblFf :
Tot(Ff)→ C (of the labeled 1-truss bordism Ff).

The fact that lblF is indeed a functor can be seen to follow again using the construction of
composition witness of labeled 1-truss bordisms (see Lemma 2.3.11).

In order to promote the preceding constructions to functors we introduce a notion
labeled 1-truss bundle concordances as follows.

Definition 2.3.31 (Concordances of labeled 1-truss bordisms). For a poset B and a
‘labeling’ category C, a C-labeled 1-truss bundle concordance u : p ⇒ q between
C-labeled 1-truss bundles p and q over B is a C-labeled 1-truss bundle over B × [1] such
that u|B×{0} = p and u|B×{1} = q.

Remark 2.3.32 (Invertible concordances need not be unique). In contrast to Remark 2.1.72,
invertible labeled bundle concordances between fixed labeled 1-truss bundles need not be
unique if they exist (since the labeling category C may have non-trivial automorphisms).

Note that, given a C-labeled 1-truss bundle concordance u : p ⇒ q, its classifying
functor χu is equivalently a natural transformation χp ⇒ χq : B → TBord1

//C; we often
refer to this natural transformation as the ‘classifying natural transformation’ of u.

Definition 2.3.33 (Categories of 1-truss bundle concordances). For a poset B and a
category C, define the category of concordances of C-labeled 1-truss bundles over
B, denoted by TrsConc1(B,C), to have C-labeled 1-truss bundles over B as objects, and C-
labeled 1-truss bundle concordances as morphisms. Composition of two such concordances
u : p⇒ q and v : q ⇒ r is determined by the condition that χv◦u = χv ◦ χu.14

Classification and totalization then organize into equivalences of categories as follows.

Construction 2.3.34 (Classification and totalization functors). Given a poset, we define
the classification functor

χ− : TrsConc1(B,C)→ Fun(B,TBord1
//C)

to map labeled 1-truss bundles p : T → B to their classifying functor χp, and labeled
concordances u : p ⇒ q to their classifying natural transformations χu : χp ⇒ χq.
Conversely, we define the totalization functor

π− : Fun(B,TBord1
//C)→ TrsConc1(B,C)

to take functors F : B → TBord1
//C to their total 1-truss bundles πF, and similarly natural

transformations α : B × [1]→ TBord1 to their total 1-truss bundles πα.
14Explicitly, working skeletally with underlying 1-truss bundles (that is, identifying unlabeled 1-truss
bundles up to invertible concordances, see Remark 2.1.72), we may define v ◦ u = πχv◦χu

.
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Observation 2.3.35 (Classification and totalization are inverse). Classification of labeled
1-truss bundles and totalization of functors into labeled 1-truss bordisms provide an
equivalence of categories.

2.3.1.4 Pullback, dualization, and suspension of labeled 1-truss bundles We
introduce pullbacks, duals, and suspensions of labeled 1-truss bundles. The first, in
analogy to the unlabeled case (see Definition 2.1.78), can be defined as follows.

Definition 2.3.36 (Pullbacks of labeled 1-truss bundles). Given a C-labeled 1-truss
bundle p over a poset B and a poset map F : C → B, the pullback F ∗p of p along F
is the C-labeled 1-truss bundle with classifying functor χF ∗p = χp ◦ F .

In other words, F ∗p ≡ (F ∗p, lblF ∗p) can be thought of as the span obtained as the upper
row in the following diagram

F ∗T C

C

T B

y
lblp◦TotF

TotF

F ∗p

F

lblp
p

where TotF is the canonical pullback map of 1-truss bundles TotF : F ∗p→ p.

Remark 2.3.37 (Restrictions). Pullbacks of labeled 1-truss bundles p over B along subposets
F : C ↪→ B recover restrictions, that is, F ∗p = p|C .

Nextwe consider dualization of labeled 1-truss bundles.

Definition 2.3.38 (Duals of labeled 1-truss bundles). Given a C-labeled 1-truss bundle
p ≡ (p, lblp), its dual bundle p† is the Cop-labeled 1-truss bundle whose underlying
bundle p† is the dual (p)† of the underlying bundle p (see Definition 2.1.82) and whose
labeling lblp† is the opposite labeling (lblp)

op.

Definition 2.3.39 (Duals of labeled dual 1-truss bundle maps). Given a labeled 1-truss
bundle map F : p→ q one defines the dual bundle map F † : p† → q† to have underlying
1-truss bundle map is F † = F op (i.e. F †) and labeling functors lblF † = (lblF )op.

Definition 2.3.40 (Duals of labeled 1-truss bundle concordances). Given a labeled 1-truss
bundle concordance u : p⇒ q one constructs the dual bundle concordance u† : q† ⇒ p†

by setting u† to be the dual bundle of u.

The preceding definitions now yield the following functors.

Observation 2.3.41 (Dualization functors on 1-truss bundles). The preceding definitions
construct a dualization functor of labeled 1-truss bundles as follows:

† : LblTrsBun1
∼= LblTrsBun1.

Similarly, for a category C and a poset B, we obtain a dualization functor of C-labeled
1-truss bundle concordances as follows:

† : TrsConc1(B,C) ∼= TrsConc1(B,Cop)op.
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If we set B = ∗, then this further specializes to an isomorphism of C-labeled 1-truss
bordisms:

† : TBord1
//C
∼= (TBord1

//Cop)op.

Remark 2.3.42 (Dualization via classifying functors). Using the classification and totaliza-
tion equivalence for labeled 1-truss bundles, given a C-labeled 1-truss bundle p, its dual
p† may equivalently be defined to have classifying functor χ

p†
equal to the composite of

(χp)
op with the isomorphism (TBord1

//C)op ∼= TBord1
//Cop .

Remark 2.3.43 (Suspensions in the labeled case). Recall the definition of suspensions of
1-truss bundles from Construction 2.1.88. This again has a labeled analog, subject to
the additional assumption that C has both initial and terminal objects, which can be
used as labels for the newly adjoined initial and terminal objects in the total poset of the
suspension—we leave details to the reader.

2.3.2 n-Truss bordisms and n-truss bundles We now discuss the combinatorial
theory of n-trusses, as well as their bordisms and their bundles. Recall from the intro-
duction to this section, which defined n-trusses as tower of 1-truss bundles ending in
the 0-simplex [0]. We saw the definition of n-trusses already in Definition 2.3.1; for a
more uniform description of truss theory, it will be useful to generalize this to a notion of
‘labeled n-trusses’ as follows.

Definition 2.3.44 (Labeled n-trusses). Given a category C, an C-labeled n-truss T is a
pair consisting of an ‘underlying’ n-truss T together with a ‘labeling’ functor lblT : Tn → C
(where Tn is the total poset of T ).

Unpacking the underlying n-truss T as a tower of 1-truss bundles pi : Ti → Ti−1 we may
equivalently consider an n-truss to be a diagram of the form

C
lblT←−− Tn

pn−→ Tn−1
pn−1−−−→ ...

p2−→ T1
p1−→ T0 = [0]

where pi are 1-truss bundles whose base poset is the total poset of pi−1, and where
lblT : Tn → C is a functor from the total poset Tn of pn to the category C.

The goal of this section will be to study notions of (labeled) n-truss bordisms, n-truss
bundles as well as their maps and concordances, which generalize previously introduced
notions to ‘higher dimensions’. This will involve an interesting inductive iteration of ideas
from previous sections.

Remark 2.3.45 (On towers and sequences). We use the terms ‘towers of maps’ and
‘sequences of maps’ largely synonymously, but prefer ‘tower’ when maps have ‘bundle
character’.

2.3.2.1 The definition n-truss bordisms We introduce n-truss bordisms, which, in
analogy to the case of 1-trusses of 1-truss bordisms, will describe ‘fiber transitions’ in
bundles whose fibers are n-trusses.

Definition 2.3.46 (n-Truss bordisms). An n-truss bordism R is a tower of 1-truss
bundles

Rn
pn−→ Rn−1

pn−1−−−→ ...
p2−→ R1

p1−→ R0 = [1] .

We refer to Rn as the total poset of R.
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Similarly, we obtain the following labeled analog of the notion.

Definition 2.3.47 (Labeled n-truss bordism). For a category C, an C-labeled n-truss
bordism R is a pair consisting of an ‘underlying’ n-truss bordism R and a ‘labeling’
functor lblR : Rn → C (where Rn is the total poset of R).

Unpacking the tower R, we may equivalently think of R as a diagram of the form

C
lblR←−− Rn

pn−→ Rn−1
pn−1−−−→ ...

p2−→ T1
p1−→ R0 = [1]

where pi are 1-truss bundles, and lblR : (Rn,E)→ C is a functor. Clearly, Definition 2.3.47
specializes to Definition 2.3.46 if we label in the terminal category C = ∗, and we shall
therefore work mainly in the more general case of labeled n-truss bordisms. Our main
goal will be understanding how labeled n-truss bordisms organize (as morphisms) into a
category.

Terminology 2.3.48 (Domain and codomain of a labeled n-truss bordism). Given a C-
labeled n-truss bordism R ≡ (R, lblR), the ‘domain’ dom(R) is the C-labeled n-truss T
whose underlying n-truss T is obtained by (iteratively) restricting the tower of bundles
R to 0 ∈ [1], and whose labeling lblT is the restriction of lblR to total poset Tn of T ; in
other words, T is the determined by the upper row in the following diagram of 1-truss
bundle pullbacks (all of which are restrictions, see Remark 2.1.80)

Tn Tn−1 · · · T1 [0]

C

Rn Rn−1 · · · R1 [1]

y
lblT

y
· · ·

y
0

lblR pn pn−1 p2 p1

Similarly, one defines the ‘codomain’ cod(R) by restricting R to the object 1 ∈ [1].

The following notion of composition immediately generalizes Definition 2.3.10.

Definition 2.3.49 (Composition of labeled n-truss bordisms). Given two C-labeled
truss bordisms R01 and R12 which are composable (that is, cod(R01) = dom(R12)), a
composition candidate R02 of R12 and R01 is a C-labeled truss bordism for which there
exists a diagram W of the form

C
lblW←−−−Wn

pn−→Wn−1
pn−1−−−→ ...

p2−→W1
p1−→W0 = [2]

where pi are 1-truss bundles and lblW : Rn → C is a functor, such that lblW restricts on
each non-identity arrow (i→ j) in [2] to the C-labeled n-truss bordism Rij . In this case,
we call the above diagram a composition witness of R01 and R12.

Lemma 2.3.50 (Existence and uniqueness of n-truss bordism composition witnesses).
Composition candidates and witnesses of labeled n-truss bordisms exist uniquely.

A direct proof of this statement can be given, but since the statement will be a corollary
of subsequent constructions, we will defer a proof until Observation 2.3.79. The preceding
result allows us to define the following category.
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Definition 2.3.51 (The category of C-labeled n-truss bordisms). Given a category C,
the category nTBord//C of C-labeled n-truss bordisms is the category whose objects
are C-labeled n-trusses and whose morphisms are C-labeled n-truss bordisms endowed
with a notion of composition induced by the existence and uniqueness of composition
candidates.

Importantly, the category of C-labeled 1-truss bordisms admits an equivalent formulation,
which highlights its ‘fundamentally iterative’ nature. We introduce this formulation as
follows.

Definition 2.3.52 (The labeled n-truss bordism functor). The n-fold composite TBord1
//−◦

TBord1
//− ◦ ... ◦ TBord1

//− : Cat → Cat of the labeled 1-truss bordism functor TBord1
//− :

Cat → Cat is called the labeled n-truss bordism functor, and denoted by TBordn//−.
If n = 0, we take this definition to mean TBord0

//− = id.

Applying the labeled n-truss bordism functor to a specific category C ∈ Cat, we obtain
the following.

Definition 2.3.53 (The ‘iterative’ category of C-labeled n-truss bordisms). Given a
category C, the ‘iterative’ category of C-labeled n-truss bordisms is the category
TBordn//C.

Remark 2.3.54 (Unwinding the iteration). Recall that the functor TBord1
//− : Cat→ Cat,

takes a category and maps it to the category of 1-truss bordisms labeled in that category.
On the one hand, the ‘iterative’ category of C-labeled n-truss bordisms can be obtained
as the category

TBordn//C = TBord1
//TBordn−1

//C

From this perspective, we can understand TBordn//C as the category of 1-truss bordisms
labeled in the category of C-labeled (n− 1)-truss bordisms. On the other hand, we may
also write

TBordn//C = TBordn−1
//TBord1//C

This means we can also understand TBordn//C as the category of (n− 1)-truss bordisms
labeled in the category of C-labeled 1-truss bordisms. Moreover, setting the labeling
category C = ∗ to be trivial, these observations specialize the case of unlabeled n-truss
bordisms: they may either be understood as 1-truss bordisms labeled in (n − 1)-truss
bordisms, or as (n− 1)-truss bordisms labeled in 1-truss bordisms.

The fact that Definition 2.3.51 and Definition 2.3.53 define the same category requires
proof.

Proposition 2.3.55 (Equivalence of viewpoints on labeled n-truss bordism). The cate-
gories nTBord//C and TBordn//C are canonically equivalent.

Again, we defer a proof since the statement will be a corollary of subsequent constructions,
and will be revisited in Observation 2.3.80.

124



2.3.2.2 The definition of n-truss bundles We discuss n-truss bundles which gener-
alize 1-truss bundles. We start, as before, with the unlabeled case.

Definition 2.3.56 (n-Truss bundles). An n-truss bundle p over a poset B is a tower
of 1-truss bundles

Tn
pn−→ Tn−1

pn−1−−−→ · · · p2−→ T1
p1−→ T0 = B .

We call Tn the total poset of p.

Definition 2.3.57 (Labeled n-truss bundles). Given a category C, a C-labeled n-truss
bundle p over a poset B is a pair consisting of an ‘underlying’ n-truss bundles p together
with a ‘labeling’ functor lblp : Tn → C (where Tn is the total poset of pn).

A C-labeled n-truss bundle p = (p, lblp) can equivalently be understood as a diagram
of the form

C
lblp←−− Tn

pn−→ Tn−1
pn−1−−−→ · · · p2−→ T1

p1−→ T0 = B

where pi are the 1-truss bundles in p and lblp : (Tn,E)→ C is a functor.

Remark 2.3.58 (n-Trusses and n-truss bordisms as bundles). Note that both C-labeled
n-truss as well as n-truss bordisms are special instance of the preceding definition, which
can be recover for base posets B = [0] resp. B = [1].

Terminology 2.3.59 (Open and closed bundles). If, for all i, ith bundles pi of an n-truss
bundle p are open (respectively closed), then we will call p itself ‘open’ (respectively
‘closed’).

Definition 2.3.60 (Labeled n-truss bundle maps). Given labeled n-truss bundles p and
q, a labeled n-truss bundle map F : p→ q consists of a commuting diagram

C Tn Tn−1 · · · T1 T0

D Sn Sn−1 · · · S1 S0

lblF

lblp pn

Fn

pn−1

Fn−1

p2

· · ·

p1

F1 F0

lblq qn qn−1 q2 q1

where, for i > 0, each Fi : pi → qi is a 1-truss bundle map (see Definition 2.1.64) and
lblF : C→ D is a functor, called the ‘label category’ functor of F .

Terminology 2.3.61 (Label and base preserving). An n-truss bundle map F is ‘base
preserving’ if F0 = id, and ‘label preserving’ if its label category functor lblF = id is the
identity.

Terminology 2.3.62 (Singular, regular, and balanced n-truss bundles maps). If for each i,
the ith bundle map of an n-truss bundle map singular resp. regular resp. balanced (in the
sense of Terminology 2.1.65) then we call the bundle map itself ‘singular’, resp. ‘regular’,
resp. balanced.

The preceding definition of maps of labeled n-truss bundle specializes both to the case
‘unlabeled’ n-truss bundles as well as the case of ‘n-trusses’.
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Remark 2.3.63 (The unlabeled case). For unlabeled n-truss bundles p, q (which can be
considered as labeled n-truss bundles labeled in the terminal category ∗) the labeling
functor lblF : ∗ → ∗ of any labeled n-truss bundle map F : p→ q must be trivial; in this
case we call F simply an ‘n-truss bundle map’. Moreover, every labeled n-truss bundle
map F : p→ q induces an n-truss bundle map F : p→ q of underlying n-truss bundles,
by setting F i = Fi. We call F the ‘underlying’ n-truss bundle map of F .
Remark 2.3.64 (The case of n-trusses). For labeled n-trusses T and S (which can be
regarded as labeled n-truss bundles over the trivial base poset [0]) we usually refer to
labeled n-truss bundle maps F : T → S as ‘labeled n-truss maps’.
Categories of n-trusses as well as n-truss bundles and their maps can now be introduced
as follows.
Notation 2.3.65 (n-Truss and n-truss bundle categories). We denote by LblTrsBunn the
category of labeled n-truss bundles, TrsBunn the category of (unlabeled) n-truss bundles,
Trsn(B) for the category of n-truss bundles over a fixed base poset B (and base preserving
maps), and Trsn for the category of n-trusses. As before, decorations T̊ and T̄ indicate
that we are working in the open-regular resp. closed-singular case.

Definition 2.3.66 (Upper truncation). For 0 ≤ k ≤ n, we define the upper k-
truncation functor

(−)≥k : LblTrsBunn → LblTrsBunn−k

which maps a labeled n-truss bundle p = (p, lblp) where p = (pn, pn−1, ..., p1) to the
labeled k-truss bundles p≥k = (p≥k, lblp) where p≥k = (pn, pn−1, ..., pk+1).

Definition 2.3.67 (Lower truncation). For k ≤ n, we define the lower k-truncation
functor

(−)≤k : LblTrsBunn → TrsBunk

which maps a labeled n-truss bundle p = (p, lblp) where p = (pn, pn−1, ..., p1) to the
unlabeled k-truss bundle p≤k consisting of 1-truss bundles (pk, pk−1, ..., p1).

Definition 2.3.68 (Labeled n-truss bundle restrictions). Given a C-labeled n-truss bundle
p over a poset B with underlying bundle p = (pn, pn−1, ..., p1), as well as a subposet C ↪→ B,
we define the restriction p|C of p to C to be the C-labeled n-truss bundle over C obtained
as the upper row in the following diagram

Tn|C Tn−1|C · · · T1|C [0]

C

Tn Tn−1 · · · T1 B

y
lblp|C

pn|C

y

pn−1|C p2|C

· · · y

p1|C

lblp pn pn−1 p2 p1

(note all pullbacks of 1-truss bundles in the diagram are in fact restrictions).

We briefly remark on how to construct a class of ‘generating arrows’ in the total poset
of n-truss bundles, yielding a minimal set of arrows whose transitive closure recovers all
non-identity arrows of the total poset. Note that, this class is sometimes referred to as the
‘covering relation’ of a poset and can be defined for any poset; however, n-truss bundles
admit an explicit construction of this class as follows.
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Construction 2.3.69 (Generating arrows). Given an n-truss bundle p = (Tn
pn−→

Tn−1
pn−1−−−→ ...

p1−→ T0 = B) over a base poset B, we inductively construct subsets of
non-identity arrows cov(Ti) ⊂ mor(Ti,E), called the ‘generating arrows’ of Ti.

- If i = 0, define cov(B) to be the minimal subset of mor(B) that generates all
non-identity arrows in B, i.e. its covering relation.

- If i > 0, then f ∈ cov(Ti) if and only if one of the following holds.
· either pif = id (that is, f lies in a fiber of pi),
· or, pif ∈ cov(Ti−1) and f ∈ reg(Ti) ∪ sing(Ti) (that is, f lies over a generating
arrow of Ti−1 and passes either between two regular or two singular objects,
see Terminology 2.1.65).

The central observation about the generating arrow set cov(Ti) is that each non-identity
arrow in (Ti,E) can be written as a composite of generating arrows (in other words, it is
the covering relation of Ti). The observation will be particularly useful when illustrating
n-trusses (and their bundles) in that we will often only depict their generating arrows.

Example 2.3.70 (Generating arrows in n-truss bundles). In Fig. 2.24 we illustrate a
closed 2-truss T on the left, and depict generating arrows of T2 on the right.

Figure 2.24: A 2-truss bundle and its generating arrows.

2.3.2.3 Classification and totalization for labeled n-truss bundles We discuss
classification and totalization for labeled n-truss bundles, analogous to the case of labeled
1-truss bundles (see Construction 2.3.34). Crucially, this now uses the iterative nature of
the category TBordn//C of C-labeled n-truss bordisms.

Construction 2.3.71 (Classification of labeled n-truss bundles). Let p = (p, lblp) be
an C-labeled n-truss bundle over a poset B with p = (pn, pn−1, ..., p1). We construct the
classifying functor χp : B → TBordn//C of p inductively as follows.

- Define a functor χnp := lblp : Tn → C.
- Inductively in descending i, define a functor χi−1

p : Ti−1 → TBordn−i//C to be the
classifying map of the TBordn−i+1

//C -labeled 1-truss bundles (pi, χ
i
p).

Then set χp = χ0
p.

Example 2.3.72 (The labeled tower of a truss bundle). Here is an illustration of the
form of a labeled tower of a C-labeled 3-truss-bundle p with underlying 3-truss bundle
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T3
p3−→ T2

p2−→ T1
p1−→ T0 and with label lblp, together with its classifying maps χip.

C T3

TBord1
//C T2

TBord1
//TBord1//C

TBord2
//C T1

TBord1
//TBord2//C

TBord3
//C T0

p3

χ3
T = lblp

p2

χ2
p

p1

χ1
p

χ0
p

Each of the following subsets of the above diagrams determines the entire truss bundle
p: the functor χ0

p, or the bundle p1 together with the functor χ1
p, or the bundles p1 and

p2 together with the functor χ2
p, or the bundles p1, p2 and p3 together with the functor

χ3
p := lblp.

Conversely, we may construct ‘total bundles’ as follows. This simply inverts each inductive
step in the preceding construction separately.

Construction 2.3.73 (Totalization of labeled n-truss bundles). Given a functor F : B →
TBordn//C we construct its total C-labeled n-truss bundle πF = (πF, lblF) inductively
as follows.

- Define lbl0F = F.
- Inductively in ascending i, define (πiF, lbliF) to be the TBordn−i//C -labeled total 1-truss
bundle constructed from lbli−1

F : Toti−1F→ TBord1
//TBordn−i

//C

.

Then set πF = (πnF , π
n−1
F , ..., π1

F) and lblF = lblnF.

To promote the preceding constructions to functors we once more introduce the notions
of bundle concordances as follows.

Definition 2.3.74 (Concordances of labeled n-truss bundles). For a poset B and a
‘labeling’ category C, a C-labeled n-truss bundle concordance u : p ⇒ q between
C-labeled n-truss bundles p and q over B is a C-labeled n-truss bundle over B × [1] such
that u|B×{0} = p and u|B×{1} = q.

Remark 2.3.75 (Uniqueness of n-truss bundle concordances). Fixing unlabeled n-truss
bundles, any concordance between them must be unique if it exists (this follows by
iteratively applying Remark 2.1.72). In analogy to Remark 2.3.32, this need not hold
in the labeled case; but there is no harm in identifying labeled n-truss bundles up to
concordance of their underlying (unlabeled) n-truss bundles.

Note that, given a C-labeled n-truss bundle concordance u : p ⇒ q, its classifying
functor χu is equivalently a natural transformation χp ⇒ χq : B → TBordn//C; we often
refer to this natural transformation as the ‘classifying natural transformation’ of u.
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Definition 2.3.76 (Categories of n-truss bundle concordances). For a poset B and a
category C, define the category of concordances of C-labeled n-truss bundles over
B, denoted by TrsConc1(B,C), to have C-labeled n-truss bundles over B as objects, and C-
labeled n-truss bundle concordances as morphisms. Composition of two such concordances
u : p⇒ q and v : q ⇒ r is determined by the condition that χv◦u = χv ◦ χu.15

Classification and totalization then organize into equivalences of categories as follows.

Construction 2.3.77 (Classification and totalization functors). Given a poset, we define
the classification functor

χ− : TrsConcn(B,C)→ Fun(B,TBordn//C)

to map labeled n-truss bundles p to their classifying functor χp, and labeled concordances
u : p⇒ q to their classifying natural transformations χu : χp ⇒ χq. Conversely, we define
the totalization functor

π− : Fun(B,TBord1
//C)→ TrsConc1(B,C)

to take functors F : B → TBord1
//C to their total n-truss bundles πF, and similarly natural

transformations α : B × [1]→ TBord1 to their total n-truss bundles πα.

Observation 2.3.78 (Classification and totalization are inverse). Classification of labeled
n-truss bundles and totalization of functors into labeled n-truss bordisms provide an
equivalence of categories.

The correspondence between n-truss bundles and their classifying functors into the
category TBordn//C enables a simple proof of our earlier claim that the ‘non-iterative’ and
‘iterative’ definitions of labeled n-truss bordisms coincide. We record this by the following
two observations.
Observation 2.3.79 (Proof of Lemma 2.3.50). In Lemma 2.3.50 we claimed that the
composition candidates and witnesses of composable C-labeled n-truss bordisms R01 and
R12 always uniquely exist. Indeed, the composition witness (and thereby the candidate) can
be easily constructed using totalization and classification as follows. First, composability
implies χdom(R12) = χcod(R01), and thus χR01

: [1]→ TBordn//C and χR12
: [1]→ TBordn//C

are composable morphisms in TBordn//C. Define a functor W : [2]→ TBordn//C by setting
W (0 → 1) = χR01

and W (1 → 2) = χR12
. The required composition witness is (up to

unique invertible concordance of the underlying n-truss bundle) the totalization πW of
W .
Observation 2.3.80 (Proof of Proposition 2.3.55). The equivalences between the categories
nTBord//C, as defined in Definition 2.3.51, and TBordn//C, as defined in Definition 2.3.53, can
be constructed using totalization and classification as follows. A C-labeled n-truss T (resp.
n-truss bordism R) in nTBord//C can be classified by functors χT : [0]→ TBordn//C (resp.
χT : [1] → TBordn//C) thus yielding objects (resp. morphisms) in TBordn//C. Conversely,
objects (resp. morphisms) in TBordn//C correspond to functors T : [0] → TBordn//C (resp.
functors R : [1]→ TBordn//C) which we can totalize to C-labeled n-trusses πT (resp. n-truss
bordisms πR) thus yielding objects (resp. morphisms) in nTBord//C.
15Explicitly, working skeletally with underlying n-truss bundles (that is, identifying unlabeled n-truss
bundles up to invertible concordances, see Remark 2.3.75), we may define v ◦ u = πχv◦χu

.
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Observation 2.3.81 (Classifying unlabeled n-truss bundles). We write TBordn ≡ TBordn//∗,
and call this the ‘category of n-truss bordisms’. Note that, since every (unlabeled) n-truss
bundle is trivially labeled in the terminal category ∗, Construction 2.3.77 exhibits TBordn

as the classifying category of n-truss bundles.

Construction 2.3.82 (The label forgetting functor for n-trusses). Applying the functor
TBordn//− to the terminal functor C→ ∗ yields the ‘label forgetting functor’

(−) : TBordn//C → TBordn.

Observation 2.3.83 (The terminal and initial n-trusses). The terminal object of TBordn

is n-truss T̄n0 = (pn, pn−1, ..., p1) in which each pi is the bundle T̄0 → ast over the point
with the trivial closed 1-truss T̄0 as its fiber (see Observation 2.3.83). Similarly, the initial
object in TBordn is n-truss T̊n0 = (pn, pn−1, ..., p1) in which each pi is the bundle T̊0 → ast
over the point with the trivial closed 1-truss T̊0 as its fiber.

Finally, let us remark about the following immediate generalization of the classifica-
tion/totalizations construction given here.

Remark 2.3.84 (Classifying n-truss bundles over categories). Fully analogous to Re-
mark 2.3.84, given a category B, note that functors B→ TBordn up to natural isomorphism
classify n-truss bundles over B up to bundle concordance isomorphism (where n-truss
bundles over B are defined as towers of 1-truss bundles in the sense of ?? ending in B). Yet
more generally, we can consider functors B→ TBordn from an ∞-category B into TBordn

to describe n-truss bundles over B; however, note that any such functor is equivalently a
functor of the corresponding homotopy category ho(B)→ TBordn.

2.3.2.4 Pullback, dualization, and suspension of labeled n-truss bundles Our
usual constructions of pullbacks, duals, and suspensions immediately carry over from
1-trusses bundles to n-trusses bundles.

Construction 2.3.85 (Pullbacks of labeled n-truss bundles). Consider a C-labeled n-truss
bundle p = (p, lblp) over a poset B with underlying bundle p = (pn, pn−1, ..., p1), as well as
a poset map F : C → B. We define the pullback F ∗p ≡ (F ∗p, lblF ∗p) of p along F to
be the C-labeled n-truss bundle with underlying bundle F ∗p = (F ∗p

n
, F ∗p

n−1
, ..., F ∗p

1
)

constructed and labeling lblF ∗p as follows.
- Define Tot0F := F .
- For ascending i, define TotiF : F ∗pi → pi to be the 1-truss bundle pullback map of
pi along the poset map Toti−1F : F ∗Ti−1 → Ti−1 (where Ti−1 resp. F ∗Ti−1 is the
total poset of pi−1 resp. of F ∗pi−1).

Finally, define the labeling lblF ∗p as the composite lblp ◦ TotnF .

In other words, the pullback F ∗p of a labeled n-truss bundle p along a base poset map F
can be obtained by the upper row in the following diagram

F ∗Tn F ∗Tn−1 · · · F ∗T1 C

C

Tn Tn−1 · · · T1 B

y
lblF∗p

F∗pn

TotnF

y

F∗pn−1

Totn−1F

F∗p2

· · ·
y

F∗p1

Tot1F Tot0F=F

lblp
pn pn−1 p2 p1
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Observe that the poset maps TotiF (together with the labeling category functor id : C→ C)
assemble into a C-labeled n-truss bundle map F ∗p→ p which we call the ‘pullback bundle
map’. As before, in the special case where F : C ↪→ B is a subposet of B, this recovers
our earlier definition of restrictions, i.e. F ∗p = F |C .

Next we define duals of C-labeled n-truss bundles.

Definition 2.3.86 (Duals of labeled n-truss bundles). Given a C-labeled n-truss bundle
p ≡ (p, lblp) with underlying n-truss bundle p = (pn, pn−1, ..., p1), its dual bundle p† is
the Cop-labeled n-truss bundle whose underlying n-truss bundle is p† = (p†n, p

†
n−1, ..., p

†
1)

(where p†i is the dual of pi, see Definition 2.1.82), and whose labeling lblp† is the opposite
labeling (lblp)

op.

Definition 2.3.87 (Duals of labeled n-truss bundle maps). Given a labeled n-truss bundle
map F : p → q one defines the dual bundle map F † : p† → q† to have underlying
n-truss bundle map is F † = F op (i.e. F †) and labeling functors lblF † = (lblF )op.

Definition 2.3.88 (Duals of labeled n-truss bundle concordances). Given a labeled
n-truss bundle concordance u : p ⇒ q one constructs the dual bundle concordance
u† : q† ⇒ p† simply as the dual bundle of u.

The preceding definitions now yield the following functors, which are (covariant or con-
travariant) involutive isomorphisms of categories.

Observation 2.3.89 (Dualization functors on labeled n-truss bundles). The preceding
definitions construct a dualization functor of labeled n-truss bundles:

† : LblTrsBunn ∼= LblTrsBunn.

Similarly, for a fixed category C and a poset B, we obtain a dualization functor of labeled
n-truss bundle concordances:

† : TrsConcn(B,C) ∼= TrsConcn(B,Cop)op.

If we set B = ∗, then this further specializes to an isomorphism of labeled n-truss bordisms:

† : TBordn//C
∼= (TBordn//Cop)op.

Remark 2.3.90 (Duality of closed and open trusses, and singular and regular maps). Dual-
ization maps closed n-trusses to open n-truss bundles, and singular n-truss bundle maps
to regular n-truss bundle maps; in particular, dualization of n-truss bundles specializes to
an isomorphism

† : T̄rsn � T̊rsn : †

between closed n-trusses with singular maps and open n-truss with regular maps.

Finally, we construct suspension of (unlabeled) n-truss bundles.

Construction 2.3.91 (Suspension of unlabeled n-truss bundles). For an (unlabeled)
n-truss bundle p = (pn, pn−1, ..., p1) its suspension Σp is the n-truss bundle with 1-truss
bundle maps (Σpn,Σpn−1, ...,Σp1) (where Σpi is the suspension bundle of the 1-truss
bundle pi, see Construction 2.1.88).
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In analogy to Remark 2.3.43, the construction may further be generalized to the labeled
case as long as the labeling category C has initial and terminal objects—we leave details
to the reader.

2.3.2.5 Face, embedding, coarsening, & degeneracy truss maps and their
rigidity Trusses are ‘rigid’ when considered with special classes of n-truss maps, that is,
no two maps in that class admit a non-trivial natural transformation between them. As
we will later see, the types of maps in question combinatorially mirror the properties of
certain stratified topological maps, and we introduce them here with accordingly mirrored
terminology.

Terminology 2.3.92 (Subtrusses, faces, and embeddings of 1-trusses). A map of 1-trusses
F : T → S that is injective on objects is called an ‘injection’. An injection F may further
have the following properties.

1. Balanced : If F is balanced then F is a ‘subtruss’ inclusion map.
2. Closed singular : If T and S are closed and F is singular then we call F a ‘closed

face’ (or simply, a ‘face’).
3. Open regular : If T and S are open and F is regular then we call F an ‘open

embedding’ (or simply, a ‘embedding’).

Observation 2.3.93 (Characterizing faces and embeddings). Note that closed faces are
exactly subtrusses of closed 1-trusses, and open embeddings are exactly subtrusses of open
1-trusses.

Conversely, we introduce the following terminology for surjective 1-truss maps.

Terminology 2.3.94 (Degeneracies and coarsenings of 1-trusses). A map of 1-trusses
F : T → S that is surjective on objects is called a ‘surjection’. A surjection F may further
have the following properties.

1. Singular : If T and S have the same endpoint type16 and F is singular then F is
called a ‘degeneracy’.

2. Regular : If T and S have the same endpoint type and F is regular, then F is called
a ‘coarsening’.

3. Closed singular : If T and S are closed and F is singular then we call F a ‘closed
degeneracy’.

4. Open regular : If T and S are open and F is regular then we call F an ‘open
coarsenings’.

Note that if a surjective 1-truss map F is balanced then it must be an isomorphism.

Observation 2.3.95 (Characterizing closed degeneracies and open coarsenings). Note that
closed degeneracies are exactly degeneracies of closed 1-trusses, and open coarsenings are
exactly coarsenings of open 1-trusses.

Example 2.3.96 (Faces, embeddings, degeneracies, and coarsenings of 1-trusses). In
Fig. 2.25 we depict examples of ‘subtrusses’, ‘ faces’, ‘embeddings’, as well as ‘(closed)
degeneracies’ and ‘(open) coarsenings’ of 1-trusses.
16Recall that this means dim(end±T ) = dim(end±S), see Terminology 2.1.22. Note also that any surjection
must be endpoint preserving, and thus the condition implies that F preserves dimensions of endpoints.
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Figure 2.25: Faces, embeddings, degeneracies, and coarsenings.

We next generalize the preceding terminology to the case of (labeled) n-trusses as well
as n-truss bundles.

Terminology 2.3.97 (Faces, embeddings, degeneracies, and coarsenings of n-trusses). Given
n-trusses T = (pn, pn−1, ..., p1) and S = (qn, qn−1, ..., q1), a truss map F : T → S is said
to be a ‘injection’ if each 1-truss bundle map Fi : pi → qi is fiberwise a 1-truss injection.
Similarly, one says that F is a ‘face’, or an ‘embedding’, or a ‘subtruss’, or a ‘surjection’,
or a ‘(closed) degeneracy’, or a ‘(open) coarsening’ if each Fi is fiberwise so.

The terminology also applies to n-truss bundle maps F : T → S (we require F to be
base preserving), and further, to maps F : T → S of labeled n-trusses or labeled n-truss
bundles (we require F to be base preserving and label preserving).

Notation 2.3.98 (Categories of truss coarsenings and truss degeneracies). Denote by Trscrs
n

the category of n-trusses and their coarsenings, and by Trsdeg
n the category of n-trusses

and their degeneracies.

Remark 2.3.99 (Coarsenings vs refinements). Given a coarsening of n-trusses F : T → S we
also call F a ‘refinement’ of S by T . That is, we use the term ‘coarsening’ and ‘refinement’
synonymously but describing dual processes: a coarsening ‘coarsens’ the domain, while a
refinement, in opposite direction, ‘refines’ the codomain.

The role of dual categories T̄rsn of ‘closed trusses with singular maps’ and T̊rsn of ‘open
trusses with regular maps’ is special; these categories will be shown to combinatorially
model framed regular cells (resp. its dual). In many ways, their properties reflect that of
other ‘categories of shapes’, such as the category of simplices ∆. Our terminology here is
meant to highlight this parallel: for instance, just as any morphisms in ∆ factors into a
degeneracy and face map (yielding its ‘(epi,mono)-factorization’), any singular n-truss
map of closed trusses factors into degeneracy and a face map. Importantly, this existence
of (epi,mono)-factorizations is special to the categories T̄rsn and T̊rsn, and fails for general
truss bundle maps as illustrated in the next example.
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Example 2.3.100 (Failure of (epi,mono)-factorization in general). Fig. 2.26 shows a
map F : T → S of 2-trusses: components Fi : Ti → Si are highlighted in bold, and the
mapping of the top components F2 is determined by coloring its images corresponding
preimages in the same color (note, as usual, singular elements are shown as red dots,
while regular elements are shown as blue dots). The map F cannot admit an (epi,mono)
factorization since the image im(F2) ⊂ S2 does not describe a subtruss of S.

Figure 2.26: Failure of (epi,mono)-factorization of a 2-truss map.

In contrast, singular maps of closed n-trusses, and, dually, regular maps of open n-trusses,
do have (epi,mono)-factorizations. We record the existence of (epi,mono)-factorization for
the categories T̄rsn and T̊rsn as follows.

Lemma 2.3.101 ((Epi,mono)-factorization). Any singular truss map F of closed n-
trusses factors uniquely into a degeneracy FE followed by a face FM. Thus, after dualizing
face posets, any regular truss map F of open n-trusses factors uniquely into a coarsening
FE followed by an embedding FM.

Proof. In both cases the factorization F = FMFE is determined by factoring ith poset
maps Fi = FM

i F
E
i using the (epi,mono)-factorization in Pos. We omit the verification that

this determines n-truss bundle maps FE and FM.

Example 2.3.102 ((Epi,mono)-factorization of closed singular truss maps). In Fig. 2.27
we depict a singular map F : T → S of closed 2-trusses, together with its (epi,mono)-
factorization F = FM ◦ FE. As before, we indicate the mappings of the top components
by coloring their images corresponding preimages in the same color.

Centrally, we now observe the following ‘rigidity of homs’ in the categories T̄rsn and
T̊rsn, meaning that ‘hom posets’ (consisting of maps and their natural transformations)
are discrete. The result further applies to general ‘coarsening’ and ‘degeneracies’ as we
record. We start with the case of 1-truss maps.

Lemma 2.3.103 (Rigidity of natural transformations for 1-trusses). Consider 1-trusses
T and S, and 1-truss maps E,F : T → S. Assume one of the following holds.

1. T and S are open and E and F are either embeddings, coarsenings, or (more
generally) regular truss maps,

2. T and S are closed and E and F are either faces, degeneracies, or (more generally)
singular truss maps,
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Figure 2.27: (Epi,mono)-factorization of a closed singular 2-truss map.

3. E and F are coarsenings,
4. E and F are degeneracies.

Then any natural transformation ν : E ⇒ F : (T,E)→ (S,E) must be the identity.

Proof. We argue in the first case of open 1-trusses and regular maps (the second case
follows by duality, and the other cases follow similar arguments). Both embeddings E and
F map the regular values a in T to regular values E(a) resp. F (a) in S; because there are
no non-identity arrows between regular values in S, we must have E(a) = F (a). Because
T is assumed to be open, every singular value b in T has two adjacent regular values b± 1;
since the maps E and F are functorial and monotone, both E(b) and F (b) must be the
unique element E(b) = F (b) in S such that E(b− 1)E E(b)D E(b+ 1). The functors E
and F are thus identical and the natural transformation ν is necessarily trivial.

Lemma 2.3.104 (Rigidity of natural transformations for n-trusses). Consider n-trusses
T and S, and n-truss maps E,F : T → S. Assume one of the following holds

1. T and S are open and E and F are either embeddings, coarsenings, or (more
generally) regular truss maps,

2. T and S are closed and E and F are either faces, degeneracies, or (more generally)
singular truss maps,

3. E and F are coarsenings,
4. E and F are degeneracies.

Then any natural transformation ν : En ⇒ Fn of poset maps En, Fn : (Tn,E)→ (Sn,E)
must be the identity. The statement further generalizes to base preserving n-truss bundle
maps E,F : p→ q over a base poset B.

Proof. We argue in the case of open n-trusses T, S and regular maps E,F (the second
case follows by duality, and the other cases follow similar arguments). Write T =
(pn, pn−1, ..., p1) and S = (qn, qn−1, ..., q1). Arguing inductively, we assume the statement
holds for (n− 1)-trusses (the bases case of 1-trusses was shown in the previous lemma).
Postcomposing ν with the bundle map qn yields a natural transformation qn◦ν : qn◦En ⇒
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qn ◦ Fn, which equivalently is a natural transformation En−1 ◦ pn ⇒ Fn−1 ◦ pn. We must
have qn◦ν = νn−1◦pn for some natural transformation νn−1 : En−1 ⇒ Fn−1.17 Inductively,
we deduce that νn−1 = id. Applying the rigidity of 1-trusses (see Lemma 2.3.103) to
the transformation ν restricted to the fibers of pn and qn shows that ν is itself trivial as
claimed.

The statement generalizes to base preserving n-truss bundle maps E,F : p→ q over a
base poset B by applying the above argument fiberwise to each n-truss fiber over objects
in B.

2.3.3 Truss blocks and truss block sets A truss block (or simply a ‘block’) is a
closed truss with an initial element; the name reflects the idea that all closed trusses
can be ‘built from blocks’, as we will make precise in this section. Just as closed trusses
dualize to open trusses, blocks dualize to open trusses with terminal elements, which we
will refer to as ‘braces’.

2.3.3.1 The definition of truss blocks Recall that the depth of an object in a poset
is the maximal length of chains starting in that object (for instance, a maximal object is
of depth 0).

Definition 2.3.105 (Truss blocks). An n-truss k-block T is a closed n-truss T whose
total poset (Tn,E) has an initial object, and that object is of depth k.

When referring to n-truss k-blocks, we often keep either or both of the dimensions n and
k implicit, or, yet more simply, just refer to them as ‘blocks’.

Remark 2.3.106 (Blocks truncate). Note that, given an n-truss block T = (pn, pn−1, ..., p1),
then each truncation T≤i = (pi, pi−1, ..., p1) is again a i-truss block; indeed, the minimal
element in the total poset of T≤i is simply the image of the initial object in the total poset
of T under the map p>i = pi+1 ◦ pi+2 ◦ ... ◦ pn.
Notation 2.3.107 (Initial elements of blocks). We often denote the initial element in the
total posets of a block by ⊥.

Example 2.3.108 (A 2-truss 2-block). In Fig. 2.28 we illustrate a 2-truss 2-block on
the left, together with its ‘geometric realization’ on its right. In contrast to our earlier
example of a general closed 2-truss in Fig. 2.22, note that the realization now consists of
a single 2-cell.

Figure 2.28: A 2-truss 2-block together with its geometric realization as a single framed
2-cell.

17In general, given poset maps E,F : B → C and G : A→ B, any natural transformation ν : E◦G⇒ F ◦G
will be of the form µ ◦G for some ⇒.
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Notation 2.3.109 (Category of blocks). The category Blkn of n-truss blocks and singular
maps is defined to be the full subcategory of the category T̄rsn of closed trusses and
singular maps whose objects are n-truss blocks.

Recall the notion of faces of closed trusses from Terminology 2.3.97. We construct
faces in trusses that are blocks by taking closures of their elements, as follows.

Construction 2.3.110 (Face blocks in closed trusses). Let T = (pn, pn−1, ..., p1) be a
closed n-truss, and consider an element x ∈ Tn in the total poset Tn of T . We construct
a subtruss inclusion TDx ↪→ T such that TD = (pDxn , pDxn−1, ..., p

Dx
1 ) is a block, called

the ‘face block of x’. For each i ≤ n, denote by xi = p>ix the image of x under
p>i = pi+1 ◦ ...◦pn : Tn → Ti. Define (TDxi ,E) to be the subposet of Ti given by the upper
closure of x in (Ti,E). Define pDxi : TDxi → TDxi−1 to be the restriction of pi : Ti → Ti−1 to
these subposets. One verifies that we may uniquely endow pi with 1-truss bundle structure
such that the subposet inclusions TDxi ↪→ Ti induce 1-truss bundle maps pDxi ↪→ pi. The
subposet inclusions TDxi ↪→ Ti also define the components of the claimed subtruss inclusion
TDx ↪→ T . Note further that TDx is a k-block where k is the depth of x in Tn.

Example 2.3.111 (Blocks in closed trusses). In Fig. 2.29 we depict a 2-truss T2 → T1 →
T0 = [0], and highlight two elements x, y ∈ T2. For both elements we then construct their
face block as shown. Identifying the total poset T2 with the entrance path poset of the
cell complex on the right, note that face blocks (obtained by taking ‘upper closures’ in
T2) correspond closed cells in the cell complex (obtained by taking ‘topological closure).

Figure 2.29: The face block of two elements x (red) and y (blue) in a 2-truss T .

In fact, all subtrusses that are blocks are obtained by taking closures as in the previous
construction.
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Remark 2.3.112 (All subtruss blocks are face blocks). Given an n-truss T , then subtrusses
of T which are n-truss blocks are in 1-to-1 correspondence with objects of Tn: indeed, every
such subtruss block of T determines an element of Tn as the image of its initial element,
and conversely objects in Tn determined face blocks by taking closures as explained in
Construction 2.3.110.

2.3.3.2 The definition of block sets In analogy with simplicial sets we now introduce
the following notion of ‘n-truss block sets’.

Definition 2.3.113 (Block sets). A n-truss block set, is a Set-valued presheaf on the
category Blkn of n-truss blocks.

We usually abbreviate ‘n-truss block set’ simply to ‘block set’, leaving the dimension n
implicit.

Terminology 2.3.114 (Category of block sets). The ‘category of block sets and their maps’
is the category of Set-valued presheaves on the category Blkn of n-truss blocks.

Terminology 2.3.115 (Faces, degeneracies, and non-degenerate blocks). Given a block
set X ∈ BlkSetn and B ∈ Blkn, we call elements of X(B) ‘blocks’ of X of ‘shape B’.
Given a face map F : C → B in Blkn such that (X(F ))(b) = c for b ∈ X(B), then
we call c ∈ X(C) a ‘face’ (or ‘F -face’) of b. Given a degeneracy map F : C → B in
Blkn such that (X(F ))(b) = c for b ∈ X(B), then we call c ∈ X(C) a ‘degeneracy (or
‘F -degeneracy’) of b. If c ∈ X(C) is not an F -degeneracy for any non-identity F , then we
call c a ‘non-degenerate’ block of X.

Notation 2.3.116 (Representable block sets). Given B ∈ Blkn we often keep the Yoneda
embedding notationally implicit, and write the representable presheaf Blkn(−, B) simply
as B.

Construction 2.3.117 (Block nerve of trusses). Given a closed n-truss T be can construct
its ‘block nerve’ to be the block set T̄rsn(−, T ) mapping a block B to the hom set
T̄rsn(B, T ). This construction is functorial and gives to the ‘block nerve functor’ NBlk :
T̄rsn → BlkSetn.

Remark 2.3.118 (Building trusses from their blocks). We can now make precise our
previous statement that each closed n-truss T can be ‘built from their blocks’. Given a
closed n-truss T , denote by Blkn/T the comma category of the inclusion Blkn ↪→ T̄rsn
over T (that is, objects of Blkn/T are singular maps B → T from blocks into T , and
morphisms are commuting block maps B ↪→ B′). One verifies that T is given by the
colimit

T = colim(Blkn/T → T̄rsn)

of the forgetful functor Blkn/T → T̄rsn, which maps (B → T ) to B.

The reader familiar with the general notion of nerves may also have observed that there
are equivalent ways to state this remark: namely, it is equivalent to the observation that
the functor Blkn ↪→ T̄rsn is dense; it is also equivalent to the observation that the functor
NBlk is fully faithful.

We next introduce a notion of ‘regular’ block sets.
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Definition 2.3.119 (Regular block set). A block set X ∈ BlkSetn is called regular if for
each non-degenerate block b ∈ X(B) the block set map b : B → X is a monomorphism.

Proposition 2.3.120 (Block nerves are regular block sets). Given a closed n-truss T ,
its block nerve NBlk T is regular.

Proof. Non-degenerate blocks b : B → NBlk T are of the form NBlk(F : B ↪→ T ) where
F : B ↪→ T is a face block of T (see Remark 2.3.112). One verifies that NBlk(F : B ↪→ T )
is a monomorphism of block sets as required.

Notation 2.3.121 (Category of regular block sets). The full subcategory of the category of
block set BlkSetn containing only regular block sets will be denoted by RegBlkSetn.

2.3.3.3 Truss braces and truss brace sets Finally, let us briefly record the duals
of truss blocks, which we will call ‘truss braces’. Recall that open and closed n-trusses are
related by duality functors † : T̄rsn ∼= T̊rsn : † which dualize face orders on each truss. The
preceding discussion of truss blocks and blocks sets may be completely dualized in this way.
We mirror the most central definitions of the discussion for convenience. The ‘height’ of
an object x in a poset measures the length k of maximal chains x−k → x−k+1 → ...→ x0

in the poset ending at that object, x = x0.

Definition 2.3.122 (Truss braces). An n-truss k-brace T is an open n-truss whose
total poset (Tn,E) has a terminal object, and that object is of height k.

More concisely, we often refer to ‘n-truss k-braces’ simply as ‘braces’. Dually to ‘face
blocks’ we then find a notion of ‘embedding braces’ as follows.

Construction 2.3.123 (Embedding braces in open trusses). Let T be an open n-truss.
For any x in its total poset Tn, we construct the subtruss TEx ↪→ T , called the embedding
brace of x: it is the unique open subtruss of T such that TEx is a brace whose terminal
element maps to x.

Notation 2.3.124 (Category of braces). The category Brcn of braces and regular maps is
defined to be the full subcategory of the category T̊rsn of open trusses and regular maps
whose objects are braces.

Definition 2.3.125 (Brace sets). The category of brace sets BrcSetn is the category
of presheaves on the category Brcn of braces and regular maps. Objects of BrcSetn will
be called brace sets and morphisms brace set maps.

Note that the dualization isomorphism † : T̄rsn ∼= T̊rsn, induces an isomorphism of presheaf
categories Brcn ∼= Blkn (by precomposition with †).
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CHAPTER 3
Constructibility of framed
combinatorial structures

The central theorems of this chapter will construct equivalences between the framed com-
binatorial structures introduced in Chapter 1 and the iterated constructible combinatorial
structures discussed in Chapter 2. The most elementary such equivalence states that
n-framed regular cells are classified by n-truss blocks as follows.

Theorem 3.0.1 (Truss blocks classify framed regular cells). Framed regular cells are
classified by truss blocks; that is, there is a canonical equivalence of categories A

FrCelln Blkn
tt

cc

The equivalence is illustrated in Fig. 3.1: on the left, we depict a 3-framed regular cell
(note this cell also appeared in Fig. 1.50); and on the right, we depict a 3-truss block T
(note that we only depict generating arrows in the posets Ti, see Construction 2.3.69).
The 3-framed regular cell will be mapped to the 3-truss by the functor T, and the inverse
mapping will be described by the functor cc, as given in the previous theorem.

Figure 3.1: Framed regular cells correspond to truss blocks.

The correspondence of framed regular cells and truss blocks can be generalized to a
correspondence of flat framed regular cell complexes and general trusses as follows.
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Theorem 3.0.2 (Trusses classify flat framed regular cell complexes). Flat framed regular
cell complexes are classified by closed trusses and their singular maps; that is, there is a
canonical equivalence of categories

FlatFrCellCplxn T̄rsn
tt

cc

In Fig. 3.2 we illustrate an instance of this equivalence, depicting a flat 3-framed regular
cell complex on the left (note that this complex also appeared in Fig. 1.61). On the right,
we depict its corresponding closed 3-truss.

Figure 3.2: Flat framed regular cell complexes correspond to closed trusses.

Yet more generally, the preceding two equivalences are restrictions of the following
equivalence.

Theorem 3.0.3 (Truss block sets classify framed regular cell complexes). Framed regular
cell complexes are classified by regular truss block sets; that is, there is a canonical
equivalence of categories

FrCellCplxn RegBlkSetn
tt

cc

In Fig. 3.3 we illustrate an instance of this equivalence. On the left, we depict a 2-framed
regular cell complex, consisting of two 0-cells, connected by two 1-cells, between which we
suspend two 2-cells (note that this complex also appeared in Fig. 1.57). The regular truss
block set on the right is indicated by its six non-degenerate truss blocks, each marked by
its own box, which correspond to the cells on the left, and with face relations as indicated
by colored inclusions.

In each of the above three equivalences, we call the functor tt the ‘truss translation’,
and the functor cc the ‘framed complex translation’. The latter functor is not hard to
define. Namely, for a closed n-truss T = (Tn

pn−→ Tn−1
pn−1−−−→ ...

p1−→ T0) we obtain a framed
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Figure 3.3: Framed regular cell complexes correspond to regular truss block sets.

complex translation ccT as follows. We take the underlying cellular poset to be Tn. For
each (unordered) simplex x : [k]un ↪→ Tn, we can restrict the tower T to x to obtain a
tower of (equally unordered) simplicial projections T |x. The frame orders of each 1-truss
bundle in T now determine a unique ordering of the tower T |x (namely, such that kernel
vectors of projections are morphisms in the frame order of fibers). Ordering the tower
T |x defines a proframe on [unk], and passing to its gradient frames then defines a frame.
Framing each (unordered) simplex in Tn in this way defines a framing, and yields the
framed regular cell complex ccT .

Of course, to verify this construction one still needs to check, for instance, that the
total posets Tn is cellular and that the resulting framed complex is flat. Verifying these
details (as well as describing the inverse functor tt, which will be based on a series of
technical observations about flat framed cell complexes) will take up the rest of this
chapter. Readers should therefore feel to skip ahead to Chapter 4. For those interested in
the technical details, we now outline the proofs in this chapter as follows.

1. In Section 3.1 we establish the equivalence of framed and proframed regular cells,
yielding an equivalence FrCelln ∼= ProFrCelln. There is a similar equivalence between
flat framed and flat proframed regular cell complexes. These equivalences allow us to
work with proframed cells in place of framed cells. Since proframed cells (like trusses)
are defined by towers of maps, this equivalence will facilitate the construction of the
truss corresponding to a framed cell.

2. In Section 3.2 we then construct the truss translation and framed complex translation
functors, in particular verifying the correctness of the above sketch definition of the
framed complex translation (the crucial step in this verification will be checking the
cellularity of face posets of trusses, for which we employ a result relating ‘shellability’
and ‘cellularity’ of posets).

3.1 Equivalences of framings and proframings

Our goal in this section will be the construction of equivalences between framings and
proframings in three instances: (1) flat framings and flat proframings of simplicial com-
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plexes, (2) framings and proframings of regular cells, and (3) flat framings and flat
proframings of regular cell complexes.

3.1.1 Equivalence of flat framed and flat proframed simplicial complexes We
will prove that the gradient framing functor

∇ : FlatProFrSimpCplxn → FlatFrSimpCplxn

(see Terminology 1.2.35) provides an equivalence of flat proframed simplicial complexes
with flat framed simplicial complexes.

3.1.1.1 Gradients of flat proframings are flat We start with a proof of Propo-
sition 1.2.67—recall, this stated that the gradient framing of a flat proframing is flat
itself.

Proof of Proposition 1.2.67. Consider a flat n-proframing P = (pn, ..., p1) on a simplicial
complex K. Since flatness of proframings truncates, we can argue inductively and assume
that the gradient framing ∇P<n of the truncation P<n of P is flat: that is, it admits
a framed bounded realization en−1 : |Kn−1| ↪→ Rn−1. We now construct a geometric
realization |pn| : |Kn| → |Kn−1| of the map pn, and a framed bounded realization
en : |Kn| ↪→ Rn such that the following commutes

|Kn| Rn

|Kn−1| Rn−1

en

|pn| πn

en−1

We first define en : |Kn| ↪→ Rn on vertices x ∈ |Kn| as follows. Assume x lies over a base
vertex y = pnx ∈ |Kn−1|. Define en(x) = (en−1(y), ey(x)) where ex : |Ky| ↪→ R is some
choice of framed realization of the linear fiber complex Ky into R (see Observation 1.2.63).
Now extend the embedding en linearly to all other simplices in |Kn|. We then define |pn|
to be the composite e−1

n−1 ◦ πn ◦ en. Using the definition of flat proframings, one check
that en defines a framed realization whose image is framed bounded (as required in the
definition of flat framings), and that |pn| realizes pn as claimed.

3.1.1.2 Existence of integral proframings for simplicial complexes We next
prove Proposition 1.2.68—recall this stated that any flat framing has an essentially unique
integral flat proframing. We will prove this statement in two steps, first observing existence
and then essential uniqueness.

Lemma 3.1.1 (Existence of integral proframings of flat framings). Every flat n-framed
simplicial complex (K,F) has an integral flat n-proframing P.

Proof. Our strategy is to construct P inductively in n. For this, we construct a flat
(n − 1)-framing of Kn−1, denoted by cFn−1, and uniquely determined by the following
condition: (Kn−1,Fn−1) admits a framed bounded realization en−1 : |Kn−1| ↪→ Rn−1 (see
Terminology 1.2.46) such that the composite e−1

n−1◦πn◦en geometrically realizes a simplicial
map pn : Kn → Kn−1 (where Kn is the ordering of K determined by its n-framing). The
construction of (Kn−1,Fn−1) relies on the framed boundedness of the embedding en and
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we outline its steps as follows. By definition of flatness, en |Kn| is a framed bounded
subspace of Rn of the form

⋂
i≤n(Rn≥γ−i

∩ Rn≤γ+i
). Therefore, πn : Rn → Rn−1 projects

en |K| to the bounded subspace
⋂
i≤n−1(Rn−1

≥γ−i
∩ Rn−1

≤γ+i
) of Rn−1 (which, in particular, is

again framed bounded). The definition of framed realizations implies πnen maps simplices
of |K| linearly to simplices in πnen |K|. Framed boundedness of en implies that the
collection of such image simplices in fact triangulates πnen |K| (see Fig. 3.4). Moreover,
one checks this triangulation is the embedding en−1 : |Kn−1| ↪→ Rn−1 of a unique ordered
simplicial complex Kn−1 subject to the condition that e−1

n−1πnen : |K| → |Kn−1| realizes
an ordered simplicial map pn : Kn → Kn−1. Finally, endow Kn−1 with the unique framing
Fn−1 making en−1 a framed realization. This completes the construction (Kn−1,Fn−1).

Now, arguing inductively, define P<n to be a flat (n− 1)-proframing obtained as the
integral proframing of Fn−1. Then define the n-proframing P of K by extending the
tower P<n by the map pn. Once more using the definition of framed realizations and
boundedness, one verifies that the proframed simplicial complexes (K,P) is indeed flat
proframed.

Terminology 3.1.2 (Projected framings). The (n− 1)-framing Fn−1 of (Kn−1 constructed
in the preceding proof will be referred to as the ‘projected framing’ of the flat n-framing
F of K, and the map pn : Kn → Kn−1 as its ‘projection map’.

Example 3.1.3 (Projected framings). In Fig. 3.4, we illustrate the projected framing F2

for a flat 3-framing F of a simplicial complex K.

Figure 3.4: The projected framing of a flat framing.

Lemma 3.1.4 (Essential uniqueness of integral proframings of flat framings). Every flat
n-framed simplicial complex (K,F) has, up to unique isomorphism, a unique integral flat
n-proframing.

The following terminology will be useful.

Terminology 3.1.5 (Simplex directions in proframings). Given an n-proframed simplicial
complex (K,F), we say 1-simplex x : [1]→ K is ‘i-directed’ if p>i(x) is a 1-simplex that
is degenerated by pi (where p>i abbreviates pi+1 ◦ pi+2 ◦ ... ◦ pn as before).

Proof of Lemma 3.1.4. Let P = (pn, ..., p1) and Q = (qn, ..., q1) be flat n-proframings
of simplicial complexes K resp. L whose gradient n-framings (K,∇P), (L,∇Q) are
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isomorphic. We will prove that P and Q are isomorphic proframings related by a unique
isomorphisms P ∼= Q whose nth component Kn

∼= Ln must equal the framed isomorphism
(K,∇P) ∼= (L,∇Q). Our strategy is to argue by induction, this time, ‘from the bottom
up’. We will first consider fibers of the map p>1 : Kn → K1. Note, since P is flat, K1 is a
finite linear simplicial complex of the form lin[j] for some j ∈ N (see Terminology 1.2.62).
Define ‘fiber’ subcomplexes K(i) := p−1

>1(i) of K for each vertex i in lin[j] ∼= K1. Note we
can restrict the tower of projections P to K(i) ↪→ K, and drop the trivial last projection
of the resulting restricted tower, to obtain an (n− 1)-proframing P(i) on K(i). Since P

is flat it follows by definition of flatness that P(i) is flat as well. Note that no 1-simplex
in K(i) ↪→ K can be a 1-directed 1-simplex in K (see Terminology 3.1.5). Conversely,
any simplex from a vertex in K(i) to a vertex K(i′), i 6= i′, must be 1-directed in p and
we must have i′ = i + 1. There must also be at least one 1-simplex between K(i) and
K(i + 1) since p>1 is assumed surjective on simplices (note, applying this observation
inductively, one sees that Kn(i) are in fact connected subcomplexes).

We exhibited K(i) as connected components of ‘K without its 1-directed 1-simplices’;
and further, 1-directed 1-simplices of K fix an order K(0), K(1), ..., K(j) of these
components, as they only run between K(i) and K(i + 1). The assumed isomorphism
(K,∇P) ∼= (L,∇Q) must therefore restrict to isomorphisms (K(i),∇P(i)) ∼= (L(i),∇Q(i))
(as (n − 1)-framed simplicial complexes). Arguing inductively, deduce unique isomor-
phism P(i) ∼= Q(i) for all i such that nth components of these isomorphisms equal the
isomorphisms (K(i),∇P(i)) ∼= (L(i),∇Q(i)). One checks that this extends to the claimed
unique isomorphism of n-proframings (K,P) ∼= (L,Q) as claimed.

Proof of Proposition 1.2.68. The proposition follows from Lemma 3.1.1 and Lemma 3.1.4.

As a corollary to the preceding observations, we can now record the following more explicit
construction of the essentially unique integral proframings of flat framings.

Construction 3.1.6 (The integration of flat framings via iterated projection). Combining
the proofs of Lemma 3.1.1 and Lemma 3.1.4, it follows that the essentially unique integral
proframing of a flat framed simplicial complex (K,F) can be obtained by inductively
constructing, for i = n, n − 1, ..., the projected framings (Ki,Fi) and their projections
pi : Ki → Ki−1 (see Terminology 3.1.2) yielding a tower of simplicial maps (pn, ..., p1).
Moreover, inspecting the proof of Lemma 3.1.1, we see each pi acts by quotienting vertices
of Ki along 1-simplices x with framing Fi(x) = i. We illustrate this in Fig. 3.5.

Remark 3.1.7 (Equivalence of all framed realizations of flat framings). The proof of
Lemma 3.1.1 shows that any framed bounded realization e = en : |K| ↪→ Rn of a
flat n-framed simplicial complex (K,F) descends through a tower of simplicial maps
pi : Ki → Ki−1 to framed bounded realizations ei : |Ki| ↪→ Ri such that πiei = ei−1 |pi|.
The proof of Lemma 3.1.4 then implies that all such framed bounded realizations are
‘equivalent’ in that, given another framed bounded realization e′ = e′n : |K| ↪→ Rn, we have
unique isomorphisms φi : ei |Ki| ∼= e′i |Ki| (which are linear on each simplex) such that
πiφi = φi−1πi. Namely, using notation from the proof of Lemma 3.1.4, the isomorphisms φi
may be constructed by first inductively defining isomorphisms φi(j) : ei |Ki(j)| → ei |Ki(j)|
on the ‘fibers of p>1 over j ∈ K1’, and then extending these isomorphism of p>1-fibers
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Figure 3.5: Constructing the essentially unique integration of flat framings as a tower of
quotient maps.

linearly to the remaining simplices of (Ki,Fi) (those containing 1-directed edges). In
fact, a similar argument applies to any framed realization e′ of (K,F) (without requiring
boundedness of e′) which similarly shows equivalence of e and e′ in the above sense. Note,
in particular, that this entails that all framed realizations of flat framings are framed
bounded.

Construction 3.1.8 (The integration functor for flat framings). We construct the functor
∫ : FrSimpCplxn → ProFrSimpCplxn, called the integration functor of flat framings. On
objects, this functor maps flat n-framed simplicial complexes to their essentially unique
integral flat n-proframed simplicial complexes, as constructed by the preceding two
lemmas. On morphisms, construct the functor as follows. Let F : (K,F) → (L,G) be
a framed map of flat n-framed simplicial complexes. Denote the integral proframings
of (K,F) resp. of (L,G) by (K, ∫ F) resp. (L, ∫ G). Note that, since F is a framed
map, it must map k-directed 1-simplices in K either to 0-simplices or to k-directed
1-simplices in L. In particular, it preserves fibers of pn and qn which allows us to construct
Fn−1 : Kn−1 → Ln−1 such that qnF = Fn−1pn. Continuing inductively, this constructs a
map of towers ∫ F : (K, ∫ F) → (L, ∫ G). Comparing definitions, one checks that ∫ F is
proframed since F is framed.

Finally, we prove Theorem 1.2.69, which stated that the gradient framing functor yields
an equivalence of categories ∇ : ProFrSimpCplxn → FrSimpCplxn.

Proof of Theorem 1.2.69. The inverse of the ‘gradient’ functor ∇ is the ‘integration’
functor ∫ defined in Construction 3.1.8.

3.1.2 Equivalence of flat framed and flat proframed cell complexes We next
show that the gradient framing functor, that takes proframed regular cells to framed
regular cells, has an inverse. The inverse, as before, will be called ‘integration’. Recall,
an n-framed regular k-cell (X,F) consists of a combinatorial regular k-cell X together

146



with a flat n-framing F of the simplicial complex X. Throughout this section, let (X,F)
denote an n-framed regular cell with ⊥ being the initial element of X, and denote by
P = (X = Xn

pn−→ Xn−1
pn−1−−−→ ...

p1−→ X0) the unique integral flat n-proframing of the
simplicial complex X that integrates F (as constructed in the previous section). Our goal
will be to endow the simplicial complexes Xi with cellular poset structures (i.e. to define
cellular posets whose underlying simplicial complexes recover Xi), such that P becomes
an n-proframing of the regular cell X = Xn. This will then provide the unique integral
n-proframed regular cell for the n-framed regular cell (X,F).

3.1.2.1 Upper and lower section cells We now discuss a distinction of framed cells
into ‘section’ and ‘spacer’ cells, such that spacer cells ‘fill the space’ between their ‘upper’
and ‘lower’ section cells (the idea is analogous to the discussion of section and spacer
simplices in the context of simplices in proframings, see Terminology 1.2.55).

Proposition 3.1.9 (Section and spacer cells). For any n-framed regular cell (X,F), one
of the following holds true.

1. Either, the fiber Xpn(⊥) over pn(⊥) is trivial (i.e. contains only ⊥ ∈ X) and the
ordered simplicial map pn : Xn → Xn−1 is an isomorphism.

2. Or, the fiber Xpn(⊥) is isomorphic to the 3-element linear complex (⊥− 1)→ ⊥→
(⊥+ 1) with ⊥ as its middle element.

Terminology 3.1.10 (Section and spacer cells). If a framed regular cell (X,F) satisfies the
first case of Proposition 3.1.9 then we call it a ‘section cell’. In the second case, we call it
a ‘spacer cell’, and call the elements (⊥± 1) the (upper resp. lower) ‘central fiber bounds’
of the cell.

Example 3.1.11 (Section and spacer cells). We illustrate both cases of Proposition 3.1.9
in Fig. 3.6, highlighting the poset structure X of the framed cell (X,F) in blue and central
fiber elements in red.

Figure 3.6: Framed regular cells are either section or spacer cells.

Proof of Proposition 3.1.9. We first note that the fiber Xpn(⊥) is a non-empty linear order
with at most three elements. Indeed, by definition of flat proframings, the ordered
simplicial complex Xpn(⊥) is a linear complex of the form lin[j] for some j ∈ N, and, since
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⊥ is the initial object in the poset X, this implies that Xpn(⊥) can have at most two
1-simplices which must contain ⊥ as a vertex (and thus at most three objects). Accordingly,
we distinguish the following three cases.

First, assume the fiber Xpn(⊥) has a single element ⊥. We claim that pn : Xn → Xn−1

does not have spacer simplices (which, by surjectivity of pn and flatness of P, equivalently
says that pn is an isomorphism). Arguing by contradiction, assume there is a spacer
simplex x of Xn, and pick such x of maximal dimension. Since ⊥ is initial in X, x must
contain ⊥ in its vertices. Note x cannot be the face of any other simplex (since this would
have to be again a spacer simplex). Consequently, dim(x) = k equals dimension of the
cell X. Denote by z = pnx the (k − 1)-simplex in Xn−1 that x projects to. Recall, the
fiber category Φ1Xz over z is the category consisting of section over z with spacers in
between section acting as generating morphisms (see Terminology 1.2.58). Let y be the
initial section in the fiber category Φ1Xz (the terminal section works just as well). Note
dim(y) = k− 1. Note ⊥ is a vertex of y. We show that y is the (k− 1)-face of exactly one
k-simplex in X. By our choice of y, it is the face of exactly one spacer (note each spacer
has exactly two faces that are sections, its upper and lower section). Assume y were the
face of a section y′. Since X is a k-cell, we must have dim(y′) = k and Φ1Xz′ = [0] where
z′ = pny

′. But since z has non-trivial fiber category, this contradicts the transition functor
Φ1Xz′ → Φ1Xz being endpoint-preserving. We deduce that y is indeed the (k − 1)-face
of exactly one k-simplex in X. This, however, is impossible since ⊥ is a vertex in y:
indeed, it would imply that the point ⊥ in |X| has no neighborhood homeomorphic to
Rk, which contradicts X being a regular k-cell. The contradiction proves that pn cannot
have spacers, and thus pn is an isomorphism.

Next, assume that the fiber Xpn(⊥) has two elements. We show this is impossible.
Note Xpn(⊥) is of the form ⊥ → (⊥+ 1) or (⊥− 1)→ ⊥. Argue in the former case (the
latter case is similar). Since pn has at least one spacer simplex (namely in the fiber over
pn(⊥)), we can pick a spacer simplex x of Xn of maximal dimension, and, as before, we
must have dim(x) = k. By the same arguments as in the previous paragraph, construct an
initial section y over pnx and show that |⊥ ∈ X| does not have euclidean neighborhood,
thus contradicting that X is a regular k-cell.

This leaves only the case that Φ1Xpn(⊥) has three elements, in which case it must be
of the form (⊥− 1)→ ⊥→ (⊥+ 1).

Terminology 3.1.12 (Upper and lower sections). Define ordered simplicial maps γ− :
Xn−1 → Xn resp. γ+ : Xn−1 → Xn, called the ‘lower section’ resp. ‘upper section’ of
(X,F), mapping a j-simplex z of Xn−1 to the j-simplex of Xn that is initial resp. terminal
in the fiber category Φ1Xz over z.

Note that γ− = γ+ if and only if (X,F) is a section cell. Indeed, if (X,F) is spacer cell,
then (⊥± 1) ∈ im(γ±). In fact, images of upper and lower sections are exactly the cells
determined by (⊥± 1), as the following result shows.

Lemma 3.1.13 (Section images are cells). If (X,F) is a spacer cell, with lower and upper
sections γ±, then X≥(⊥±1) are cells of dimension (k − 1), whose simplices are exactly
those in the image of γ±.

Proof. We argue in the case of the lower section γ− (the case of the upper section is
similar). First observe that any simplex in X containing (⊥− 1) but not ⊥ is a section
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simplex for pn (indeed, otherwise we could pick a spacer simplex containing (⊥− 1) but
not ⊥, and, by flatness of P and since (X,F) is a spacer k-cell, we could choose such
spacer of dimension k, which is impossible).

We show that X≥(⊥−1) is a (k − 1)-cell in ∂X. Pick any x ∈ ∂X such that X≥x

is a (k − 1)-cell and such that (⊥ − 1) ∈ X≥x. Since we assumed (⊥ − 1) ∈ X≥x, the
framed cell (X≥x,F|x) must be a section cell (indeed, X≥x will contain a (k − 1)-simplex
containing (⊥− 1) which, as we’ve just observed, must be a section simplex). In fact, each
(k − 1)-simplex in X≥x must either contain (⊥− 1) or (⊥+ 1): this follows, since taking
the cone of the section (k − 1)-simplices in X≥x with cone point ⊥ must yield spacer
k-simplices. Observe that X≥x cannot, however, contain both (⊥− 1) and (⊥+ 1) (for
instance, this would contradict the framed boundedness of all framed realizations of the
flat framing F|x, see Remark 3.1.7). It follows that all (k − 1)-simplices of the (k − 1)-cell
X≥x must contain the vertex (⊥− 1). But this is only possible if x = (⊥− 1).

Finally, we check im(γ−) contains the same simplices as X≥(⊥−1). Certainly simplices
of X≥(⊥−1) are lowest sections and must lie in the image of im(γ−). Conversely, since
every simplex X lies in the star of ⊥ and thus every simplex in Xn−1 lies in the star of
pn(⊥), which implies im(γ−) must be contained in X≥(⊥−1) as required.

Given a spacer cell (X,F), we often refer to the subposets X≥(⊥±1) of X, determined by
the images of the sections γ±, as the ‘upper’ resp. ‘lower section cells’ in (X,F).

3.1.2.2 Projecting cells We explain that spacer cells ‘project down’ (resp. ‘up’) onto
their lower (resp. upper) section cells. This will provide the cellular projection maps
necessary for the comparison of framed regular cells and proframed regular cells. The
following notation will be useful. A framed regular cell (X,F) restricts, by definition, to a
framed cell (X≥x,F|x) on the subcell X≥x ↪→ X, for any x ∈ X. We denote by Px = ∫ F|x
the integral proframing of the restricted n-framing F|x. Write Px = (pxn, p

x
n−1, ..., p

x
1) with

pxi : Xx
i → Xx

i−1. Importantly, while Xx
n = X≥xn is a subcomplex of Xn, the same need

not a priori hold for Xx
i and Xi with i < n—the fact that it does hold, follows from the

next result.

Lemma 3.1.14 (Projections restrict to cells). Given a framed regular cell (X,F) with
subcell (X≥x,F|x), to top simplicial projection pxn of the integral proframing of (X≥x,F|x)
is obtained by restricting the top simplicial projection pn of the integral proframing of
(X,F) along Xx

n ↪→ Xn.

Proof. We can restrict any framed realization of (X,F) to X≥x ↪→ X to obtain a framed
realization of (X≥x,F|x) which, by Remark 3.1.7, is necessarily bounded. Tracing through
the construction of integral proframings via framed bounded realizations in Lemma 3.1.1
then proves the claim.

Lemma 3.1.15 (Projected cells). For a framed cell (X,F), with top simplicial projection
pn : X = Xn → Xn−1 in its integral proframing, we can chose a unique poset structure on
Xn−1 making pn a cellular map of posets.

Proof. If (X,F) is a section cell, then pn is a simplicial isomorphism and thus we must
have pn : Xn

∼= Xn−1 as cellular posets. If (X,F) is a spacer cell, we define the poset
structure on Xn−1 by setting Xn−1

∼= X≥(⊥−1), where we identify the corresponding
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simplicial complexes using the lower section map γ− : Xn−1 ↪→ Xn. To see that pn : X =
Xn → Xn−1

∼= X≥(⊥−1) is a cellular poset map note that pn maps each cell X≥x ↪→ X
exactly to the cell X≥γ−◦pn(x) ↪→ X≥(⊥−1) ∼= Xn−1 (which can be seen by combining
Lemma 3.1.14 and our earlier construction of section cells).

Remark 3.1.16 (Isomorphism of upper and lower cells). If (X,F) is a spacer cell, then
the cellular poset map pn : Xn → Xn−1 must restrict on lower resp. upper section cells
X≥(⊥±1) ↪→ X to cellular poset isomorphisms pn : X≥(⊥±1) ∼= Xn−1. In particular,
X≥(⊥−1) and X≥(⊥+1) are canonically cellular isomorphic.

Observation 3.1.17 (Framed cell structures project). Having constructed a cellular poset
structure on the simplicial complex Xn−1 (which is a regular cell, since Xn−1

∼= X≥(⊥+1)

is a regular cell) we may now further endow the poset Xn−1 with a framing. Recall our
construction of the projected framing Fn−1 of F (see Terminology 3.1.2), which equips
the simplicial complex Xn−1 with an (n − 1)-framing. Note that this (n − 1)-framed
simplicial complex coincides (up to increasing the embedding dimension of frame labels by
postcomposing with n− 1 ↪→ n) with the n-framed simplicial complex (X≥(⊥±1),F|⊥±1).
Therefore, considering Xn−1

∼= X≥(⊥+1) as cellular posets, since F|⊥±1 defines an n-
framing of the latter cell, it follows Fn−1 defines an (n − 1)-framing of the former
cell.

Terminology 3.1.18 (Projected cells). We call the (n− 1)-framed regular cell (Xn−1,Fn−1)
the ‘projected cell’ of the n-framed cell (X,F) and the cellular map pn : Xn → Xn−1 its
‘cell projection’.

Note that if (X,F) is a section cell, then Xn−1
∼= X canonically. The next example

illustrates the projected cell of a spacer cell.

Example 3.1.19 (Projected cells). In Fig. 3.7 we illustrate the projected cell of the
3-framed regular cell (X,F) given in Fig. 3.6, highlighting the ‘projected’ poset structure
on X2 constructed by Lemma 3.1.15 in green.

Figure 3.7: The projected 2-framed cell of a 3-framed regular cell.

3.1.2.3 Existence of integral proframings for framed cells Finally, we construct
and verify uniqueness of integral proframings of framed cells.

Lemma 3.1.20 (Existence of integral n-proframings of framed cells). Any n-framed
regular cell (X,F) has an integral n-proframing (X,P).
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Proof. Recall, the definition of n-proframed cells first requires the construction of a tower
P of cellular maps X = Xn

pn−→ Xn−1 → ...
p1−→ X0. We inductively construct the cellular

posets Xi resp. the surjective cellular maps pi as ‘projected cells’ and ‘cell projections’
in the sense of Terminology 3.1.18. Further, by the above constructions, the integral
proframing ∫ F of the simplicial framing F endows the tower P with the structure of a
simplicial proframing as required in the definition of proframed cell. Finally, the fact that
F is flat on each cell implies that P is flat on each cell, which completes the definition of
the integral proframing P of the cell X.

Lemma 3.1.21 (Essential uniqueness of integral n-proframings of framed cells). Inte-
grating n-proframings of framed cells are essentially unique.

Proof. Let (X,P) and (Y,Q) be n-proframed regular cells with isomorphic gradient framed
cells. Then the unique isomorphism P ∼= Q can be constructed as in Lemma 3.1.4. The
fact that this simplicial isomorphism of towers is also a cellular isomorphisms of towers
can be seen inductively using the relation of projected cells with lower (or upper) section
cells (see Observation 3.1.17).

Construction 3.1.22 (The integration functor of framed regular cells). We construct
the functor ∫ : FrCelln → ProFrCelln, called the integration functor of framed regular cells.
On objects, this maps n-framed regular cells (X,F) to their essentially unique integral
n-proframed regular cells, denoted by (X, ∫ F), which was shown to exist above. On
morphisms, it maps a framed cellular map F : (X,F)→ (Y,G) to the proframed cellular
map ∫ F : (X, ∫ F) → (Y, ∫ G) determined by setting the component (∫ F )n to equal
F—the fact that this descents to a tower of cellular poset maps can be seen inductively
the relation of projected cells with lower (or upper) section cells (see Observation 3.1.17).
Comparing definitions, one further checks that framedness of F implies proframedness of
∫ F as required.

Finally, our results assemble into the following proof of Theorem 1.3.83, which stated
that the gradient functor ∇ : ProFrCelln → FrCelln is an equivalence of categories.

Proof of Theorem 1.3.83. The inverse of the ‘gradient’ functor ∇ is given by the ‘integra-
tion’ functor ∫ as defined in Construction 3.1.22.

As a consequence of the tools and observations described in this section, we may now
revisit our earlier claim in Remark 1.3.48 that the ‘final frame vector vec⊥ is in fact a
‘vector’, or more precisely, the entrance path poset of a 1-simplex.

Corollary 3.1.23 (Characterizing final frame vectors). The final frame vectors vec⊥ of
any n-framed regular k-cell (X,F), k > 0, span a subposet canonically isomorphic to the
entrance path poset Entr[1] ∼= (− ← 0→ +) of a 1-simplex.

Proof. The claim is trivial if n = 1. If (X,F) is a spacer simplex then vec⊥ ∼= ((⊥− 1)←
⊥ → (⊥ + 1)). If (X,F) is a section, then vec⊥ ∼= vec⊥n−1 where ⊥n−1 is the initial
object of the projected cell (Xn−1,Fn−1) and thus the statement follows inductively.
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3.1.2.4 Existence of integral proframings for flat framed cell complexes Build-
ing on the previous two sections, we now indicate the proof of Theorem 1.3.84: recall, this
states that the gradient functor ∇ : FlatProFrCellCplxn → FlatFrCellCplxn is an equivalence
of categories. Since the proof closely follows the corresponding arguments for simplicial
complexes and for cells, we will only outline its main steps.

Proof of Theorem 1.3.84. As before, we want to construct an inverse ∫ to ∇. Let (X,F)
be a flat n-framed regular cell. Set P to be the integral proframing of the framed simplicial
complex (X,F). Analogously to Terminology 3.1.12, define upper and lower sections
γ± : Xn−1 → Xn. In analogy to Lemma 3.1.13, one shows that images of lower (resp.
upper) sections are in fact exactly simplices in an upper-closed subposets X− (resp. X+)
of X. In analogy to Lemma 3.1.14 one finds that pn : Xn → Xn−1 induces a poset map
pn : X → Xn−1, where we can identify Xn−1

∼= X− via γ− (or similarly Xn−1
∼= X+

via γ+). As before, the projected framing Fn−1 now yields another flat framed regular
cell complex (Xn−1,Fn−1). Arguing inductively, we can construct an integral proframing
for (Xn−1,Fn−1), and augmenting it with the cellular map pn we obtain the integral
proframing (X,P) of (X,F), as required. One checks essential uniqueness as before. The
construction of ∫ on morphisms proceeds similarly to Construction 3.1.22.

3.2 Equivalence of framed regular cell complexes & regular
block sets

We now prove the equivalence of framed regular cells and truss blocks, and, more generally,
of flat framed regular cell complexes and trusses, and yet more generally, of framed
regular cell complexes and truss block sets. A first ingredient in these proofs is the
equivalence of flat framed and flat proframed regular cell complexes, described in the
previous section, which will allow us to think of flat framed regular cell complexes as
‘towers’ of surjective cellular maps. A second important ingredient concerns the structure
of trusses: namely, in Section 3.2.1 we will show that face posets of closed trusses are in
fact cellular posets (moreover, they are PL cellular posets). Equipped with both of these
results, in Section 3.2.2, we first construct the correspondence of flat framed cell complexes
and trusses, and then generalize this to a correspondence of framed cell complexes and
truss block sets.

3.2.1 Piecewise linear cellularity of closed trusses In this section, we prove that
face posets of trusses are PL cellular posets. Recall, this means that the strict upper
closure of any element in a poset geometrically realizes to a PL sphere.

Lemma 3.2.1 (Cellularity of closed trusses). Given a closed n-truss T , each face poset
(Ti,E) is a PL cellular poset.

While there are several direct ways of proving the result, our approach will be based on
the ‘shellability’ properties of trusses. Our proof will rely on the following result.

Proposition 3.2.2 (See [Bjö84, Prop. 4.5 ff.]). The realization |X| of a poset X is a
regular cell complex PL homeomorphic to the PL m-sphere if X is pure of dimension m,
shellable, and thin.
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Terminology 3.2.3 (Purity, shellability, and thinness). A simplicial complex is called ‘pure
of dimension m’ if its facets (that is, non-degenerate simplices which are not the face of
any other non-degenerate simplex) are all of the same dimension d. Similarly, a poset X
is called pure of dimension m if its nerve NX is pure of dimension m.

A poset X is called ‘shellable’ if the simplicial complex NX is pure of dimension
m and its facets admit an ordering K0,K1,K2, ...,Kj , such that, for all 0 < k ≤ j, the
subcomplex (∪i<kKi) ∩Kk of X (obtained by intersecting of the union Ki, i < k, with
Kk) is a pure simplicial complex of dimension (m− 1).

Finally, a poset X is called ‘thin’ if for every non-refinable length-2 chain x < y < z
in X there is exactly one y′ 6= y such that x < y′ < z (this is also sometimes called the
‘diamond property’).

Proof of Lemma 3.2.1. Recall the following notation: given a poset (X,≤) and an element
x ∈ X, the ‘upper closure’ X≥x (resp. ‘strict upper closure’ X>x) is the subposet of
X consisting of all elements greater than x (resp. those that are strictly greater than
x). Given an n-truss T and an element x ∈ Ti in a face poset (Ti,E) of T , for the
proof of Lemma 3.2.1 we need to show that the strict upper closure TBxi realizes to a PL
m-sphere. Inductively, we may assume this holds for i < n and only consider strict upper
closures TBxn in the top level poset. Moreover, by passing to the face block of TDxn of x,
we may assume T is in fact an n-truss block, with initial element ⊥ ≡ x. What is left
to show is that the truss block’s ‘boundary’ ∂Tn ≡ TB⊥n realizes to a PL m-sphere. By
Proposition 3.2.2 this is equivalent to showing that ∂Tn is pure, thin and shellable.

Denote by ⊥n−1 = pn(⊥) the projection of ⊥ to Tn−1. Denote by T<n the (n − 1)-
truncation of T . Since T is an n-truss k-block, note that T<n is an (n− 1)-truss l-block
(note l ∈ {k−1, k}). Arguing by induction, we assume the statement of the lemma to hold
for T<n; that is, we assume that the strict upper closure ∂Tn−1 of ⊥n−1 is thin, shellable
and pure of dimension l − 1. There are now two basic cases. Either, ⊥ is singular in the
fiber over ⊥n−1 or it is regular. In the first case, the 1-truss bundle pn : Tn → Tn−1 is
an isomorphism of face posets (and k = l) so all claimed properties of ∂Tn follow from
that of ∂Tn−1. Thus, it remains to prove the lemma in the second case, that is, for ⊥
being regular in the fiber over ⊥n−1. Note that initiality of ⊥ implies the fiber p−1

n (⊥n−1)
must be of the form (⊥− 1)B⊥C (⊥+ 1). We separately prove purity, shellability and
thinness separately in this case.

Purity. We first show ∂Tn is pure. Observe that facets of Tn must be mapped to
facets of Tn−1 by pn (this follows since pn is surjective on simplices, and since simplex
fiber transition maps are surjective too, see Observation 2.2.36). Each facet in Tn−1 must
contain the vertex ⊥n−1. Since the fiber over ⊥n−1 has spacers, so must the fiber of each
facet in Tn−1. Consequently, facets in Tn must themselves be spacers. Since all facets in
Tn−1 have dimension (k − 1), it follows that facets of Tn have dimension k. Note that
this further implies that all facets of ∂Tn are of dimension k − 1.

Shellability. We next show ∂Tn is shellable. Observe first that facets in ∂Tn are either
first or last sections lying over facets in Tn−1, or they are spacers lying over facets in ∂Tn−1.
Inductively, construct a shelling K1,K2, ...,K#Tn−1 of facets of ∂Tn−1 (where #Tn−1 is
the number of facets in ∂Tn−1). This also induces a shelling K• = (K⊥1 ,K

⊥
2 , ...K

⊥
#Tn−1

)

of Tn−1 (where K⊥i is obtained from Ki by adjoining a new first vertex ⊥n−1). Now build
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a shelling L• = (L1, L2, ...L#Tn) of ∂Tn (where #Tn is the number of facets in ∂Tn) in
the following three steps.

1. Lower section shelling : We define the first #Tn−1 facets

L1, L2, ..., L#Tn−1

in the sequence L•, by setting Li to be the bottom section (see Construction 2.2.26)
lying over K⊥i . Note that this satisfies Li(0) = (⊥− 1).

2. Side shelling : We next define the subsequence

L#Tn−1+1, L#Tn−1+2, ..., L#Tm−#Tn−1

of L• to be the sequence L(1,1), L(1,2), ...L(1,j0), L(2,1), L(2,2), ..., L(2,j1) , ... , L(#Tm−1,1),
..., L(#Tm−1,j1), where L(i,j) is the jth spacer (in scaffold order) lying over Ki.

3. Upper section shelling : Finally, we define the last #Tn−1 facets

L#Tm−#Tn−1+1, L#Tm−#Tn−1+2, ..., L#Tn−1

in the sequence L• by setting L#Tm−#Tn−1+i to be the top section lying over K⊥i .
Note that this satisfies L#Tm−#Tn−1+i(0) = (⊥+ 1).

This constructs a shelling of ∂Tn. We illustrate an instance of the construction in
Fig. 3.8: for the 3-truss T shown on the left, a shelling (K1,K2, ...,K6) of ∂T2 is depicted
on the (lower) right. Above it, we depict the shelling (L1, L2, ..., L16) of ∂T3 as constructed
by the above procedure.

Figure 3.8: Inductive shelling of a face poset boundary ∂Tn, by sequentially shelling its
bottom, sides, and top part.

Thinness. It remains to check that ∂Tn is thin. We show that Tn is thin which
implies thinness of ∂Tn (since Tn adjoins an initial element to ∂Tn). Inductively assume
Tn−1 is thin. Take a 2-simplex K : [2] → T such that the chain K = (x → y → z) is
non-refinable. We distinguish two cases based on the dimension of the base projection
im(pnK) : [j] ↪→ Tn−1, with j ∈ {1, 2}.

First assume j = 2. Then the base projection J := im(pnK) is a chain (xn−1 → yn−1 →
zn−1) in Tn−1. Note J must be non-refinable (otherwise, L would be refinable). Thinness
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of Tn−1 implies there is exactly one other non-refinable chain J ′ : xn−1 → y′n−1 → zn−1.
Since the 1-truss bordism lying over the J compose to the same 1-truss bordism as the
1-truss bordism lying over J ′, there must be at least one chain K ′ from x to z lying over
J ′. Moreover, there cannot be a third chain K ′′ from x to z, since that would have to lie
over either J or J ′; assume, w.l.o.g., that it lies over J and that K ≺ K ′′ in the scaffold
order of sections over J (see Section 2.2); all spacers over J between K and K ′′ must now
have fiber morphisms in the fiber over yn−1. Thus the 3-spacer containing the 2-section
K as its lower section, has a spine that refines K; contradicting that K was non-refinable.
It follows that a third chain K ′′ cannot exist.

Next assume j = 1. In this case, the base projection J := im(pnK) is a 1-simplex
(xn−1 → zn−1) in Tn−1. Thus, K must be a spacer over J . Arguing by truss induction
on the 1-truss bundle pn over J , we find that exactly two non-refinable chains from x
to z must exist. Namely, either the lower or the upper section of K must have a jump
morphism that lies over J (this follows from the arguments in the proof of Lemma 2.2.27,
but it can be graphically understood when thinking of the section order as a directed
path through jump morphisms, see Fig. 2.17). In the former case the two non-refinable
chains are given by K’s spine and its predecessor’s spine, in the latter case, by K’s spine
and its successor’s spine.

This completes the verification that ∂Tn is pure of dimension k − 1, shellable and
thin.

3.2.2 Correspondence of flat framed regular cell complexes and trusses

3.2.2.1 From flat framed regular cell complexes to trusses We start with a
construction of truss translation in the case of flat proframed regular cell complexes. We
then consider that construction together with our earlier definition of integration, yielding
the truss translation of flat framed regular cell complexes.

Construction 3.2.4 (Truss translation of flat proframed regular cell complexes). Given a
flat n-proframed regular cell complex (X,P) with projections P = (pn, ..., p1), we construct
a closed n-truss tt(X,P). Recall, that each projection pi : Xi → Xi−1 is both a cellular
poset map as well as an ordered simplicial map (see Remark 1.3.55). Denote the tower
of (to be constructed) 1-truss bundles tt(X,P) by (Tn

pn−→ Tn−1
pn−1−−−→ ...

p1−→ T0). In
order to construct the 1-truss bundles pi : Ti → Ti−1 we need to: (1) define poset maps
pi : (Ti,E)→ (Ti−1,E) of face orders, (2) define a dimension functor dim : (Ti,Eop)→ [1],
(3) define a frame order (Ti,�), (4) verify that fibers of pi over objects are closed 1-trusses,
and (4’) verify that fibers over morphisms are 1-truss bordism.

1. We set (Ti,E) = Xi and define pi : (Ti,E)→ (Ti−1,E) to be pi : Xi → Xi−1.
2. We define dim : (Ti,Eop)→ [1] to map x ∈ Ti to 0 if X≥x is a section cell and to 1

if X≥x is a spacer cell in X (see Terminology 3.1.10). Since section cell can only border
on other section cells, this defines a poset map (Ti,Eop)→ [1] as required.

3. We define two elements x, y in Ti to be related in the frame order (Ti,�) such that
x ≺ y if and only if they lie in the same fiber of pi and there is a sequence of 1-simplices
x→ · · · → y in the simplicial complex Xi.

4. We check that the structures E, dim, and � restrict on fibers p−1
i (z) over objects z

in Ti−1 to yield closed 1-trusses Tz = (p−1
i (z),E, dim,�). Since P is flat, the fiber over

z is a linear subcomplex x0 → x1 → ... → xk of the simplicial complex Xi; this shows,
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(p−1
i (z),�) is a total order. Moreover, if X≥xi is a spacer cell, then X≥xi±1 must be its

upper and lower section cells; thus (p−1
i (z),E) is a linear fence. Our definition of the

functor dim then implies that Tz is a closed 1-truss as claimed (spacer cells have both
upper and lower section cells, and thus cannot lie at fiber endpoints).

(4’) It remains to verify that fibers over morphisms are 1-truss bordisms. Let f : z → w
be an arrow in Ti−1. Denote by R : Tz −7−→ Tw the relation p−1

i (f). Since Ti = Xi

is a poset, R is a boolean profunctor. Since the proframing P is flat, it follows that
R ⊂ (Tz,�) × (Tw,�) is bimonotone. Since the transition functors are surjective, it
follows that R fully matches objects. Finally, if x ∈ sing(Tz) there is a unique y ∈ sing(Tw)
such that R(x, y): indeed, pn restricts on sections cells X≥x to poset isomorphisms
px : X≥x ∼= X≥z, and thus R(x, y) holds if and only if X≥y = p−1

x (X≥w). The statement
that R is a 1-truss bordism now follows from Corollary 2.1.53.
This completes the construction of the closed n-truss tt(X,P).

Construction 3.2.5 (Truss translation of proframed maps). Given a proframed cellular
map F : (X,P)→ (Y,Q) of flat proframed regular cell complexes we construct the singular
truss map ttF : tt(X,P) → tt(Y,Q). The ith component of ttF is defined by the ith
component Fi : Xi → Yi of F . We need to check that F being a proframed cellular
map translates to ttF being a singular map, i.e. ttF maps singular objects to singular
objects. Indeed, singular objects x ∈ Ti yield section cells X≥xi in Xi and the definition
of proframed maps implies that Fi must map section cells (in (Xi,P≤i)) to section cells
(in (Yi,Q≤i)). It follows that ttFi preserves singular objects as required.

Terminology 3.2.6 (Truss translation functors). We denote the ‘truss translation functor’ of
flat proframed regular cell complexes, given by Construction 3.2.4 and Construction 3.2.5,
by tt : FlatProFrCellCplxn → T̄rsn.

We define the ‘truss translation of flat framed regular cell complexes’ to be the functor

tt : FlatFrCellCplxn → T̄rsn

obtained as the composite of the functors ∫ : FlatFrCellCplxn → FlatProFrCellCplxn and
tt : FlatProFrCellCplxn → T̄rsn.

We define the ‘truss translation of framed regular cells’ to be the functor

tt : FrCelln → Blkn

obtained by restricting the functor tt : FlatFrCellCplxn → T̄rsn to the full subcategory
FrCelln ↪→ FlatFrCellCplxn.

3.2.2.2 From trusses to flat framed regular cell complexes Inverse to truss
translation, we next construct the framed complexes translations of n-truss blocks and
closed n-trusses.

Construction 3.2.7 (Proframed complex translation of closed trusses). Given a closed
n-truss T = (Tn

pn−→ Tn−1
pn−1−−−→ ...

p1−→ T0) we construct a flat n-proframed regular cell
complexes ccT . We write this proframed complex as (X,P) with X a cellular poset and
P = (pn, ..., p1) a tower of (both cellular and ordered simplicial) projections. In order
to define (X,P), we need to: (1) define the sequence P of cellular maps pi : Xi → Xi−1
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(with X = Xn), (2) define an ordering of the underlying simplicial sequence P, making P

a simplicial proframing, and (3) verify that P is both a flat proframing itself and flat on
each cell of X.

1. We define the poset map pi : Xi → Xi−1 to be pi : (Ti,E) → (Ti−1,E). The fact
that each Xi is cellular was proven in Lemma 3.2.1. The fact that the bundle maps pi are
cellular maps follows since 1-truss bundle have lifts (see Observation 2.1.62).

2. We define the ordered simplicial maps pi : Xi → Xi−1. Inductively, we assume
to have defined the ordered simplicial complex Xi−1. To obtain the ordered simplicial
complex Xi, we need to consistently order vertices of all k-simplices x : [k]un ↪→ Xi in the
unordered simplicial complex Xi. Take k = 1. Either the 1-simplex x lies over an object
y of Xi−1, or it lies over a (ordered) 1-simplex z : z(0)→ z(1) in Xi−1. In the first case,
order x = x(0)→ x(1) such that x(0) ≺ x(1) in the frame order (Ti,�). Otherwise, if x
lies over a 1-simplex y : y(0)→ y(1), then order x = x(0)→ x(1) such that its first vertex
x(0) lies over y(0) while its second vertex x(1) lies over y(1). This determines a vertex
order on all 1-simplices, which extends an ordering of Xi. The construction also entails
that the poset map pi : Xi → Xi−1 is an ordered simplicial map pi : Xi → Xi−1.

3. Finally, we verify that P is both flat itself and flat on each cell of X. Recall, flatness
requires fiber categories to be linear and transition functors to be endpoint-preserving.
But these are exactly the conditions verified via truss induction in Observation 2.2.36.
Thus, P is flat. Similarly it follows that all cell restricted proframings (X≥x,P|x) are
flat (namely, by applying Observation 2.2.36 to the 1-truss bundles in the n-truss block
TDx).

Construction 3.2.8 (Proframed complex translation of singular maps). Given a singular
truss map F : T → S we construct a proframed cellular map ccF : ccT → ccS. Write
the complex ccT as (X,P) (consisting of a cellular poset X and a proframing P) and
similarly write the complex ccS as (Y,Q). The ith component (ccF )i : Xi → Yi is defined
by the ith component Fi : Ti → Si. We need to check that ccF is cellular and proframed.
Both can be seen by an inductive argument. For cellularity, inductively assume Fi−1 is
cellular. To see that Fi is cellular, we check that, for each x ∈ Xi, the cell X≥xi in Xi

maps onto some cell Y ≥yi in Yi. If x is singular (i.e. X≥xi is a section cell) then this claim
follows from our inductive assumption that Fi−1 is cellular, and since Fi preserves singular
objects. If x is regular (i.e. X≥xi is a spacer cell) the claim follows from the singular case
since spacer cells are ‘sandwiched’ between their lower and upper section cells.

Next, to verify that ccF is proframed, we may inductively assume that the truncation
ccF<n : ccT<n → ccS<n is proframed. Since F is a singular truss map it follows that
ccFn maps section cells to sections cell, which (together with the inductive assumption)
implies that ccF preserves final frame vectors as required in the definition of cellular
proframed maps.

Terminology 3.2.9 (Proframed complex translation). We denote the ‘proframed complex
translation functor’, as given by Construction 3.2.7 and Construction 3.2.8, by cc : T̄rsn →
FlatProFrCellCplxn.

We define the ‘framed complex translation of closed trusses’ to be the functor

cc : T̄rsn → FlatFrCellCplxn
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obtained by taking the composite of the functor cc : T̄rsn → FlatProFrCellCplxn and the
functor ∇ : FlatProFrCellCplxn → FlatFrCellCplxn.

We define the ‘framed complex translation of truss blocks’ to be the functor

cc : Blkn → FrCelln

obtained by restricting the functors cc : T̄rsn → FlatFrCellCplxn to the full subcategory
Blkn ↪→ T̄rsn.

As a last formality, we record that truss translation and framed complex translation
assemble into the following equivalences of categories.

Proof of Theorem 3.0.1 and Theorem 3.0.2. The functor tt defined in Terminology 3.2.6
and the functor cc defined in Terminology 3.2.9 are inverse; moreover, there is a unique
choice for the natural isomorphisms id ∼= tt ◦ cc and id ∼= cc ◦ tt. The equivalence
further restricts to an equivalence of the subcategories FrCelln ↪→ FlatFrCellCplxn and
Blkn ↪→ T̄rsn.

Proof of Theorem 3.0.3. We show that the category of regular truss block sets (i.e. of
presheafs on truss blocks which are regular) is equivalent to the category of framed regular
cell complexes. Having shown the equivalence of categories of truss blocks Blkn and of
framed regular cells FrCelln, it will suffice to show that the category of framed regular
cell complexes is equivalent to a category of ‘regular’ presheafs on framed regular cells,
which can be seen as follows. Given a presheaf W ∈ PSh(FrCelln), a cell y ∈W (Y,G) is
said to be non-degenerate if the map y : (Y,G)→ W does not factor through a framed
cellular surjection (Y,G) � (Y ′,G′) (except the identity). We say the presheaf W is
regular if each non-degenerate cell y ∈ W (Y,G) includes back into W by an injective
presheaf map y : (Y,G) ↪→ W . Every regular presheafs W defines a framed regular
cell complex (XW ,FW ), whose cellular poset (XW ,≤) is the poset of all non-degenerate
cells y ∈ W (Y,G) such that y ≤ y′ whenever y factors through y′ by a framed cellular
injection, and whose framing W restricts on each cell X≥yW ∼= Y to the framing G of
the framed regular cell (Y,G). Conversely, every framed regular cell complexes (X,F)
defines a regular presheaf WX,F such that WX,F(Y,G) is the set of all framed cellular
inclusion (Y,G) ↪→ (X,F). The constructions are inverse up to canonical isomorphism. The
correspondence canonically extends to a correspondence of maps between regular presheafs
and framed cellular maps which provides the claimed equivalence of categories.

Corollary 3.2.10 (Framed regular cells are shellable PL cells). Given an n-framed regular
cell (X,F) then cellular poset X is PL cellular, and both X and ∂X are shellable.

Proof. By Lemma 3.2.1 we know that face posets of tt(X,F) are PL cellular. Since the
poset X is isomorphic to the top face poset of tt(X,F) (see Construction 3.2.4) it follows
that X itself is PL cellular.
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CHAPTER 4
Constructible framed topology:

meshes

In this chapter we introduce the stratified topological notion of ‘meshes’, which are
towers of constructible stratified bundles whose fibers are points or framed stratified
1-manifolds. We begin in Section 4.1 by describing these fibers, called ‘1-meshes’, and
their constructible bundles, before then generalizing these to notions of n-meshes and
n-mesh bundles. In Section 4.2 we discuss how meshes are the ‘topological counterpart’
of trusses, by constructing the entrance path n-trusses of n-meshes and the classifying
n-meshes of n-trusses, and showing that these constructions exhibit a ‘weak equivalence’
between meshes and trusses.

Convention 4.0.1 (∞-Categories modeled by Top-enriched categories). All ‘∞-categories’
will be Top-enriched categories (see [Lur09a, §1]).

Convention 4.0.2 (Finiteness). We assume all stratification to be finite.

4.1 1-Meshes, 1-mesh bundles, and n-meshes

We introduce 1-meshes and n-meshes as certain structured stratifications (a recollection
of basic ideas in the theory of stratified spaces can be found in Appendix B). 1-Meshes
will be defined as a stratified 0- or 1-manifolds endowed with the structure of a flat
framing, while n-meshes will be defined by iterating ‘constructible stratified bundles’ of
1-meshes. Here, the notion of ‘stratified bundle’ is a generalization of the ordinary notion
of fiber bundles to the context of stratified topology (see Definition B.2.24). The term
‘constructible’ bundle refers, generally, to bundles which can be (re)constructed from
functors on the ‘fundamental category’ of their base: while in the context of stratified
topology this fundamental category is usually the entrance path ∞-category of the base
stratification (see Appendix B.3) in case of meshes constructibility holds already at the
level of entrance path posets (which will follow from the comparison of meshes and trusses
in Section 4.2).
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The section will be organized as follows. In Section 4.1.1 we will introduce meshes
and their maps; our definitions will closely mirror the definition of 1-trusses and 1-truss
maps in Chapter 2. We then discuss bundles of 1-meshes and introduce a condition for
their constructibility in Section 4.1.2. Finally, in Section 4.1.3, we define n-meshes and
briefly comment how this further gives rise to a notion of ‘n-mesh bundles’.

4.1.1 1-Meshes

4.1.1.1 1-Meshes as 1-framed stratified manifolds We start with a notion of
1-framing of manifolds. Classically, a ‘tangent framing’ of a smooth manifold is a triv-
ialization of its tangent bundle. In the absence of smooth structures, we can similarly
require trivializations of tangent microbundles. However, independent of whether we
work in the smooth or topological case, the following holds true: every (sufficiently nice)
codimension-k submanifold of a framed manifold inherits a framing of its k-stabilized
tangent bundle. Specifically, in the case n = 1, this motivates the following definitions.

Terminology 4.1.1 (Manifolds). In the following, ‘manifold’ will mean connected topological
manifold with or without boundary. R will mean the ‘standard euclidean 1-space’ and S1

the ‘oriented standard circle’.

Definition 4.1.2 (1-Framings on manifolds). A 1-framing of a manifold M is an
embedding γ : M ↪→ S1.

Remark 4.1.3 (Dimension of 1-framed manifolds). Given a 1-framed manifold (M,γ) if
dim(M) = 0 then M obtains a ‘normal 1-frame’ from the ambient S1 and otherwise a
‘tangent 1-frame’.

We will be particular interested in the case of ‘flat framings’ where the ambient manifold
is standard Rn.

Definition 4.1.4 (Flat 1-framings on manifolds). A flat 1-framing of a manifold M
is a bounded embedding γ : M ↪→ R.

Remark 4.1.5 (Flat 1-framings are framings). Any orientation preserving embedding
R ↪→ S1 can be used to translate flat framings into framings by post-composition.

Remark 4.1.6 (The space of framings of a 1-manifold). Given a 1-manifoldM , the subspace
{γ | (M,γ) is a 1-framing} of the mapping space Map(M,S1) is homotopy equivalent
to Z2. That is, ‘up to homotopy’ there are two framings on a 1-manifold. The same
observation applies to flat 1-framings.

A mesh is a nicely stratified manifold with 1-framing: its strata are manifolds (without
boundary).

Definition 4.1.7 (General 1-meshes). A 1-mesh (M,f, γ) is a manifold M with a finite
stratification f , stratifyingM by manifolds (without boundary), together with a 1-framing
γ on M .

1. If M has a single stratum, we call the 1-mesh trivial.
2. If M is a contractible 1-manifold, we call the 1-mesh linear.
3. If M is the circle, we call the 1-mesh circular.
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Example 4.1.8 (General meshes). 1-Meshes of different types are shown in Fig. 4.1. In
each case, we color 0-dimensional strata in red, and 1-dimensional strata in blue. For
linear 1-meshes we depict the ambient euclidean space R; more commonly we will simply
be indicate by ‘coordinate arrow’ (indicated in green) which fixes the framing up to
contractible choice. Similarly, we indicated the framing of circular meshes by a green
arrow (describing the orientation of S1). Note that, we can distinguish three types of

Figure 4.1: 1-Meshes of different types.

trivial 1-meshes: the ‘trivial 0-dimensional mesh’, the ‘trivial linear 1-dimensional mesh’
and the ‘trivial circular 1-dimensional mesh’.18

While much of the theory of meshes can be developed in parallel for the ‘linear’ and
‘circular’ cases, our interest will (analogous to the case of 1-trusses) ultimately lie with
the linear case. Going forward, we will therefore adopt the following convention.

Convention 4.1.9 (Linear 1-meshes by default). Going forward, we will refer to ‘lin-
ear 1-meshes’ simply as ‘1-meshes’, and always endow 1-meshes with flat framings (i.e.
embeddings into R).
Notation 4.1.10 (Flat 1-framing bounds). For a 1-mesh (M,f, γ) with flat 1-framing
γ : M ↪→ R denote by γ−(M) and γ+(M) the lower resp. upper bound of the end
γ(M) ⊂ R.
Terminology 4.1.11 (Open and closed meshes). A 1-mesh (M,f, γ) is called ‘closed’ resp.
‘open’ if the image γ(M) ⊂ R is closed respectively open in R.

4.1.1.2 Maps of 1-meshes Let us first discuss framed maps of 1-framed manifolds
(in the sense of Definition 4.1.2).

Terminology 4.1.12 (Framed maps of standard framed spaces). A ‘framed map’ of the
standard circle S1 is an orientation preserving map S1 → S1 (by which we mean map of
the form eix 7→ eiφ(x) where φ : R→ R is monotone). A ‘framed map’ of standard R is an
orientation preserving map R→ R (by which we mean a monotone map R→ R). The
notions similarly apply to connected subspaces of S1 and R1.

Definition 4.1.13 (Framed maps of 1-framed manifolds). For (flat) 1-framed manifolds
(M,γ) and (N, ρ), a framed map F : (M,γ)→ (N, ρ) is a continuous map F : M → N
which induces a framed map F̃ : γ(M)→ ρ(N) between the images of their 1-framings,
such that F̃ ◦ γ = ρ ◦ F .
18Note, in contrast, we had described only two trivial 1-trusses in Fig. 2.2. This indicate that the trivial
1-truss with one element of dimension 1 should have two distinct combinatorial incarnations: the ‘trivial
linear’ and the ‘trivial circular’ 1-truss. We will not bother further with rectifying the combinatorial
situation, since we are ultimately interested only in the linear case.
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A 1-mesh map preserves both framing and stratification structure as follows.

Definition 4.1.14 (Maps of 1-meshes). A map of 1-meshes F : (M,f, γ)→ (N, g, ρ)
is a continuous map F : M → N that is both a stratified map F : (M,f)→ (N, g) as well
as a framed map F : (M,γ)→ (N, ρ).

Fully parallel to our earlier definitions of ‘regular’, ‘singular’, and ‘balanced’ maps of
trusses (see Definition 2.1.16), we introduce the following terminology for mesh maps.

Terminology 4.1.15 (Singular, regular, and balanced maps). A map of 1-meshes F :
(M,f, γ)→ (N, g, ρ) is called ‘singular’ if it maps point strata to point strata, ‘regular’
if it maps interval strata into interval strata, and ‘balanced’ if it is both singular and
regular.

In analogy to our earlier definitions of ‘subtrusses’, ‘truss degeneracies’ and ‘truss coarsen-
ings’ (see Terminology 2.3.92 and Terminology 2.3.94), we further introduce the following
properties of mesh maps.

Terminology 4.1.16 (Submeshes of 1-meshes). A map of 1-meshes F : (M,f, γ)→ (N, g, ρ)
is called a ‘submesh’ if F : (M,f)→ (N, g) is a substratification such that γ is a restriction
of ρ, that is, the induced map F̃ : im(γ) → im(ρ) (see Definition 4.1.13) is a subspace
inclusion (of subspaces in R).
Note that any submesh inclusion is necessarily balanced.

Terminology 4.1.17 (Mesh degeneracies and coarsenings of 1-meshes). A map of 1-meshes
F : (M,f, γ)→ (N, g, ρ) is called a ‘mesh degeneracy’ if it is a surjective singular mesh
map that maps interval strata either homeomorphically onto their image stratum, or
‘degenerates’ them into a point stratum. Dually, F is called a ‘mesh coarsening’ if it is a
mesh map that descents to a coarsening of stratifications F : (M,f)→ (N, g). (Note that,
by definition of stratified coarsenings, see Definition B.2.4, mesh coarsenings are necessarily
surjective regular mesh maps, and homeomorphisms on underlying spaces.)

Example 4.1.18 (Maps of 1-meshes). In Fig. 4.2 we depict singular, regular, balanced
and ‘mixed’ 1-mesh maps (whose mappings we indicate by green arrows). Note that the
first example is in fact a mesh degeneracy, the second a mesh coarsening, and the third a
submesh.

Figure 4.2: 1-Mesh maps.

4.1.2 1-Mesh bundles
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4.1.2.1 The definition of 1-mesh bundles We introduce 1-mesh bundles. Recall the
notion of stratified bundles (see Definition B.2.24): these are stratified maps p : (E, f)→
(B, g) which, for each point x in stratum u in the base (B, g), locally trivialize over a
neighborhood U of x in u to a bundle of the form U × (F, h)→ U .

Notation 4.1.19 (Fiber dimensions). Given a stratified bundle p : (E, f) → (B, g) in
which strata of stratified fibers are manifolds, then for t a stratum in (E, f) we write
fibdim(t) = k, if t restricts to a k-dimensional manifold in the fibers of p.19

A 1-mesh bundle is a stratified bundles, whose fibers are (continuously) endowed with the
structure of a 1-mesh, together with a constructibility condition that ensure ‘entrance
paths lift uniquely to fiber dimension-0 strata’ in the following sense.

Definition 4.1.20 (1-Mesh bundles). A 1-mesh bundle (p, γ) is a stratified bundle
p : (M,f)→ (B, g) together with a ‘fiber 1-framing’ bundle embedding γ : M ↪→ B × R
into the trivial bundle π : B × R→ B such that:

Fiberwise 1-mesh structure: f and γ restrict over x ∈ B to a 1-mesh (p−1(x), f, γ),
and the framing bounds x→ γ±p−1(x) are continuous in x (see Notation 4.1.10),
Constructibility : For any stratum t in (M,f) lying over a stratum s = p(t) in (B, g)
with fibdim(t) = 0, given an entrance path s→ r in Entr(g) there exists a unique
lift t → u in Entr(f) (such that Entr(p)(t → u) = s → r) and this lift satisfies
fibdim(u) = 0.

Note that fiber dimension in 1-mesh bundle are either 0 or 1.

Terminology 4.1.21 (Regular and singular strata). Given a 1-mesh bundle p : (M,f)→
(B, g) and a stratum s in f , we say t is ‘singular’ if fibdim(t) = 0, or a ‘regular’ stratum
if fibdim(t) = 1.

Notation 4.1.22 (Framing bounds). For a 1-mesh bundle p : (M,f)→ (B, g) with fiber
1-framing γ, the maps γ± : B → B × R, mapping b → γ±p−1(b), will be called ‘fiber
1-framing bounds’.

Terminology 4.1.23 (Open and closed 1-mesh bundles). A 1-mesh bundle p is called ‘open’
resp. ‘closed’ if all its fibers are open resp. closed 1-meshes.

Example 4.1.24 (A 1-mesh bundle). In Fig. 4.3 we depict a 1-mesh bundle whose base
stratification is the classifying stratification (B, g) = CStrP of the poset P = (a← b←
c→ d) (this poset also appeared as the base poset in Fig. 2.9). Note that fibers of the
stratum str(c) ⊂ CStrP are open 1-meshes, fibers of the stratum str(a) and str(d) are
closed 1-meshes, while the fiber over str(b) is neither open nor closed. Note that the bundle
map is depicted as a (restriction of the) projection B ×R→ B (with the orientation of R
indicated by a green arrow) which provides the fiber 1-framing of the bundle.

Example 4.1.25 (Constructible and non-constructible 1-mesh bundles). In Fig. 4.4 we
compare a 1-mesh bundle (on the left) a ‘non-constructible’ 1-mesh bundle (on the right),
whose fibers are 1-meshes but which fails the constructibility condition. In each case,
singular strata are colored in red and regular strata in blue. Note that the 1-mesh bundle
on the right fails the constructibility condition on both its singular 1-strata: firstly, for
19Note, since manifold dimension is invariant under homeomorphism, fibdim(t) is well-defined.

163



Figure 4.3: A 1-mesh bundle.

the upper singular 1-stratum the base entrance path lifts, but ends in a regular stratum;
secondly, for the lower singular 1-stratum the base entrance path does not lift.20

Figure 4.4: Constructible and non-constructible 1-mesh bundles.

Example 4.1.26 (A conical non-constructible bundle). The constructibility condition is
still non-trivial even in the ‘better behaved’ conical case: in Fig. 4.5 we depict a 1-mesh
bundle which, despite its base and total stratification being conical, is non-constructible.

Figure 4.5: A conical but non-constructible 1-mesh bundle.

Remark 4.1.27 (Omitting orientations). When depicting bundle maps of 1-mesh bundles
as projections B × R→ B we will (analogously to our depictions of 1-truss bundles, see
20The two illustrated failures of the constructibility condition are somewhat different in nature, and
weaker notion of 1-mesh bundle (for which, in particular, fibers may be empty) may, in fact, allow the
second type of failure to happen.
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Remark 2.1.58) sometimes omit indicating the standard orientation of R, which leaves a
Z2-ambiguity for such a choice.

While stratified bundles generally only trivialize locally over base strata, 1-mesh bundles
trivialize globally over base strata as the next observation records.

Notation 4.1.28 (Restrictions over base strata). Let p : (M,f) → (B, g) be a 1-mesh
bundle. Over each stratum s in the base (B, g), p restricts to a 1-mesh bundle denoted by
p|s : (p−1(s), f)→ s.

Observation 4.1.29 (Trivialization over base strata). Since automorphism spaces of 1-
meshes are contractible, the restricted 1-mesh bundle p|s is (non-uniquely) isomorphic to
a trivial 1-mesh bundle which we will denote as follows

(p−1(s), f) s× fib(s)

s

∼=

p|s

.

where fib(s) is a 1-mesh.

Let us briefly discuss maps of 1-mesh bundles.

Definition 4.1.30 (Maps of 1-mesh bundles). Given 1-mesh bundles p : (M,f)→ (B, g)
and p′ : (M ′, f ′) → (B′, g′), a 1-mesh bundle map F : p → p′ is a stratified map
F : (M,f)→ (M ′, f ′) that factors through p and p′ by a map (B, g)→ (B′, g′), such that
F restricts on fibers to 1-mesh maps.

Terminology 4.1.31 (Singular, regular and balanced 1-mesh bundles maps). We call a
1-mesh bundle map F : p → p′ singular resp. regular resp. balanced if it is fiberwise
singular resp. regular resp. balanced in the sense of Terminology 4.1.15.

Remark 4.1.32 (Bundle maps commute with fiber framings). Every 1-mesh bundle map
F : p→ p′ induces a commutative diagram of continuous maps (where γ resp. γ′ are fiber
1-framings of p resp. of p′)

im(γ) M B

im(γ′) M ′ B′

F̃

π

γ p

F

π

γ′ p′
.

We end with the following important remark about how our notion of constructible
1-mesh bundle could reasonably be called a ‘0-constructible’ bundle, and how this can be
generalized to ‘higher constructibility’ as well.

Remark 4.1.33 (On 0-constructibility and 1-constructibility). As we will see, the con-
structibility condition in Definition 4.1.20 precisely guarantees that isomorphism classes
of 1-mesh bundles over (sufficiently nice) base (B, g) are classified by functors Entr(g)→
TBord1 on the entrance path poset of the base (into the category of 1-truss bordisms):
this will follow from Proposition 4.2.26 and Observation 4.2.68.
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The entrance path poset Entr g of (B, g) is, however, merely the ‘0th level’ of categorical
data of the stratification g: formally, Entr g is the 0-truncation of the entrance path (∞, 1)-
category Entrg of (B, g) (see section B.3). For 1-mesh bundles to ‘see’ higher structure of
the base, we can amend the constructibility condition in our Definition 4.1.20 of 1-mesh
bundles p : (M,f)→ (B, g) as follows.

1-Constructibility : For every stratum t in (M,f) with fibdim(s) = 0, lying over
s = p(t) in (B, g), given an entrance path α : s→ r in Entrg, there exists a unique
lift β : t→ u in Entrf (with p ◦ β = α) and this satisfies fibdim(u) = 0.

Amending the definition in this way yields a notion of ‘1-constructible 1-mesh bundle’
(in contrast, we may refer to bundles in the sense of Definition 4.1.20 as ‘0-constructible’
1-mesh bundles). This now satisfies the following analog of our earlier observation: bundle
isomorphisms classes of 1-constructible 1-mesh bundles over (sufficiently nice) base (B, g)
are classified by ∞-functors Entr g → TBord1, and thus equivalently ordinary functors
ho(Entr g)→ TBord1 (see Remark 2.1.77). As noted in Remark 4.2.4, the proof of this
observation is fully analogous to the proof in the 0-constructible case.

4.1.2.2 Pullbacks and compactifications of 1-mesh bundles We discuss two im-
portant constructions on 1-mesh bundles: firstly, 1-mesh bundles can be fiberwise com-
pactified and secondly, they can be pulled back along stratified maps in the base.

Construction 4.1.34 (Fiberwise compactifications of 1-mesh bundle). Given a 1-mesh
bundle p : (M,f)→ (B, g) with fiber 1-framing γ : M ↪→ B × R, we construct a 1-mesh
bundle p : (M,f)→ (B, g) called the ‘fiberwise compactification’ of p. Define M to be
the closure of γ(M) in B ×R, and obtain p : M → B by restricting π : B ×R→ B to M .
The stratification (M,f) is defined to have strata to be images γ(r) of strata r in f , or
images γ±(s) of strata s in g.

Example 4.1.35 (1-Mesh bundle compactification). In Fig. 4.6 we depict the compactifi-
cation of a 1-mesh bundle p.

Figure 4.6: The compactification of a 1-mesh bundle.

Construction 4.1.36 (Pullbacks of 1-mesh bundles). Given a 1-mesh bundle p : (M,f)→
(B, g) and a stratified map G : (B′, g′) → (B, g) we construct a 1-mesh bundle G∗p :
(G∗M,G∗f)→ (B′, g′) called the ‘pullback of p along G’. As a map of stratified spaces,
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construct G∗p by a pullbacks (see Terminology B.2.26) as follows.

(G∗M,G∗f) (M,f)

(B′, g′) (B, g)

y

TotG

G∗p p

G

Note that G∗p is a stratified bundle since p is. Construct a fiber 1-framing G∗γ : G∗M ↪→
B′ × R for G∗p by defining, for x ∈ G∗M , G∗γ(x) ∈ B′ × R to have first component
G∗p(x) and second component equal to the second component of γ ◦ TotG(x).

Observation 4.1.37 (Pullbacks preserve fiberwise compactifications). Consider a 1-mesh
bundle p : (M,f)→ (B, g) and a stratified map G : (B′, g′)→ (B, g). Then the pullback
G∗p of the fiberwise compactification of p is the fiberwise compactification G∗p of the
pullback G∗p.

4.1.2.3 1-Mesh bundles over nice stratifications When working with 1-mesh bun-
dles we usually assume the base stratification to be sufficiently nice. As we will discuss
here, niceness of base often lifts to the total stratification of the bundle.

Our main interest will lie with so-called ‘cellulable’ stratifications, which are those
stratifications that can be subdivided by cell complexes. Recall the notion of regular
cell complexes from Definition 1.3.1 and that of constructible substratifications (see
Definition B.2.9).

Terminology 4.1.38 (Regular cell stratifications, cf. Definition B.3.16). An ‘(open) regular
cell’ stratification is a stratification that is stratified homeomorphic to a constructible
(open) substratification of some regular cell complex.

Terminology 4.1.39 (Cellulable stratification, cf. Definition B.3.14). A ‘(open) cellulable
stratification’ is a stratification that can be refined by a (open) regular cell stratification.

Importantly, if the base stratification of a 1-mesh bundles is cellulable, then so is its total
stratification—we will rigorously prove this fact only in the slightly simpler case of open
cellulable stratifications and closed/open 1-mesh bundles.

Proposition 4.1.40 (Cellulability lifts). Let p : (M,f) → (B, g) be a closed (or open)
1-mesh bundle. If (B, g) is open cellulable then so is (M,f).

The proof of this statement will use the following lemma.

Lemma 4.1.41 (Regular cellularity lifts). Let p : (M,f)→ (B, g) be a closed (or open)
1-mesh bundle. If (B, g) is open regular cell then so is (M,f).

The proof of Lemma 4.1.41 will use the following general observation about cell of
‘quotient-cylindrical shape’.

Lemma 4.1.42 (Cells bundled over cells). Let Dm be the closed m-disk, Sn−1 its boundary,
and let p : X → Dm be a subbundle of the projection π : Dm × R → Dm whose fibers
over x ∈ Dm are subsets of R of the form [γ−(x), γ+(x)], where γ± : Dm → Dm × R are
continuous sections. If γ−(x) < γ+(x) everywhere, except possibly when x ∈ Sn−1, then
X is a closed (m+ 1)-disk.
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Proof. Define the ‘trivial fiber locus’ of p to be the closed subset triv(p) = {x | γ−(x) =
γ+(x)} of Dm. If triv(p) = Sm−1, then X is the quotient of Dm× [−1, 1] by Sm−1× [−1, 1]
which is an m-disk. If triv(p) ( Sm−1 is a proper subset, the claim holds by the following
standard argument. Define V ⊂ Sm−1 × R to be the subspace with points (x, y) where
x ∈ Sm−1 and y ∈ [−dist(x, triv(p)),+dist(x, triv(p))] ⊂ R (where dist is some metric on
Sm−1). Let W be the convex hull of V in Rm+1. This projects to the convex hull of Sm−1

in Rm, which is Dm. By construction, the projection q : W → Dm is bundle isomorphic to
p : X → Dm, for instance, by a linearly identifying fibers q−1(z) ∼= p−1(z) for all z ∈ Dm.
Since compact convex sets with non-empty interior are disks, we have W ∼= Dm+1, and
thus X ∼= Dm+1 as claimed.

Proof of Lemma 4.1.41. We first argue in the case of closed 1-mesh bundles p : (M,f)→
(B, g) with open regular cell base. By definition, (B, g) is a open constructible substratifi-
cation of a regular cell complex (Y, e) (where e stratifies Y by its cells). By removing cells
from Y that are not in the closure of B, we may further assume B = Y . Let triv(p) ⊂ B
be the closed subset of B over which p has point fibers, and denote by triv(p)∗ the union
of triv(p) and Y \ B. We build a bundle q : (X, d) → (Y, e) with (X, d) being a regular
cell complex containing (M,f) as an open constructible substratification. The underlying
map q : X → Y is the subbundle of the projection π : Y ×R→ Y with fibers over x given
by [−dist(x, triv(p)∗),+dist(x, triv(p)∗)].21 Denote by q|B the restriction of q to B ⊂ Y in
the base. Observe that we can identify bundles q|B ∼= p by linearly identifying their fibers
q−1(z) ∼= p−1(z), z ∈ B (note p−1(z) inherits linear structure from the fiber 1-framing γ
of p, which embeds p−1(z) ↪→ R). In particular, this identifies q−1(B) ∼= M . Now, stratify
X by defining strata s of (X, d) to be either strata s in (M,f) or of the form r × {0}
where r is a stratum of (Y \B, e). Verify that, by constructibility of p, this makes q itself
a closed 1-mesh bundle. Using Lemma 4.1.42 as well as the constructibility of q, one
further verifies that (X, d) is a regular cell complex. The constructible substratification
(M,f) ↪→ (X, d) then exhibits (M,f) as a open regular cell stratification. We illustrate
the construction in Fig. 4.7.

Figure 4.7: Closed 1-mesh bundles over open regular cell base have open regular cell total
stratification.

Finally, to see the statement in the case of open 1-mesh bundles p : (M,f)→ (B, g)
over open regular cell stratifications (B, g), one first compactifies p to a closed 1-mesh
bundle p : (M,f) → (B, g) using Construction 4.1.34. The previous argument shows
that (M,f) is open regular cell; since (M,f) is an open constructible substratification of
(M,f) it follows that (M,f) is open regular cell as claimed.

We can prove that cellulability lifts.
21Note every regular cell complex Y is metrizable, for instance by using the ‘barycentric metric’ of its
barycentric subdivision. The same need not hold for non-regular cell complexes!
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Proof of Proposition 4.1.40. Since (B, g) is cellulable, we may refine it by a open regular
cell stratification G : (B, c) → (B, g). Then the pullback bundle G∗p : (M,d) → (B, c)
has open regular cell total stratifications (M,d) by Lemma 4.1.41. The coarsening
TotG : (M,d)→ (M,f) exhibits (M,f) to be open cellulable as claimed.

Remark 4.1.43 (General regular cell 1-mesh bundles). Working with ‘cellulable’ in place
of ‘open cellulable’ stratifications (resp. ‘regular cell’ in place of ‘open regular cell’ stratifi-
cations) the preceding results still hold and, in fact, it apply to all 1-mesh bundles. The
additional assumption of openness simplifies the proof, and will cover the cases of interest
to us.

While our main interest will lie with cellulable stratifications, for later use we also
record following (easily verified) observations about further conditions that ‘lift’ in 1-mesh
bundles.

Observation 4.1.44 (Finiteness and local finiteness lifts). Consider a 1-mesh bundle p :
(M,f)→ (B, g) in which (B, g) is finite (resp. locally finite). Then (M,f) is finite (resp.
locally finite) as well.

Observation 4.1.45 (Frontier-constructibility lifts). A ‘frontier-constructible’ stratification
(B, g) is a stratification that satisfies (s ∩ r 6= ∅) ⇒ (r ⊂ s) (equivalently, this asks
for the characteristic map to be open, see Lemma B.2.10). Consider a 1-mesh bundle
p : (M,f) → (B, g) in which (B, g) is finite (resp. locally finite). Then (M,f) is finite
(resp. locally finite) as well.

4.1.3 n-Meshes and their bundles

4.1.3.1 The definition of n-meshes We now generalize the definition of 1-meshes to
dimension n.

Definition 4.1.46 (n-Meshes). An n-meshM is a tower of 1-mesh bundles (Mn, fn)
pn−→

(Mn−1, fn−1)
pn−2−−−→ ...

p2−→ (M1, f1)
p1−→ (M0, f0) = pt.

Just as 1-meshes have flat 1-framings (embedding a 1-mesh in R), n-meshes have ‘flat
n-framings’ (embedding an n-mesh in Rn). This can be constructed from the individual
fiber 1-framings of the 1-mesh bundles in an n-mesh as follows. Recall the standard
euclidean n-proframe Π = (πn, πn−1, ..., π1) consisting of projections πi : Ri → Ri−1 (see
Terminology 1.1.70).

Construction 4.1.47 (Flat n-framings of n-meshes). Given an n-mesh M consisting of
1-mesh bundles pi : (Mi, fi) → (Mi−1, fi−1), recall that each pi comes equipped with a
fiber 1-framing Mi ↪→Mi−1 × R. This allows us to inductively construct a map of towers
of spaces

Mn Mn−1 · · · M1 M0 = pt

Rn Rn−1 · · · R1 R0

pn

γn

pn−1

γn−1

p2

· · ·

p1

γ1

πn πn−1 π2 π1

where γi is obtained by postcomposing the fiber 1-framing Mi ↪→ Mi−1 × R with the
product map γi−1 × R : Mi−1 × R ↪→ Ri−1 × R. We refer to the embedding of towers
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γ : M ↪→ Π as the ‘flat n-framing’ (or simply ‘n-framing’) of the n-mesh M . Note that γ
is fully determined by its top component γn : Mn ↪→ Rn and, abusing terminology, we
sometimes refer the embedding γn itself as the ‘n-framing’ of M .

Given an n-mesh M with n-framing γ, note that components of γ may be considered
either as subspace embeddings γi : Mi ↪→ Ri or as stratified maps γ : (Mi, fi)→ Ri (which
are then coarsenings onto their images in Ri).

Example 4.1.48 (A mixed 2-mesh). In Fig. 4.8 we depict a 2-mesh via its n-framing
γ : M ↪→ Π into the standard euclidean tower Π (we indicate this by providing coordinate
axis for the ambient euclidean space Ri). Note that the 2-mesh is ‘mixed’ in that it is
neither open nor closed.

Figure 4.8: A mixed 2-mesh.

Example 4.1.49 (Closed and open n-Meshes). In Fig. 4.9 we depict closed and open
meshes in dimension 2 and 3. In each case we again depict the mesh via its n-framing
γ : M ↪→ Π.

Figure 4.9: A closed and open meshes in dimension 2 and 3.

Terminology 4.1.50 (Closed or open n-meshes). A mesh is called ‘closed’ (resp. ‘open’) if
each 1-mesh bundle in its tower is closed (resp. open).
Observation 4.1.51 (Closed and open n-meshes are regular cell). Our earlier Lemma 4.1.41,
that ‘open regular cellularity lifts in closed resp. open 1-mesh bundles’, implies that for
closed resp. open n-meshes M each (Mi, fi) is an open regular cell stratification, and thus,
in particular, conical.
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Remark 4.1.52 (General n-meshes are also regular cell). The previous observation gener-
alizes: general n-meshes are regular cell stratifications (while not necessarily open ones)
and thus, in particular, conical. We omit a proof of this more general statement, since we
will be mainly interested in the case of open and closed meshes.

4.1.3.2 n-Mesh bundles Yet more generally, we may consider n-meshes in ‘bundles’
parametrized by a base stratification.

Definition 4.1.53 (n-Mesh bundles). Given a stratification (B, g), an n-mesh bundle
p over (B, g) is a tower of 1-mesh bundles (Mn, fn)

pn−→ (Mn−1, fn−1)
pn−2−−−→ ...

p2−→
(M1, f1)

p1−→ (M0, f0) = (B, g).

The construction of n-framings immediately generalizes to the bundle case.

Construction 4.1.54 (Fiber n-framings). Given an n-mesh bundles p over a base strat-
ification (B, g), replacing πi by B × πi in Construction 4.1.47, on constructs the ‘fiber
n-framing’ γ of p as a map of towers

Mn Mn−1 · · · M1 M0 = B

B × Rn B × Rn−1 · · · B × R1 B × R0

pn

γn

pn−1

γn−1

p2

· · ·

p1

γ1 idB

B×πn B×πn−1 B×π2 B×π1

As before, we sometimes refer to the top map γn : Mn ↪→ B × Rn itself as the ‘fiber
n-framing’ of p.

Following our earlier comparison of ‘0-constructibility’ and ‘1-constructibility’ for
1-mesh bundles (see Remark 4.1.33), we also record the following further variation of our
notion of n-mesh bundle.
Remark 4.1.55 (1-constructible n-mesh bundles). Given a stratification (B, g), an ‘1-
constructible n-mesh bundle’ p over (B, g) is a tower of 1-constructible 1-mesh bundles
(Mn, fn)

pn−→ (Mn−1, fn−1)
pn−2−−−→ ...

p2−→ (M1, f1)
p1−→ (M0, f0) = (B, g). Fully analogous

to Remark 4.1.33, while we will show that (‘0-constructible’) n-mesh bundles over (B, g)
can be classified by functors Entr g → TBordn, 1-constructible n-mesh bundles can be
classified by ∞-functors Entr g → TBordn (which, equivalently, are ordinary functors
ho(Entr g)→ TBordn).

4.1.3.3 Categories of n-meshes and n-mesh bundles We define maps and cate-
gories of n-meshes and their bundles.

Definition 4.1.56 (Maps of n-mesh bundles). Consider n-mesh bundles p and q over
(B, g) resp. (C, h). An n-mesh bundle map F : p→ q is a map of towers

(Mn, fn) (Mn−1, fn−1) · · · (M1, f1) (M0, f0) = (B, g)

(Nn, gn) (Nn−1, gn−1) · · · (N1, g1) (N0, g0) = (C, h)

pn

Fn

pn−1

Fn−1 · · ·

p2 p1

F1 F0

qn qn−1 q2 q1

such that F0 is a stratified map, and each Fi (for i > 0) is a 1-mesh bundle map pi → qi.
Setting (B, g) = (C, h) = ∗, the definition specializes to a notion of n-mesh maps.
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Remark 4.1.57 (n-Mesh bundle maps commute with fiber n-framings). In analogy to
Remark 4.1.32, given n-mesh bundles p and q withfiber n-framing γ resp. ρ, an n-mesh
map F : (M,f)→ (N, g) induces a map of towers F̃ : im(γ)→ im(ρ) (with components
F̃i : im(γi)→ im(ρi)) such that F̃ ◦ γ = ρ ◦ F .
Terminology 4.1.58 (Singular, regular and balanced maps). We call an n-mesh bundle map
F ‘singular’ resp. ‘regular’ resp. ‘balanced’ if its is fiberwise resp. regular resp. balanced,
that is, for all 1 ≤ i ≤ n, the bundle maps Fi restrict on 1-mesh fibers to singular resp.
regular resp. balanced 1-mesh maps in the sense of Terminology 4.1.15.

Terminology 4.1.59 (Subbundles and submeshes). We call an n-mesh bundle map F a
‘subbundle’ if F0 is a substratification and all Fi (for i > 0) are fiberwise submesh inclusions
of 1-meshes in the sense of Terminology 4.1.16. In the case of n-mesh maps we speak of
‘submeshes’.

Of particular interest to us will be mesh bundles that live over the same base stratification
(B, g), with maps that act identically on the base.

Terminology 4.1.60 (Base preserving maps). Given n-mesh bundles p and q, a mesh
bundle map ‘over (B, g)’ (or a ‘base preserving’ mesh bundle map) is a mesh bundle map
F : p→ q with F0 = idB.

Notation 4.1.61 (Ordinary categories of n-mesh bundles). We denote by MeshBunn the
category of n-mesh bundles and their maps. Given a stratification (B, g), we denoted by
Meshn(B, g) the category of n-mesh bundles and their maps over (B, g). We denote by
Meshn the categories of n-meshes and their maps. In each case, we add a bar decoration
M̄ to mean the subcategory of closed n-mesh bundles (resp. n-meshes) and singular
maps, and a circle decoration M̊ to mean the subcategories of open n-mesh bundles (resp.
n-meshes) and regular maps.

The category of meshes is naturally Top-enriched, and thus an ∞-category (recall from
Convention 4.0.1 that we model ∞-categories by topologically enriched categories in this
chapter).

Notation 4.1.62 (∞-Categories of n-mesh bundles). The∞-categoryMeshBunn is obtained
by topologizing the hom sets MeshBunn(M,N) of MeshBunn as subspaces of the product

Map(Mn, Nn)×Map(Mn−1, Nn−1)× ...×Map(M0, N0) .

This further restricts to subcategories of mesh bundles over a fixed base (B, g) and to
n-meshes, yielding the categories Meshn(B, g) resp. Meshn. As before we add a bar
decoration M̄ to mean the sub-Top-categories of closed n-mesh bundles (resp. n-meshes)
and singular maps, and a circle decoration M̊ to mean the sub-Top-categories of open
n-mesh bundles (resp. n-meshes) and regular maps.

It will be useful to separately record the following classes of maps.

Terminology 4.1.63 (Mesh degeneracies and coarsenings). An n-mesh map F will be
called a ‘mesh degeneracy’ resp. a ‘mesh coarsenings’ if Fi (i > 0) are fiberwise a 1-mesh
degeneracy resp. a 1-mesh coarsening in the sense of Terminology 4.1.17.22

22Similar to Remark 2.3.99, we also refer to ‘mesh coarsenings’ as ‘mesh refinements’ (of their codomain).
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Note, in particular, any mesh coarsening induces a tower of homeomorphisms on underlying
spaces, and is thus a tower of coarsenings of stratifications in the usual sense (see
Definition B.2.4).

Notation 4.1.64 (Categories of degeneracies/coarsenings). Passing to sub-Top-categories of
Meshn, one obtains the ∞-categories Meshdeg

n of n-meshes and degeneracies, and Meshcrs
n

of n-meshes and coarsenings.

4.1.3.4 Truncations and pullbacks Like n-truss bundles, n-mesh bundles ‘truncate’
and truncation is continuous.

Terminology 4.1.65 (Truncations). Given an n-mesh bundle p = (pn, pn−1, ..., p1) over
(B, g) its i-truncation p≤i is the i-mesh (pi, pi−1, ..., p1) over (B, g) obtained by truncating
the tower p to its lower i degrees.

Remark 4.1.66 (Truncating is continuous). i-Truncation induces a Top-enriched functor
(−)≤i : Meshn(B, g)→Meshi(B, g) of ∞-categories of meshes bundles over (B, g).

We may also generalize our construction of pullbacks from the case of 1-mesh bundles
(see Construction 4.1.36) to dimension n as follows. Of particular interest will be the
following ‘inductive’ usage of the construction.

Construction 4.1.67 (Inductive pullbacks of n-meshes). Consider an n-mesh bundle
p = ((Mn, fn)

pn−→ ...
p1−→ (M0, f0)) and, for 0 ≤ i < n, an i-mesh q = ((Nn−1, gn−1)

qn−→
...

q1−→ (N0, g0)) (if i = 0 this is simply a stratification (N0, g0)). Given an i-mesh bundle
map G : q → p≤i, we can use Construction 4.1.36 inductively, to define a ‘pullback n-mesh
bundle’ TotG : G∗p→ p by the tower of maps

(G∗Mn, G
∗fn) · · · (G∗Mi+1, G

∗fi+1) (Ni, fi) · · · (N0, f0)

(Mn, fn) · · · (Mi+1, fi+1) (Mi, fi) · · · (M0, f0)

G∗pn G∗pi+2 G∗pi+1

pi+1pi+2pn

qi

pi

q1

p1

GiTot1GTotn−iG G0

y y y

where, for j = 1, ..., n, we define TotjG and G∗pi+j by pulling back pi+j along Totj−1G
(with Tot0G = Gi) using Construction 4.1.36.

Terminology 4.1.68 (Bundle restrictions). If i = 0 in the preceding construction, and if
G0 : (C, h) ≡ (N0, f0) ↪→ (M0, f0) ≡ (B, g) is a substratification, then we call G∗p → p
the ‘restriction of p to C ↪→ B’ in its base, and write this as p|C ↪→ p.

Note, restricting n-mesh bundles to a point in their base in this way yields the ‘fiber
n-meshes’ at that point.

4.2 Weak equivalence of meshes and trusses

In this section we prove the equivalence of n-meshes and n-trusses and, more generally,
of their respective bundles (for sufficiently nice base stratification). The equivalence will
be witnessed by the ‘entrance path truss’ functor ETrs : Meshn → Trsn and, conversely,
by the ‘classifying mesh’ functor CMsh− : Trsn → Meshn. As the names suggest, the
former functor is a variation of the entrance path poset functor, while the latter functor
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is a variation of the classifying stratification functor. Namely, the entrance path truss
functor will take an n-mesh, given by a tower M of 1-mesh bundles, to a tower T of
1-truss bundles defined by applying the entrance path poset functor to the tower M and
endowing fibers in T with 1-truss structure obtained from the 1-mesh structure of fibers
in M . Conversely and analogously, the classifying mesh functor will take an n-truss T to
a tower M of 1-mesh bundles obtained by applying the classifying stratification functor
to the tower T and endowing fibers in M with 1-mesh structure obtained from the 1-truss
structure of fibers in T (note, however, we will see that additional care has to be taken if
T is not closed). The central theorem of this chapter states the following.

Theorem 4.2.1 (Weak equivalence of meshes and trusses). The entrance path truss and
classifying mesh functors restrict to weak equivalences

M̄eshn T̄rsn M̊eshn T̊rsn
ETrs

CMsh

ETrs

CMsh

between the ∞-categories of closed n-meshes and closed n-trusses, resp. between open
n-meshes and open n-trusses.

The theorem will, in fact, naturally follow from the following more general statement
about mesh and truss bundles.

Theorem 4.2.2 (Weak equivalence of mesh and truss bundles). Let (B, g) be an open
cellulable stratification. The entrance path truss and classifying mesh functors restrict to
weak equivalences

M̄eshn(B, g) T̄rsn(Entr g) M̊eshn(B, g) T̊rsn(Entr g)
ETrs

CMsh

ETrs

CMsh

between the ∞-categories of closed n-mesh bundles over (B, g) and closed n-truss bundles
over Entr g, resp. between open n-mesh bundles over (B, g) and open n-truss bundles over
Entr g.

Note that Theorem 4.2.2 reduces to Theorem 4.2.1 if we choose to work with a trivial
base (B, g) = ∗. We mention three further variations of the theorem.

Remark 4.2.3 (General mesh and truss bundles). Note that both theorems are stated for
open and closed meshes resp. trusses only, but we will, in fact, construct a pair of functors

Meshn(B, g) Trsn(Entr g)
ETrs

CMsh

relating general n-mesh bundles and n-truss bundles over sufficiently nice base (B, g) (see
Proposition 4.2.17 and Construction 4.2.67). As briefly explained in Remark 4.2.18, while
one could show that these functors too form a weak equivalence, such a proof would lead
outside the ‘natural’ realm of homotopy theory (i.e. of ∞-categories).
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Remark 4.2.4 (1-Constructible bundles). A variation of Theorem 4.2.2 can be obtained by
working with 1-constructible n-mesh bundles (see Remark 4.1.55) and n-truss bundles
over categories (see Remark 2.3.84). In this case, ETrs and CMsh yield weak equiva-
lences between M̄esh1

n(B, g) and T̄rsn(Entr g), and similarly between M̊esh1
n(B, g) and

T̊rs1
n(Entr g). In fact, the proof of Theorem 4.2.2 given here will immediately generalize

to this case.23

Remark 4.2.5 (Non-finite base). Recall from Convention 4.0.2 that we assume (B, g)
to be finite. Our proof of Theorem 4.2.2 can be adapted to the case of infinite base
stratifications as well; however, a bit more care needs to be taken due to the usual
intricacies of Top-enriched categories modelling ∞-categories.

The proof of Theorem 4.2.1 and Theorem 4.2.2 will take up the rest of this section.
After first defining the entrance path truss functor in Section 4.2.1, we will demonstrate its
‘conservativity’ in Section 4.2.2, as well as its ‘weak faithfulness’ in Section 4.2.3. We then
define the classifying mesh functor in Section 4.2.4, first in the (simpler) case of closed
trusses and then for general trusses. Finally, the proof of Theorem 4.2.1 will be assembled
in Section 4.2.5. This last section will also discuss several immediate applications of
Theorem 4.2.1, which we now briefly outline.

Most immediately, composing this equivalence of closed n-trusses and flat n-framed
regular cell complexes established in Chapter 3 with the weak equivalence of Theorem 4.2.1,
we obtain the following corollary.

Corollary 4.2.6 (Equivalence of closed meshes and flat framed cell complexes). The
equivalences of Theorem 4.2.1 and Theorem 3.0.2 compose to weak equivalences cc ◦ETrs :
M̄eshn ' FlatFrCellCplxn : CMsh ◦ tt.

Terminology 4.2.7 (Cell mesh and mesh complex). We will denote the composite CMsh ◦ tt
by CellMsh, called the ‘cell mesh’ functor, and the composite cc ◦ETrs by MshCplx, called
the ‘mesh complex’ functor.

Using the notion of mesh refinements, the translation of framed cells into meshes will
allow us to define ‘framed subdivisions’ of framed cells. We will then deduce the following
result, which shows that the notion of framed subdivision is ‘combinatorializable’.

Corollary 4.2.8 (Classifying subdivision of flat framed cells). Up to homotopy, framed
subdivisions of any framed cell (X,F) are in correspondence with truss refinements of the
truss tt(X,F).

Finally, the equivalence of trusses and meshes in Theorem 4.2.1 will also allow us to
‘transfer’ the duality of closed and open n-trusses to a dualization equivalences between
closed n-meshes and open n-meshes.

Corollary 4.2.9 (Dualization of meshes). Dualization of trusses induces weak equivalences
of ∞-categories † : M̄eshn ' M̊eshn : †.
23This uses the observation that cellulable stratifications (B, g) can be refined by regular cell stratifications

(X, f), which are 0-truncated, and thus notions of 1-constructible and 0-constructible mesh bundles
over (X, f) coincide, and Entrf ' Entr f canonically.
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This last result is central. While the ‘cellular’ world of framed regular cell complexes
provided us with (combinatorial) topological realizations of closed trusses, a similar
topological realization of open trusses wasn’t readily available. The stratified topological
notion of meshes accommodates topological realizations of both closed and open trusses
as well as of their duality. This observation underlies later, more powerful dualization
operations of so-called ‘flat framed stratifications’, and provides a general bridge between
the dual worlds of ‘cellular’ geometry and ‘string’ geometry (see also Section 5.3).

4.2.1 Entrance path trusses We formally construct an entrance path truss functor

ETrs : Meshn(B, g)→ Trsn(Entr g)

of ∞-categories, which takes mesh bundles to truss bundles (resp. meshes to trusses).
Proceeding inductively, we start with the case of 1-mesh bundles.

Observation 4.2.10 (Restriction 1-mesh bundles to closures of strata). Given a 1-mesh
bundle p : (M,f) → (B, g) with fiber 1-framing γ, and a stratum t in f lying over a
stratum s = p(t) in g, then p restricts on the closure t to a 1-mesh bundle p|t : t → s
whose fiber 1-framing γt is obtained by restricting γ to t. The resulting upper and lower
bounds will be denoted by γ±

t
: s→ s× R. Note that if t is singular then these bounds

coincide, namely, γ±
t
◦ p|t = γ|t.

Construction 4.2.11 (Entrance path 1-truss bundles). Given a 1-mesh bundle p :
(M,f)→ (B, g) we endow the entrance path poset map Entr(p) : Entr(f)→ Entr(g) with
structure of a 1-truss bundle, yielding the ‘entrance path 1-truss bundle’ ETrs(p).

We first endow fibers of Entr(p) with 1-truss structure. Trivializing p−1(s) ∼= s× fib(s)
over a base stratum s, where fib(s) is a 1-mesh (see Observation 4.1.29), note that
Entr(p)−1(s) = Entr(p−1(s)) ∼= Entr(fib(s)) canonically. Endow Entr(p)−1(s) with a frame
order � ordering strata using the order determined by the flat 1-framing of the 1-mesh
Entr(fib(s)), and with a dimension map dim : Entr(p)−1(s)→ [1]op that maps strata t in
p−1(s) to the fiber dimension fibdim(t).

It remains to check, given an entrance path s → r in the base (B, g), the Boolean
profunctor R ≡ p−1(s→ r) : Entr(p)−1(s) −7−→ Entr(p)−1(r) defines a 1-truss bordisms. Pick
t ∈ Entr(p)−1(s). If t is singular then by constructibility there is a unique u ∈ Entr(p)−1(r)
such that R(t, u) holds and u too is singular. Otherwise, if t is regular then we can apply
Observation 4.2.10 to see that R(t, u) holds if and only if γ−

t
(r) ≤ γ(u) and γ(u) ≤ γ+

t
(r).

Comparing the two cases to the construction of ‘singular determined’ 1-truss bordisms in
Lemma 2.1.51 verifies that R is a 1-truss bordism as claimed.

Example 4.2.12 (Entrance path 1-truss bundles). The entrance path 1-truss bundle of
the 1-mesh bundle depicted in Fig. 4.3 recovers the 1-truss bundle depicted in Fig. 2.9.

Definition 4.2.13 (Entrance path truss bundles). Given an n-mesh bundle p over
(B, g) ≡ (M0, f0), consisting of 1-mesh bundles pi : (Mi, fi)→ (Mi−1, fi−1), its entrance
path truss ETrs p is the n-truss bundle over Entr(g) defined by the tower of 1-truss
bundles

Entr(fn)
ETrs(pn)−−−−−→ Entr(fn−1)

ETrs(pn−1)−−−−−−−→ · · · ETrs(p2)−−−−−→ Entr(f1)
ETrs(p1)−−−−−→ Entr(f0)

where ETrs(pi) is the entrance path 1-truss bundle of pi (see Construction 4.2.11).

176



The construction of entrance path trusses further extends to mesh bundle maps as follows.

Definition 4.2.14 (Entrance path truss maps). Given a mesh bundle map F : p→ q be
a map of n-mesh bundles p and q over (B, g) with components Fi : (Mi, fi) → (Ni, gi).
The entrance path truss map ETrsF : ETrs p→ ETrs q is truss bundle map over Entr g
with components (ETrsF )i given by Entr(Fi) : Entr(fi)→ Entr(gi).

Notation 4.2.15 (The entrance path truss functor). The previous definitions yield the
functor ETrs : Meshn(B, g)→ Trsn(Entr g) from mesh bundles over (B, g) to truss bundles
over Entr g.

As a first observation, we record that the functor preserves pullbacks.

Observation 4.2.16 (ETrs preserves pullbacks). Recall from Construction 4.1.67 the notion
of pullbacks G∗p of n-mesh bundles p along base maps G : (C, f) → (B, g). The
above construction satisfies ETrs(G∗p) = (EntrG)∗ ETrs p, where (EntrG)∗ ETrs p is the
pullback of the n-truss bundle ETrs p along EntrG : Entr f → Entr g in the sense of
Construction 2.3.85.

Let us next discuss, how the entrance path truss functor is in fact an ∞-functor. To
make this precise, we first need to endow the category of trusses (resp. truss bundles)
with the structure of an ∞-category. A natural approach would be to note that the the
category Trsn(Entr g) is Pos-enriched: this endows the set of truss bundle maps with arrows
given by (level-wise commuting) natural transformations between them. By passing to
specialization topologies we obtain the kTop-enriched category Trsn (see Notation B.0.1
and Convention B.0.2). As a result, we can define the following kTop-enriched functor.

Proposition 4.2.17 (ETrs as an ∞-functor). The entrance path truss functor induces an
∞-functor ETrs : Meshn(B, g)→ Trsn(Entr g).

Proof. We need to check that the assignment F 7→ ETrsF on hom spaces is continuous
on each hom space. This follows from continuity of Entr : Strat → Pos as established in
Construction B.2.21 (note also Remark B.2.20 applies since all posets are finite).

Remark 4.2.18 (Non-invertible 2-structure). The immediate ‘issue’ is that the category Trsn
(and similarly Trsn(Entr g)) is kTop-enriched and not Top-enriched: that is, hom spaces of
Trsn need not be (weak) Hausdorff. Moreover, these hom spaces do not ‘honestly’ represent
the higher categorical structures of trusses: morally, natural transformations equip Trsn
with non-invertible 2-morphisms, which are inverted when passing to the specialization
topology. This goes back to an earlier ‘mistake’: the category of stratifications should
not be defined as an ∞-category, but as an (∞, 2)-category.24 Thus, while one can
show that the functor ETrs in Proposition 4.2.17 is a weak equivalence as given (with
a candidate weak inverse defined in Construction 4.2.67) dealing with non-Hausdorff
spaces homotopically is cumbersome; a better approach in establishing the equivalence
Meshn ' Trsn would be to construct both Meshn and Trsn as (∞, 2)-categories.
24Since stratifications have fundamental (∞, 1)-categories, their category naturally has (∞, 2)-categorical
structure. This is similar to spaces having fundamental (∞, 0)-categories, and thus their category having
(∞, 1)-categorical structure.
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For us there will be no need to go down the route of (∞, 2)-categories: this is because, in
the cases of interest to us, non-invertible 2-structure disappears. Namely, in the closed-
singular case T̄rsn(Entr g) (resp. the open-regular case T̊rsn(Entr g)) we may topologize
hom sets in either category discretely and still obtain the following ∞-functor.

Proposition 4.2.19 (Continuity of ETrs on bundles). The entrance path truss functor
restricts to ∞-functors ETrs : M̄eshn(B, g) → T̄rsn(Entr g) and ETrs : M̊eshn(B, g) →
T̊rsn(Entr g).

Proof. This follows from the fact that singular resp. regular maps of closed resp. open
truss bundles over a fixed base poset do not admit non-trivial natural transformations,
see Lemma 2.3.104.

Setting (B, g) = ∗ we in particular obtain.

Corollary 4.2.20 (Continuity of ETrs on meshes). The entrance path truss functor
restricts to ∞-functors ETrs : M̄eshn → T̄rsn and ETrs : M̊eshn → T̊rsn.

For later use we will also need the following variation of the statement. Note that ETrs
maps mesh degeneracies to truss degeneracies, and mesh coarsenings to truss coarsenings.
We thus obtain ordinary functors ETrs : Meshdeg

n → Trsdeg
n and ETrs : Meshcrs

n → Trscrs
n

(see Notation 2.3.98). Now, again by rigidity of hom posets (this time in the case of truss
degeneracies and coarsenings, see Lemma 2.3.104) we may observe the following.

Observation 4.2.21 (More continuity of ETrs). The entrance path truss functor induces
∞-functors ETrs : Meshdeg

n → Trsdeg
n and ETrs : Meshcrs

n → Trscrs
n .

The restricted functors in Proposition 4.2.19 (and similarly in Corollary 4.2.20 and
Observation 4.2.21) provide the first half of ‘weak equivalences’ of ∞-categories. In the
next sections we will discuss the two main ingredients of proving this equivalence, which
are ‘conservativity’ and ‘weak faithfulness’.

4.2.2 Conservativity of the entrance path truss functor For n-meshes M,M ′,
the functoriality of ETrs implies that if M ∼= M ′ then ETrsM = ETrsM ′ (note we write
equality in place of isomorphism since isomorphisms between closed resp. between open
trusses are necessarily unique). In this section we will see that the converse holds as well;
namely, the functor ETrs (restricted to closed resp. open n-meshes) is ‘conservative’. More
generally, we record this in the case of n-mesh bundles by the following result.

Proposition 4.2.22 (Conservativity). For an open cellulable stratification (B, g), the
functor ETrs : M̄eshn(B, g) → T̄rsn(Entr g) (resp. ETrs : M̊eshn(B, g) → T̊rsn(Entr g))
is conservative: that is, given closed (resp. open) n-mesh bundles p, p′ over (B, g), if
ETrs p = ETrs p′ then p ∼= p′.

The proof of Proposition 4.2.22 will take up the rest of this section. Furthermore, the
properties of the construction of the isomorphism p ∼= p′ (namely, its ‘continuity in
families’) will be reused in our later proof of ‘weak faithfulness’ in the next section.

We also record the following further variation of the result.
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Observation 4.2.23 (More conservativity). Note that any isomorphism of n-meshes is
both a mesh degeneracy and a mesh coarsening. The preceding proof of conservativity
will therefore immediately imply conservativity of the functors ETrs : Meshdeg

n → Trsdeg
n

and ETrs : Meshcrs
n → Trscrs

n when restricting these functors to open and closed n-meshes.
(With enough care, the proof can be extended to include all other n-meshes as well, bur
our main interest lies with the closed and open case.)

4.2.2.1 Reduction to 1-mesh bundles over open regular cell base As a first
step we show that it suffices to prove the statement of Proposition 4.2.22 for bundles over
regular cell base.

Remark 4.2.24 (Reduction to open regular cell base). Fix a refinement G : (B, c)→ (B, g)
of (B, g) by an open regular cell stratification. Using Construction 4.1.67 we may pull-
back both p and p′ to n-mesh bundles G∗p resp. G∗p′ over (B, c). The assumption
ETrs p = ETrs p′ in Proposition 4.2.22 now implies that ETrsG∗p = ETrsG∗p′ (see Ob-
servation 4.2.16). Any n-mesh bundle isomorphism G∗p ∼= G∗p′ that fixes the base
(B, c) will induce an n-mesh bundle isomorphism p ∼= p′. Thus it is sufficient to prove
Proposition 4.2.22 in the case of open regular cell base.

Next, by an inductive argument, the statement of Proposition 4.2.22 may further be
reduced to a statement about 1-mesh bundles, as the following remark records.

Remark 4.2.25 (Reduction to 1-mesh bundle isomorphism). Consider closed (respectively
open) n-meshes p and p′ given by towers of 1-mesh bundles pi : (Mi, fi)→ (Mi−1, fi−1)
resp. p′i : (M ′i , f

′
i) → (M ′i−1, f

′
i−1) with (M0, f0) = (B, g) = (M ′0, f

′
0). Assume ETrs p =

ETrs p′ as in Proposition 4.2.22. This implies (ETrs p)<n = (ETrs p′)<n, and thus we can
inductively construct the isomorphism G : p<n ∼= p′<n of truncated mesh bundles. Define
the n-mesh G∗p′ to be the inductive pullback of p′ along G (see Construction 4.1.67);
write the top-level 1-mesh bundle of G∗p′ as p̃n : (M̃n, f̃n) → (Mn−1, fn−1) and denote
the canonical map (M̃n, f̃n)→ (M ′n, f

′
n) by F , as shown in the diagram below.

f̃n f ′n

fn−1 f ′n−1

F

p̃n

y
p′n

Gn−1

Note, since G is assumed to be an isomorphism, F too is an isomorphism. To prove
Proposition 4.2.22 it remains to construct a bundle isomorphism κpp̃ as shown below.

fn f̃n

fn−1

κpnp̃n
∼

pn p̃n

Moreoever, note that since open cellulability ‘lifts’ (see Proposition 4.1.40) and since (B, g)
is assumed to be open cellulable, the stratification fn−1 itself is open cellulable.

The inductive step for Proposition 4.2.22 is therefore provided by the following result.
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Proposition 4.2.26 (Isomorphisms between 1-mesh bundles). For open cellulable (B, g)
and 1-mesh bundles p : (M,f) → (B, g) and p̃ : (M̃, f̃) → (B, g) such that ETrs(p) =
ETrs(p̃) coincide, there is a 1-mesh bundle isomorphism κpp̃ : p ∼= p̃ that fixes the base
(B, g).

The proof of this statement will take up the next few sections. Let us start by reducing
the statement even further to the following case.

Remark 4.2.27 (Reduction closed bundles). Assume Proposition 4.2.26 holds for closed
1-mesh bundles over an open regular cell stratification (B, g). The the statement holds for
general 1-mesh bundles p and p̃. Indeed, fiberwise compactifying both bundles we obtain
closed 1-mesh bundles p̄ and ¯̃p (see Construction 4.1.34). This satisfies ETrs(p̄) = ETrs(¯̃p)
and thus we find κ : p̄ ∼= ¯̃p, which restricts to a bundle isomorphism κ : p ∼= p̃ as
required.

In light of the previous remark, we henceforth assume p, p̃ to be closed 1-mesh bundles,
and (B, g) to be an open regular cell stratification. The construction of κpp̃ will still need
care, and as a motivation for our approach we will first discuss how not to construct κpp̃.
When defining the stratified isomorphism κpp̃ : f ∼= f̃ fiberwise, note that when traveling
along an entrance paths between two strata r → s in the base (B, g), new singular strata
can appear in the ‘special’ fiber over s, which were not present in the ‘generic’ fiber over r.
This implies that, for instance, we generally cannot define κpp̃ by fiberwise mapping point
strata to point strata and extending this mapping of points linearly to interval strata (note
that fibers in 1-mesh bundle inherit linear structure from the standard linear structure of
R via the fiber 1-framing embedding). We illustrate the failure of this approach in the
following example.

Example 4.2.28 (Failure of continuity in fiberwise linear interpolation). To illustrate
the failure of continuity that can happen in attempting to fiberwise linearly map between
bundles, consider the bundles p : (M,f) → (B, g), p̃ : (M̃, f̃) → (B, g) as shown in
Fig. 4.10 whose entrance path 1-truss bundles coincide (which we depicted, via their fiber
1-framings, as embedded in B × R). We indicated an entrance path in (B, g), together
with a generic fiber as well as a special fiber in both p and p̃. If we were to build a
bundle isomorphism fiberwise, by first identifying point strata of fibers (as indicated by
the mappings on the right in Fig. 4.10) and then linearly interpolating these mappings on
interval strata, we would end up with a discontinuous bundle isomorphism between p and
p̃.

Our strategy to ensure continuity in our construction of κpp̃ will be to use ‘affine combina-
tions’ of maps on generic and special fibers whenever we are getting ‘critically close’ to
special fibers (this will be referred to as fibers in the ‘critical region’ of a stratum), and
use simple linear interpolation otherwise.

4.2.2.2 Constructing critical regions We start with the construction of ‘critical
regions’ in the base stratification (B, g), over which fiberwise maps will be defined as
certain affine combinations of ‘general’ and ‘special fiber maps’ later on. Recall we assume
the base stratification (B, g) to be an open regular cell stratification.
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Figure 4.10: The isomorphism needed for the inductive step in the proof of conservativity
of the entrance path truss functor generally cannot be constructed by simple fiberwise
interpolation.

Terminology 4.2.29 (Interval contour). Let p : (M,f)→ (B, g) be a closed 1-mesh bundle,
and consider a regular stratum s of f lying over a stratum r = p(s) of g. The ‘interval
contour under s’, denoted by cs, is the subset of ∂r = r \ r, over which the restricted
bundle p|s : s→ r (see Observation 4.2.10) has interval fibers.

The complement of cs in ∂r will also be called the ‘point contour under s’. For the bundle
p from Fig. 4.10, we highlight the point and interval contour of a chosen stratum s in
Fig. 4.11 below

Figure 4.11: Point and interval contour.

Remark 4.2.30 (Contours only depend on truss structure). Importantly, if p̃ : (M̃, f̃)→
(B, g) is another closed 1-mesh bundle over (B, g) and ETrs p = ETrs p̃ (which in particular
allows us to identify strata s of f with strata s̃ of f̃) then cs and cs̃ coincide as subspaces
of B.

We will now thicken the interval contour by ‘pushing it into’ the interior of the base
stratum r under s. This thickening will provide the ‘critical region’ for our later definition
of κpp̃. The construction relies on the base being open regular cell.

Construction 4.2.31 (Critical regions). For a closed 1-mesh bundle p : (M,f)→ (B, g)
with open regular cell base and a regular stratum s lying over r in f , we construct a
‘critical region’ crs ↪→ r as follows. First, take Y to be a regular cell complex containing
(B, g) as an open constructible substratification. Denote by cs the closure of the interval
contour in the boundary Sk−1 ∼= ∂r of the open k-cell r in Y , and set ∂cs = cs \ cs. Now
‘thicken’ the interval contour’s interior by defining crs to be the quotient of cs × [0, 1] by
∂cs × [0, 1]. Define crs ↪→ crs to be the subspace cs × (0, 1). Form the gluing Gs by gluing
r ∼= Dn (where the closure is taken in Y ) and crs along cs ↪→ r resp. cs ∼= cs × {0} ↪→ crs.
A ‘choice of critical region for s’ is a choice of an isomorphism Rs : Gs ∼= r which maps
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cs ∼= cs × {1} ↪→ Gs identically to cs ↪→ ∂r, and ∂r \ cs ↪→ Gs identically to ∂r \ cs ↪→ r.
Note such isomorphism can always be chosen since cs ↪→ ∂r = Sk−1 is an open subset.
Finally, restricting Rs : Gs ∼= r to crs yields the ‘critical region’ crs ↪→ Gs

For our previous example of p and choice of s in Fig. 4.11 we illustrate a choice of critical
region Rs for s in Fig. 4.12.

Figure 4.12: Choosing a critical region in r for a regular stratum s.

Finally, note a valid choice of critical regions only depends on the entrance path truss
structure of p, as recorded by the following remark.

Remark 4.2.32 (Critical regions only depend on 1-truss structure over the base strat-
ification). Importantly, if p̃ : (X̃, f̃) → (Y, g) is another closed 1-mesh bundle and
ETrs(p) = ETrs(p̃) then any choice of critical region for p is also choice of critical regions
for p̃.

4.2.2.3 Constructing the bundle isomorphism Having a notion of critical regions
at hand, we can proceed to construct the bundle isomorphism κpp̃, which will yield proofs
of both Proposition 4.2.26 and Proposition 4.2.22.

Construction 4.2.33 (The bundle isomorphism κ). Consider closed 1-mesh bundles
p : (M,f) → (B, g) and p̃ : (M̃, f̃) → (B, g) with open regular cell base g and such
that ETrs(p) = ETrs(p̃). Fix choices of critical regions Rs for each regular stratum
in p (see Construction 4.2.31) which, by Remark 4.2.32 equally provides a choice of
critical regions for p̃. We will define the bundle isomorphism κpp̃ fiberwise by maps
κpp̃(x,−) : p−1(x)→ p̃−1(x) over points x ∈ r where r is a stratum in g.

We argue inductively in dim(r). If dim(r) = 0 then κpp̃(x,−) is simply defined
by mapping point strata of p−1(x) monotonicly to point strata of p̃−1(x) (note, since
ETrs(p) = ETrs(p̃) both in particular have the same number of point strata) and extending
this mapping linearly to interval strata. Next assume dim(r) > 0. Again, we define
κpp̃(x,−) is simply defined by mapping point strata of p−1(x) monotonicly to point strata
of p̃−1(x) (note, since ETrs(p) = ETrs(p̃) both in particular have the same number of
point strata). Note that interval strata sx in p−1(x) are restrictions of regular strata
s in (M,f), and correspond to interval strata s̃x in p−1(x) obtained by restricting the
corresponding regular strata s̃ in (M̃, f̃). We define the restricted map κpp̃(x,−) : sx → s̃x.
If x /∈ crs lies outside the choice of critical region for s, define κpp̃(x,−) : sx → s̃x by
linearly extending the mapping κpp̃(x,−) on the endpoints of the interval stratum sx.
Otherwise, if x ∈ crs, by Construction 4.2.31 we have crs = cs × (0, 1) and can thus write
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x as a pair (u ∈ cs, t ∈ (0, 1)). This yields points x0 = Rs(u, 0) ∈ r and x1 = Rs(u, 1) ∈ ∂r.
Define κpp̃(x,−) : sx → s̃x by the affine combination

κpp̃(x,−) = tκpp̃(x1,−) + (1− t)κpp̃(x0,−)

where the first term on the right is defined since x1 lies in a stratum of dimension lower
than r, and the second term is defined since x0 lies in r but outside the critical region.
One checks that this continuously extends the domain of definition of κpp̃ to all fibers over
r, and thus completes our inductive construction of the bundle isomorphism κpp̃.

The construction of κpp̃ now makes proofs of earlier statement immediate.

Proof of Proposition 4.2.26. The preceding construction defines κpp̃ as required in the
statement of Proposition 4.2.26 for closed 1-mesh bundles and open regular cell base. By
Remark 4.2.24 (applied in the case n = 1) and Remark 4.2.27 this implies Proposition 4.2.26
in the general case.

Proof of Proposition 4.2.22. By Remark 4.2.25, this follows from Proposition 4.2.26.

4.2.2.4 Continuity of construction We mention two important properties of the
construction of κpp̃ in Construction 4.2.33. Firstly, the construction ‘preserves identities’
as recorded by the following remark.

Observation 4.2.34 (Constructing κ on identical bundles). Consider closed 1-mesh bundles
p : (M,f)→ (B, g) and p̃ : (M̃, f̃)→ (B, g) with open regular cell base g and such that
ETrs(p) = ETrs(p̃). Identify M (resp. M̃) as a subspace of B ×R using its fiber 1-framing
γ : M ↪→ B×R (resp. γ̃ : M̃ ↪→ B×R). If (M,f) and (M̃, f̃) are identical as stratifications
of subspaces of B × R then the inductive construction of κpp̃ (in Construction 4.2.33)
outputs the bundle identity map id : p = p̃.

Secondly, the construction is ‘continuous in families’. To make this precise, we first
introduce a notion of families of 1-mesh bundles.

Definition 4.2.35 (Families of 1-mesh bundles). For a connected topological space Z and
an open regular cell stratification (B, g), a Z-family of closed 1-mesh bundles over g is a
closed 1-mesh bundle p : (M,f)→ Z × (B, g). For z ∈ Z denote by pz : (Mz, fz)→ (B, g)
the restriction of p to the subspace B ∼= {z} ×B ↪→ Z ×B, called the z-slice of p.

Note, by Lemma 4.1.41, all slices pz in a Z-family are open regular cell bundles.

Terminology 4.2.36 (ETrs-constant families). A Z-family of closed 1-mesh bundles p :
(M,f)→ Z × (B, g) is call ‘ETrs-constant’ if the canonical inclusion ETrs(pz) ↪→ ETrs(p)
is a 1-truss bundle isomorphism for each z ∈ Z.
Remark 4.2.37 (Constancy of entrance path truss bundle in families). Given a Z-family p
for a path-connected space Z, then p is automatically ETrs-constant.

The ‘continuity in families’ of our construction of κ now takes the following form.
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Observation 4.2.38 (Constructing κ for families). For an open regular cell stratifications
(B, g), consider ETrs-constant Z-families of closed 1-mesh bundles p : (M,f)→ Z × (B, g)
and p̃ : (M̃, f̃) → Z × (B, g), such that ETrs(p) = ETrs(p̃). Pick any z0 ∈ Z, and a
chose critical regions for pz0 . This choice equally provides critical regions to all bundles
pz and p̃z for all z ∈ Z, and we may thus construct the 1-mesh bundle isomorphisms
κpzp̃z : pz ∼= p̃z using Construction 4.2.33. The construction of these bundle isomorphisms
is now ‘continuous in z ∈ Z’ in that we obtain a continuous bundle isomorphisms
κpp̃ : (M,f)→ (M̃, f̃) whose restriction to (Mz, fz)→ (M̃z, f̃z) is defined to be κpzp̃z .

Finally, let us mention a particular way of constructing ETrs-constant Z-families of
1-mesh bundles. Namely, ETrs-constant Z-families of 1-mesh bundles may be constructed
by pullback along ‘Entr-constant Z-families of stratified maps’ as the following remark
explains.

Remark 4.2.39 (Families of bundles from pullbacks along families of maps). Consider open
regular cell stratifications (B, g) and (B, g̃) and let F : Z → Strat(g, g̃) be a continuous
map from a space Z to the space of stratified maps between g and g̃, such that F is
constant on entrance paths (that is, Entr ◦F : Z → Pos(Entr(g),Entr(g̃)) is constant). By
Top-tensoredness of stratified spaces (see Observation B.2.23), we can consider F as a
stratified map F : Z × g → g̃. Now, given a closed 1-mesh bundle p̃ : (M̃, f̃)→ (B̃, g̃) we
can construct a ETrs-constant Z-family of closed 1-mesh bundle as the pullback F ∗p̃ of p̃
along F (see Construction 4.1.36).

4.2.3 Weak faithfulness of the entrance path truss functor Our next goal will
be to show that the entrance path truss functor ETrs is (in a weak sense) a ‘faithful’
functor of ∞-categories in the following sense.

Proposition 4.2.40 (Weak faithfulness of entrance path truss functor). Given two closed
n-mesh bundles p and p′ with open cellulable base (B, g), then hom space map

ETrs : M̄eshn(B, g)(p, p′)→ T̄rsn(Entr g)(ETrs p,ETrs p′)

has empty or weakly contractible preimages. The same holds in the open-regular case.

The proof of Proposition 4.2.40 will take up the rest of this section. We will give the
proof only in the case of closed n-meshes, noting that the case of open n-meshes is fully
analogous (in fact, the proof for the closed case applies verbatim to the open case when
replacing ‘closed’ by ‘open’ meshes resp. trusses, and ‘singular’ by ‘regular’ maps).

Remark 4.2.41 (Entrance path truss functor is ‘weakly fully faithful’). Once we have
constructed the weak inverse of ETrs it will follow that fibers of the hom space maps of
ETrs are, in fact, never empty.

Remark 4.2.42 (More weak faithfulness). Similar to Observation 4.2.23, the proof of
Proposition 4.2.40 may be adapted to show that the functors ETrs : Meshdeg

n → Trsdeg
n

and ETrs : Meshcrs
n → Trscrs

n are weakly faithful functors as well (the proof goes through
without change in the closed resp. open case, and needs a little more care in the case of
general meshes).

As a first step in the proof of Proposition 4.2.40, we observe that the statement only
needs to be proven for open regular cell base (B, g).
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Remark 4.2.43 (Reduction to open regular cell base). Fix a refinement G : (B, c)→ (B, g)
of (B, g) by an open regular cell stratification. Using Construction 4.1.67 we may pullback
both p and p′ to n-mesh bundles G∗p resp. G∗p′ over (B, c). Let F : ETrs p → ETrs p′

be a map of corresponding n-truss bundles. This pull backs to an n-truss bundle map
(EntrG)∗F : (EntrG)∗ ETrs p → (EntrG)∗ ETrs p′ along EntrG : Entr c → Entr g (see
Construction 2.3.85). The the fiber of ETrs in M̄eshn(B, c)(G∗p,G∗p′) over (EntrG)∗F is
homeomorphic to the fiber of ETrs in M̄eshn(B, g)(p, p′) over F . Thus it is sufficient to
prove Proposition 4.2.40 in the case of open regular cell base.

Next, by an inductive argument, the statement of Proposition 4.2.40 may further be
reduced to a statement about 1-mesh bundles. For m ∈ N, denote by Dm+1 the closed
(m+ 1)-ball and by Sm its boundary. Recall, a topological space U is weakly contractible
if for all maps ζ : Sm → U there exists a map θ : Dm+1 → U such that θ|Sm : Sm → U
equals ζ. We call θ a ‘filler’ for ζ.

Let p and p′ be closed n-mesh bundles consisting of 1-mesh bundles pi : (Mi, fi) →
(Mi−1, fi−1) resp. of p′i : (M ′i , f

′
i) → (M ′i−1, f

′
i−1) with (M0, f0) = (B, g) = (M ′0, f

′
0).

Consider a map ζ : Sm → M̄eshn(B, g)(p, p′) such that ETrs ◦ζ is constant (in other words,
ζ maps into a single fiber of ETrs). Note that, by rigidity of singular truss maps of closed
trusses (see Lemma 2.3.104) this constancy condition is satisfied automatically except
when m = 0. Recall that truncation of meshes is an ∞-functor (see Remark 4.1.66).
Truncating ζ to degrees below n, we obtain the map ζ<n : Sm → M̄eshn−1(M<n,M

′
<n)

which we denote by β. Arguing inductively, β has a filler which we denote by η :
Dm+1 → M̄eshn−1(M<n,M

′
<n). Using the Top-tensoredness of stratified spaces (see

Observation B.2.23), we may consider ζ as a stratified map Sm×fn → f ′n, β as a stratified
map Sm × fn−1 → f ′n−1, and η as a stratified map Dm+1 × fn−1 → f ′n−1. To show that ζ
has a filler it will be sufficient to prove the following.

Proposition 4.2.44 (Lifting fillers in closed 1-mesh bundles). Consider closed 1-mesh
bundles p : (M,f)→ (B, g) and p̃ : (M̃, f̃)→ (B̃, g̃) with open regular cell base, and maps
ζ : Sm × f → f̃ , β : Sm × g → g̃ such that, for each e ∈ Sm, (ζ(e,−), β(e,−)) : p→ p̃ is
a 1-mesh bundle map (if m = 0, further assume ETrs(ζ(e,−), β(e,−)) is independent of
e ∈ Sm). Then any filler η : Dm+1 × g → g̃ of β ‘lifts’ to a filler θ : Dm+1 × f → f̃ of ζ
such that, for each e ∈ Dm+1, (θ(e,−), η(e,−)) : p→ p̃ is a 1-mesh bundle map.

It will be convenient to consider Dm+1 as the quotient of [0, 1]×Sm by the subset {1}×Sm.
In particular, we will regard η as a map η : [0, 1] × Sm × g → g̃ such that η(1,−) is
constant.

To construct the filler θ of ζ that lifts the filler η of β as claimed in Proposition 4.2.44, we
will proceed in two steps. In the first step, by ‘pulling back along η’, we construct ‘homotopy
1’ θ1 : [0, 1]×Sm×f → f̃ which homotopes θ1(0,−) = ζ into a map θ1(1,−) : Sm×f → f̃
that descends to a map of base stratifications Sm × g → g̃ that is constant in Sm. The
second step, using ‘fiberwise contractions’, constructs ‘homotopy 2’ θ2 : [0, 1]×Sm×f → f̃ ,
which homotopes θ2(0,−) = θ1(1,−) into a map θ2(1,−) : Sm × f → f̃ that is constant
on fibers as well and thus fully constant in Sm. Concatenating the homotopies θ1 and θ2

will provide us with the required filler θ of ζ.
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Proof of Proposition 4.2.44. Define a closed 1-mesh bundle p̂ by pulling back p along β
and define a map ζ̂ as the factorization of ζ through this pullback as shown below.

Sm × f β∗f̃ f̃

Sm × g Sm × g g̃

Sm×p
ζ̂

ζ

y
p̂ p̃

id β

Note that p̂ is an ETrs-constant Sm-family of closed 1-mesh bundles over g (see Re-
mark 4.2.39). We may trivially turn this into a ETrs-constant ([0, 1] × Sm)-family by
taking the product [0, 1] × −: the resulting closed 1-mesh bundle [0, 1] × p̂ is bundle
isomorphic to the closed 1-mesh bundle p̂ defined by the pullback on the right below.

[0, 1]× β∗f̃ η∗f̃ f̃

[0, 1]× Sm × g [0, 1]× Sm × g g̃

κ
∼

[0,1]×p̂
y

p̂ p̃

id η

Indeed, κ can be constructed using Observation 4.2.38 since g is assumed open regular cell.
Our ‘homotopy 1’ map θ1 : [0, 1]× Sm × f → f̃ is now simply defined as the composite

[0, 1]× Sm × f [0,1]×ζ̂−−−−→ [0, 1]× β∗f̃ κ−→ η∗f̃ → f̃ .

Since the κ construction preserves identities (see Observation 4.2.34) and since β = η(0,−),
we find that κ(0,−) is the identity on β∗f̃ . Thus, homotopy 1 satisfies θ1(0,−) = ζ, and
‘lifts ’ η in the sense that

[0, 1]× Sm × f f̃

[0, 1]× Sm × g g̃

θ1

[0,1]×Sm×p p̃

η

This completes the construction of the first part of the homotopy.
It remains to construct the ‘homotopy 2’ map θ2 : [0, 1] × Sm × f → g such that

θ2(0,−) = θ1(1,−). We may construct the homotopy θ2 ‘fiberwise’, by convexly combining
fiberwise maps θ1(1, e, x) : (p−1(y), f) → (p̃−1η(1, e, y), f̃) on fiber over points y ∈ B
(note that η(1, e, y) is in fact independent of e ∈ Sm). Namely, pick any e0 ∈ Sm, and, for
t ∈ [0, 1], e ∈ Sm and y ∈ B, define the restriction of θ2(t, e,−) to the fiber over y to be
the map

θ2(t, e,−) : (p−1(y), f)→ (p̃−1η(1, e, y), f̃)

x 7→ (1− t) · θ1(1, e, x) + t · θ1(1, e0, x)

Note that θ2(t, e,−) is indeed a 1-mesh map for all t and e since ETrs θ1(1, e, x) =
ETrs θ1(1, e0, x) induce the same maps on 1-trusses (which in turn follows since, by
assumption, ETrs(ζ(e,−), β(e,−)) is independent of e ∈ Sm). Note also at t = 1, the map
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θ2(t, e,−) becomes independent of e ∈ Sm. We can chain the homotopies θ1, θ2 into a
single homotopy

θ := θ1 ∗ θ2 : [0, 1]× Sm × f → f̃

which defines the required filler θ of ζ lifting the filler η of β as required.

Proof of Proposition 4.2.40. By Remark 4.2.43, the statement of Proposition 4.2.40 only
needs to be proven for open regular cell base. As we’ve seen, this inductively reduces to
the statement of Proposition 4.2.44.

4.2.4 Classifying meshes Our goal in this section will be the construction of a weak
inverse to the entrance path truss functor ETrs : Meshn(B, g)→ Trsn(Entr g) constructed
in the Section 4.2.1. We will construct this functor in the following instances. Firstly, in
the unbundled case (B, g) = ∗, we will construct the ‘classifying mesh functor’.

CMsh : Trsn →Meshn

Secondly, for fixed open cellulable base (B, g) we will construct the ‘classifying mesh
bundle functor’

CMsh : Trsn(Entr g)→Meshn(B, g)

Finally, we will also discuss how the realization of truss coarsenings as mesh coarsening
requires special attention.

We will start our construction with the case of closed trusses: this case is particularly
easy since we will obtain the classifying mesh construction CMsh as a direct analog of the
classifying stratification construction CStr . In contrast, in the case of general trusses (and
their bundles), more care needs to be taken to ensure that dimensions of strata do not
incorrectly ‘degenerate’. To illustrate this difficulty in constructing classifying meshes of
general trusses consider the following basic case. The classifying stratification of the poset
underlying the closed 1-truss with one element is a point: this thus correctly produces
the underlying space of the closed 1-mesh with one stratum. However, the classifying
stratification of the poset underlying the open 1-truss with one element is again a point,
and this does not equal the underlying space of the open 1-mesh with one stratum (which
is an open interval). As we will see, the problem of constructing classifying meshes of
general trusses may be reduced to the case of closed trusses, by first ‘compactifying’
trusses, and then applying the classifying mesh functor for closed trusses.

4.2.4.1 Classifying meshes of closed trusses We construct classifying meshes of
closed n-trusses. We start by discussing the case of closed 1-truss bundles. Recall the
construction of classifying stratifications of posets (Terminology 1.3.11 and Terminol-
ogy 1.3.12).

Construction 4.2.45 (Classifying 1-mesh bundles of closed 1-truss bundles). Given
a closed 1-truss bundle p : T → X, we endow the classifying stratified map CStr p :
CStr T → CStrX with the structure of a closed 1-mesh bundle, yielding the ‘classifying
1-mesh bundle’ CMsh p of p. Recall, the classifying stratification CStr T stratifies the
geometric realization |T |. We need to define a fiber 1-framing γ : |T | ↪→ |X| × R for
CStr p. Order-preservingly identify objects in the (frame ordered) fiber (p−1(x),�) over
x ∈ X with objects i in a total order [mx] = (0 → ... → mx). Since objects in T

187



correspond to vertices in |T |, we then define γ to map vertices i ∈ |p|−1 (x) ⊂ |T | to
vertices (x, i) ∈ |X| × N ↪→ |X| × R, and further extend this mapping on vertices linearly
to simplices in |T |. Using truss induction (see Section 2.2) one verifies that γ is indeed
an embedding such that the bounding maps γ± : |X| → |X| × R are continuous. This
endows CStr p with the structure of a closed 1-mesh bundle.

Example 4.2.46 (Classifying 1-mesh bundles of 1-truss bundles). In Fig. 4.13 we depict
a closed 1-truss bundle p : T → X on the left (note that we only depict generating arrows,
see Construction 2.3.69), and on the right its classifying 1-mesh bundle CMsh p : CStr T →
CStrX.

Figure 4.13: Classifying 1-mesh bundle of a 1-truss bundle.

Definition 4.2.47 (Classifying meshes of closed n-trusses). Given a closed n-truss T ,
consisting of 1-truss bundle pi : Ti → Ti−1, its classifying mesh CMshT is the closed
n-mesh defined by the tower of 1-mesh bundles

CStr Tn
CStr pn−−−−→ CStr Tn−1

CStr pn−1−−−−−−→ ...CStr T1
CStr p1−−−−→ CStr T0

where CMsh(pi) is the classifying 1-mesh bundle of pi (see Construction 4.2.45).

The definition extends to maps of closed trusses as follows.

Definition 4.2.48 (Classifying mesh maps of closed n-truss maps). Given a map of
closed n-trusses F : T → S with components Fi : Ti → Si, the classifying mesh map
CMshF : CMshT → CMshS is the n-mesh map with components given by classifying
stratified maps CStrFi : CStr Ti → CStrSi.

Notation 4.2.49 (Classifying mesh functor of closed trusses). The previous definitions
assemble into the partial functor CMsh : Trsn →Meshn on the full subcategory of closed
n-trusses called the ‘classifying mesh functor’.

Our earlier construction of entrance path trusses is right inverse to the classifying mesh
functor as follows.

Observation 4.2.50 (Entrance path trusses of classifying meshes). Unwinding definitions,
one checks that the composite ETrs ◦CMshT is the identity on the category of closed
n-trusses (up to a unique natural isomorphism).
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4.2.4.2 Classifying meshes of general trusses We now turn to the construction of
classifying meshes of general n-trusses. The construction needs care because, as discussed,
the ‘naive’ geometric realization of posets (by passing to their nerve, and using the usual
geometric realization of simplicial sets) does not dualize dimensions correctly.

The correct construction of classifying meshes will reduce the case general trusses to that
of closed trusses by first ‘compactifying’ general trusses to obtain closed trusses. The basic
idea for truss compactifications is a combinatorial analog to fiberwise compactifications
of 1-mesh bundles that were defined in Construction 4.1.34. However, when employing
fiberwise compactifications ‘inductively’ to a tower of bundles, we are left with a choice
on how to extend bundles to compactifications of their base. This leads to several possible
notions of compactifications. We mention the following universal choice, which we call
‘cubical compactification’ of a truss, that admits a useful explicit construction. Rather
than working only with trusses, we will define cubical compactifications in the more
general setting of truss bundles.

Terminology 4.2.51 (Dense subposet and truss subbundles). A subposet P ↪→ Q is called
‘dense’ if the upward closure of P is all of Q. A base preserving truss subbundle F : T ↪→ S
is similarly called dense if all i-level maps Fi are dense (recall, ‘base preserving’ means
F0 = id).

Definition 4.2.52 (Retractable compactifications). Given an n-truss bundle p over a
poset X, a retractable compactification of p is pair of regular n-truss bundle maps
F : p� q : G, where q is closed, F is a dense subtruss bundle map, and G◦F = idp.

Definition 4.2.53 (Cubical compactification). Given an n-truss bundle p over a poset X,
its cubical compactification ci : p� p : cr (sometime simply called ‘compactification’)
is the universal retractable compactification, satisfying the following universal property:
for any other retractable compactification F : p� q : G there is a unique n-truss bundle
r over X × [1], with r|X×{0} = p and r|X×{1} = q which on the images of ci in p and i in
q restricts to the product bundle p× [1].

Example 4.2.54 (Cubical compactifications). In Fig. 4.14 we indicate the inclusion
ci : T ↪→ T of an open 2-truss T (in black) into its cubical compactification T (extending
T by the red structure).

Figure 4.14: Cubical compactifications of two 2-trusses.
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The fact that cubical compactifications always exist is established by the following sequence
of constructions, which explicitly construct cubical compactification with increasing
generality first for 1-trusses, then for 1-truss bundles, and finally for n-truss bundles.

Construction 4.2.55 (Cubical compactifications of 1-trusses). Given a 1-truss T , its
cubical compactification ci : T � T : cr is the unique closed 1-truss containing T , which
satisfies the conditions in Definition 4.2.53 (in the case n = 1 and X = [0]): explicitly, T
is obtained from T by adjoining a new upper (resp. lower) singular endpoint if the upper
(resp. lower) endpoint of T is regular.

Construction 4.2.56 (Cubical compactifications of 1-truss bundles). Given a 1-truss
bundle p : T → X, its cubical compactification ci : p � p : cr is the unique closed
1-truss bundle containing T and satisfying the conditions in Definition 4.2.53 (in the
case n = 1): explicitly, p : T → X is obtained from p by compactifying each fiber of p
using Construction 4.2.55, and then extending truss bordisms to compactified fibers in
the unique endpoint preserving way.

Construction 4.2.57 (Cubical compactification for n-truss bundles). Let p be an n-truss
bundle over a base poset X with bundle maps pi : Ti → Ti−1. Inductively construct its (n−
1)-truncated compactification ci : p<n � p<n : cr (the case n = 1 is Construction 4.2.56).

First pull back pn : Tn → Tn−1 along crn−1 : Tn−1 → Tn−1 to obtain a 1-truss bundle
cr∗n−1pn over Tn−1. Pulling back again, now by cin−1, recovers pn, that is, ci∗n−1cr∗n−1pn =
pn. We thus have two 1-truss bundle maps: the 1-truss subbundle Tot(cin−1) : pn ↪→
cr∗n−1pn and the 1-truss bundle map Tot(crn−1) : cr∗n−1pn → pn. The two 1-truss bundle
maps form an inclusion-retraction pair pn � cr∗n−1pn. Composing this pair with the
inclusion-retraction pair cr∗n−1pn � cr∗n−1pn constructed using Construction 4.2.56, then
defines the inclusion-retraction pair cin : pn � pn : crn (where pn := cr∗n−1pn).

We define the cubical compactification p to be the truss bundle obtained by augmenting
p<n with the bundle map pn, and obtain an inclusion-retraction pair ci : p � p : cr as
required.

Remark 4.2.58 (Universal property of cubical stratifications). The fact that the above
construction satisfies the universal property stated in Definition 4.2.53 can be verified in a
similar inductive fashion. We give a sketch. Given a cubical compactification ci : p� p : cr
as constructed above, consider a retractable compactification i : p � q : r. Arguing
inductively to have defined the (n− 1)-truncation r<n of the ‘factorizing’ bundle r over
X × [1]. As an inductive hypothesis assume that (0, x)→ (1, y) in the total poset of r<n
then cr(x) → r(y) in the total poset of p<n. We now construct r from r<n by adding
the 1-truss bundle rn, defined by setting rn|(0,x)→(1,y) = qn|r(y)→y ◦ pn|cr(x)→r(y). One
verifies that this indeed defines a 1-truss bundle, which further satisfies the inductive
hypothesis.

We now give a definition of classifying meshes of general trusses. Recall the notion
of ‘submeshes’ of n-meshes from Terminology 4.1.59 (which are mesh inclusions the
n-framing of the codomain restricts to the n-framing of the domain). We will also use
the notion of ‘constructible substratifications’ (see Definition B.2.9): a substratification
F : (Y, g) ↪→ (X, f) is constructible if Y = f−1(Q) for some subposet Q ↪→ Entr(f) of the
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entrance path poset of f . Constructible substratifications F are thus fully determined by
their entrance path poset maps EntrF .

Definition 4.2.59 (Classifying meshes of general n-trusses). For an n-truss T , the
classifying n-mesh CMshT of T is the submesh CMsh ci : CMshT ↪→ CMshT given by
constructible substratifications CMsh cii : CMshTi ↪→ CMshT i with entrance path poset
map Entr CMsh cii = cii : Ti ↪→ T i.

(The verification that CMshT indeed defines an n-mesh proceeds inductively, using the
inductive construction of cubical compactifications.)

Note that if T is closed, then the preceding definition of CMshT specializes to our
earlier Definition 4.2.47.

Example 4.2.60 (Classifying meshes of general n-trusses). Recall the open 2-truss T from
Fig. 4.14. In Fig. 4.15 we depict the closed classifying mesh CMshT of the compactification
T of T , together with the resulting open classifying mesh CMshT of T . The latter mesh
includes into CMshT as a submesh CMsh ci : CMshT ↪→ CMshT as indicated.

Figure 4.15: The classifying mesh of an open 2-truss constructed via the classifying mesh
of its compactification.

Given an n-truss T , then classifying stratifications CStr Tk and classifying meshes CMshTk
are in general distinct stratifications (the simplest example being obtained by taking T
to be the open 1-truss with one element). However, the former stratification canonically
includes into the latter stratification as follows.

Remark 4.2.61 (Classifying meshes vs. classifying stratifications). For an n-truss T , the
classifying stratified map CStr cik : CStr Tk ↪→ CStr T k = CMshT k is a substratifica-
tion that factors through the constructible substratification CMshTk ↪→ CMshT k by a
substratification CStr Tk ↪→ CMshTk. Conversely, there is a retraction

CMshTk � CStr Tk =
(

CMshTk
CMsh ci−−−−→ CMshT k = CStr T k

CStr crk−−−−−→ CStr Tk
)
.

Precomposed with the inclusion CStr Tk ↪→ CMshTk this is the identity on CStr Tk.

It remains to define classifying mesh maps for general truss maps.
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Definition 4.2.62 (Classifying mesh maps). Given a map of n-trusses F : T → S with
components Fi : Ti → Si, its classifying mesh map CMshF : CMshT → CMshS is the
n-mesh map with components CMshFi defined by the composite

CMshTk � CStr Tk
CStrFk−−−−→ CStrSk ↪→ CMshSk

where the first and last map are the canonical retraction and inclusion maps from
Remark 4.2.61. One checks that the association F 7→ CMshF is functorial as required.

Note that CMshF is a singular resp. regular n-mesh map whenever F is a singular resp.
regular n-truss map.

Notation 4.2.63 (Classifying mesh functor). Definition 4.2.59 and Definition 4.2.62 together
yield the ‘classifying mesh functor’

CMsh : Trsn →Meshn

from the category of trusses to the category of n-meshes.

Observation 4.2.64 (CMsh as a right inverse). Unwinding definitions, one checks that
ETrs ◦CMsh ∼= idTrsn by a unique natural isomorphism, and thus CMsh is ‘right inverse’
to ETrs.

4.2.4.3 Classifying mesh bundles over cellulable base We now turn to the case
of truss bundles over open cellulable base.

Terminology 4.2.65 (Cellulation triples). Given an open cellulable stratification (B, g), a
‘cellulation triple’ (g, c,X) is a refinement of (B, g) by a open regular cell stratification
(B, c), together with a cellular poset X such that (B, c) is a open dense constructible sub-
stratification of the regular cell complex CStrX (that is, (B, c) ↪→ CStrX is a constructible
substratification and B ↪→ |X| is an open subset satisfying B = |X|).
Our constructions of the classifying mesh bundle functor will depend on a choice of
cellulation tuple for the base stratification. We first discussed the closed case.

Construction 4.2.66 (Closed classifying mesh bundles). We construct the functor

CMsh : T̄rsn(Entr g)→ M̄eshn(B, g)

for open cellulable (B, g) and a given cellulation triple (g, c,X).
We start with the case n = 1, defining CMsh on objects. Let p : T → B be a

closed 1-truss bundle over Entr g. Since the inclusion B ↪→ |X| is open, note that
Entr c ↪→ X is an open subposet. Define the ‘cellulation’ q : Y → X of p to be the closed
1-truss bundle over X, whose classifying functor χq : X → TBord1 restricts on Entr c
to the composite χp ◦ Entr(c → g), and otherwise maps to the terminal 1-truss in T̄n0
(see Observation 2.1.46). Using Construction 4.2.45, we construct the 1-mesh bundle
CMsh q : CStr Y → CStrX. Restricting this along the inclusion c ↪→ CStrX yields the
1-mesh bundle CMsh q|c : (M,d)→ (B, c). The composite of CMsh q|c and the coarsening
(B, c)→ (B, g) now factors uniquely through a coarsening (M,d)→ (M,f) and a 1-mesh
bundle CMsh p : (M,f)→ (B, g) (whose fiber 1-framing is inherited from that of CMsh q|c).
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This constructs the ‘classifying mesh bundle’ CMsh p of p. Note, moreover, we obtain a
canonical choice of cellulation triple (f, d, Y ) for (M,f).

Next we consider the action of CMsh on 1-truss bundles maps for the following (slightly
more general) case. Let (B′, g′) be another cellulable base with cellulation triple (g′, c′, X ′).
A ‘cellulation triple map’ (E,G, G̃) is a triple of poset maps fitting into the following
diagram:

Entr g Entr c X

Entr g′ Entr c′ X ′

E G

Entr(g′→c′)

Entr(g→c)

G̃

Given any 1-truss bundle map F : p→ p′ over E, there now exist unique 1-truss bundle
maps H : Entr(g → c)∗p→ Entr(g′ → c′)∗p′ and H̃ : q → q′ over G resp. G̃, such that the
following commutes:

p Entr(g → c)∗p q

p′ Entr(g′ → c′)∗p′ q′

F H H̃

Construct CMsh p : (M,f)→ (B, g) and CMsh p′ : (M ′, f ′)→ (B′, g′); denote canonical
cellulation triples of (M,f) and (M ′, f ′) by (f, d, Y ) resp. (f ′, d′, Y ′). Define the 1-mesh
bundle CMsh H̃ : CMsh q → CMsh q′ as the stratified map CStr H̃ : CStr Y → CStr Y ′.
Restrict this map along d ↪→ CStr Y resp. d′ ∈ CStr Y ′ to obtain CMshH : d→ d′. The
latter map further factors through the coarsenings d → f and d′ → f ′. This yields the
‘classifying 1-mesh map’ CMshF : CMsh p→ CMsh p′. Note that (F,H, H̃) now provides
a canonical cellulation triple map for (f, d, Y ) and (f ′, d′, Y ′).

Finally, we consider the case of general n. For an n-truss bundle p = (pn, pn−1, ..., p1)
over Entr g, using the classifying mesh bundle construction for 1-truss bundles, we construct
construct the classifying n-mesh bundle CMsh p as the tower of bundles CMsh pi (using the
canonical cellulation triple output by the construction of CMsh pi−1 for the construction
of CMsh pi). For an n-mesh bundle map F : p → p′ over fixed base (B, g), we similarly
construct CMshF : CMsh p → CMsh p′ by inductively constructing CMshFi (using the
canonical cellulation triple map from the construction of CMsh pi−1 for the construction
of CMsh pi; the first such triple is (idEntr g, idEntr c, idX)).

Note that the previous construction also has a concise non-inductive description. For open
cellulable base (B, g) and cellulation triple (g, c,X) as before, given a (closed) n-truss
bundle p over Entr g define its ‘cellulation’ q to be the n-truss bundle with classifying
map χq : X → TBordn, that restrict on Entr c to the composite Entr(c → g) ◦ χp, and
maps to the terminal n-truss T̄n0 otherwise (see Observation 2.3.83). Then the n-mesh
bundle CMsh q over CStrX, defined inductively using Construction 4.2.45, pulls back
along c ↪→ CStrX to CMsh q|c, which coarsening along c→ g to yield CMsh p.

Construction 4.2.67 (General classifying mesh bundles). We construct the functor

CMsh : Trsn(Entr g)→Meshn(B, g)

for open cellulable (B, g) and a chosen cellulation triple (g, c,X).
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We first construct CMsh on objects. Let p be an n-truss bundle over Entr g. Pass
to its compactification p (see Definition 4.2.53). (Note that the cellulation q of p is the
compactification of the cellulation q of p.) Construct the closed n-mesh bundle CMsh p
using Construction 4.2.66. Then pass to a constructible substratifications as determined
by the inclusion p ↪→ p to define the classifying n-mesh bundle CMsh p.

We next construct CMsh on morphisms. Let F : p→ p′ be a base preserving n-truss
bundle map over Entr g. Note that F canonically induces a map G : q → q′ (where q and
q′ are the cellulations of p resp. p′). We may now define CMshG : CMsh q → CMsh q′

following our previous idea (from Definition 4.2.62), namely by (level-wise) composing
the retraction CMsh q � CStr q, with the stratified realization CStr q

CStrG−−−−→ CStr q′, with
the inclusion CStr q′ ↪→ CMsh q′. This map of cellulations CMshG : CMsh q → CMsh q′

induces (after pulling back along c ↪→ CStrX, and then coarsening along c → g) the
required classifying mesh bundle map CMshF : CMsh p→ CMsh p′.

Observation 4.2.68 (CMsh as a right inverse). One verifies that Construction 4.2.67 satisfies
ETrs ◦CMsh = idTrsn (up to unique natural isomorphism).

4.2.4.4 Classifying mesh coarsenings Finally, we discuss a more specific construc-
tion of classifying mesh maps in the case of coarsening. Note that the construction will
not be needed for the proofs of the main theorems in this and later chapters (but it
will be useful for several other results). The construction is motivated by the following
observation.

Observation 4.2.69 (Classifying mesh maps of degeneracies and coarsenings). Given an
n-truss degeneracy map F : T → S, then the classifying mesh map CMshF : CMshT →
CMshS is in fact a mesh degeneracy, and thus the classifying mesh functor restricts
to a functor CMsh : Trsdeg

n → Meshdeg
n , which provides a ‘right inverse’ to the functor

ETrs Meshdeg
n → Trsdeg

n .
However, if F is an n-truss coarsening, then the analogous observation fails: that is,

CMshF need not be an n-mesh coarsening.

Addressing this asymmetry, in this section we will construct a ‘homotopical replacement’
CrsMshF of CMshF (which is an n-mesh coarsening and homotopic to CMshF ). We call
CrsMshF the ‘classifying mesh coarsening’ of the n-truss coarsening F . We start with
the construction of classifying mesh coarsenings in the case of closed trusses.

Construction 4.2.70 (Classifying mesh coarsenings of closed truss coarsenings). Given
closed n-trusses T = (pn, ..., p1) and S = (qn, ..., q1) and a coarsening F : T → S, we
construct an n-mesh coarsening CrsMshF : CMshT → CMshS with the following two
properties. Firstly, components CrsMshFi : CMshTi → CMshSi are linear on each simplex
of CMshTi = CStr Ti. Secondly, we have ETrs CrsMshF = F .

Arguing inductively in n, assume to have constructed CrsMshF<n : CMshT<n →
CMshS<n with the claimed properties. We define the top component CrsMshFn :
CMshTn → CMshSn on vertices x ∈ Tn, by picking any image point CrsMshFn(x)
in the fiber of the 1-truss bundle CMsh(qn) over CrsMshFn−1 ◦ CMsh(pn)(x) subject to
the following conditions: firstly, CrsMshFn(x) < CrsMshFn(x′) (in the linear order of
the fiber) whenever x ≺ x′ (in the frame order of Tn); secondly, CrsMshFn(x) lies in the
stratum Fn(x) ∈ Sn of CMshSn. We then extend CrsMshFn linearly to all other simplices
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in CMshTn = CStr Tn. One checks that this makes CrsMshFn a coarsening, and thus
CrsMshF an n-mesh coarsening as claimed.

We next generalize our construction of classifying mesh coarsenings to the case of general
trusses. The generalization is based on the observation that ‘cubical compactification is
functorial on coarsenings of trusses’ in the following sense.

Observation 4.2.71 (Cubical compactification is functorial on coarsenings). Given a coars-
ening of n-trusses F : T → S, there is a unique ‘cubically compactified coarsening’
F : T → S between the respective cubical compactifications of T and S, such that the
following two squares commute

T S

T S

F

cr cr

F

ci ci

.

(The construction of F proceeds inductively, similar to the sequence of constructions
defining cubical compactifications.)

Construction 4.2.72 (Classifying mesh coarsenings of truss coarsenings). Given a coars-
ening of n-trusses F : T → S, we construct an n-mesh coarsening CrsMshF : CMshT →
CMshS with the following properties. Firstly, components CrsMshFi : CMshTi → CMshSi
are coarsenings which are linear each open simplex in CMshTi ↪→ CMshT i. Secondly,
ETrs CrsMshF = F .

We may apply Construction 4.2.70 and Observation 4.2.71 to construct a coarsening
CrsMshF : CMshT → CMshS. This coarsening descends to a coarsening CrsMshF :
CMshT → CMshS along the submeshes CMsh ci : CMshT ↪→ CMshT and CMsh ci :
CMshS ↪→ CMshS. One checks that this gives an n-mesh coarsening with the claimed
properties.

Note that by Remark 4.2.42, since ETrs CrsMshF = F = ETrs CMshF , we find that the
classifying mesh coarsening CrsMshF and the classifying mesh map CMshF are in fact
homotopic mesh maps, and in this sense CrsMshF is a ‘homotopical replacement’ of
CMshF , as claimed earlier.

4.2.5 The theorem and its applications We finally prove Theorem 4.2.1 and Theo-
rem 4.2.2, which claimed that the classifying mesh functor and the entrance path truss
functor provide a weak equivalence pair between (certain) ∞-categories of meshes and
trusses, resp. their bundles.

Proof of Theorem 4.2.1 and Theorem 4.2.2. Recall, we set out to show that the∞-functors
ETrs : M̄eshn(B, g)→ T̄rsn(Entr g) and ETrs : M̊eshn(B, g)→ T̊rsn(Entr g) are weak equiv-
alences of ∞-categories. We argue in the closed case (the argument for the open case is
fully analogous). We need to check the following (see [Lur09a, Def. 1.1.3.6]).

1. For each closed n-truss T ∈ T̄rsn there exists a closed n-mesh f ∈ M̄eshn whose
entrance path truss ETrs f is weakly equivalent to T .

2. The mapping of hom spaces ETrs : M̄eshn(f, g) → T̄rsn(ETrs f,ETrs g) is a weak
equivalence of topological spaces.
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The first statement is a consequence of the construction of classifying meshes CMshT (see
Construction 4.2.66) which satisfies that ETrs CMshT = T . The second statement follows
from the weak faithfulness of the entrance path truss functor (see Proposition 4.2.40)
together with the observation that fibers of ETrs are never empty (since all elements in
hom sets of T̄rsn can be realized as mesh bundle maps by Construction 4.2.66).

In particular, it follows that the ∞-category M̄eshn (respectively M̊eshn) is 1-truncated
(and thus it can be thought of as an ordinary 1-category, cf. [Lur09a, Prop. 2.3.4.18]).
We next discuss applications of the theorem.

4.2.5.1 Meshes of framed cells and their subdivisions As a first application of
the equivalence of meshes and trusses, we discuss the relation of meshes and framed
regular cells.

Terminology 4.2.73 (Cell meshes). The composite of the truss translation functor tt :
FlatFrCellCplxn → T̄rsn with classifying mesh functor CMsh : T̄rsn → M̄eshn will be
denoted by CellMsh : FlatFrCellCplxn → M̄eshn and called the ‘cell mesh functor’.

Terminology 4.2.74 (Mesh cells). Meshes in the image of cell mesh functor CellMsh
restricted to the subcategory of n-framed regular cells will be called ‘n-mesh cells’.

Conversely to cell meshes, we define mesh complexes as follows.

Terminology 4.2.75 (Mesh complexes). The composite of the entrance path truss func-
tor ETrs : M̄eshn → T̄rsn with the framed complex translation functor cc : T̄rsn →
FlatFrCellCplxn will be denoted by MshCplx : M̄eshn → FlatFrCellCplxn and called the
‘mesh complex functor’.

As recorded in Corollary 4.2.6 these functors (regarded as functors of ∞-categories)
yield weak equivalences MshCplx : M̄eshn ' FlatFrCellCplxn : CellMsh. Restricting the
equivalence further to subcategories of framed regular cells resp. mesh cell, we also record
the following.

Corollary 4.2.76 (Equivalence of flat framed cells and mesh cells). The cell mesh and
mesh complex functors establish a weak equivalence between n-framed regular cells and
n-mesh cells.

The translation of framed regular cells into mesh cells provides a ‘geometric realization’
of framed regular cell as framed stratified spaces. We can leverage that stratified spaces
come with a natural notion of ‘refinement map’ (while cellular posets do not), to turn this
into a definition of ‘framed subdivisions’ of framed regular cells. We start with unframed
case of (combinatorial) regular cell complexes.

Terminology 4.2.77 (Subdivision of regular cells). Let X be a combinatorial regular cell
(i.e. a cellular poset with initial object), and Y a combinatorial regular cell complex. A
‘subdivision’ of X by Y is a stratified coarsening F : CStr Y → CStrX of between their
respective classifying stratifications. Given y ∈ Y , the stratified map F restricts on the
cell CStr (Y ≥y) ↪→ CStr Y to the ‘cell inclusion’ F |y : CStr (Y ≥y) ↪→ CStrX.25

25Note that the cell inclusions F |y generally are non-cellular maps (see Definition 1.3.18), and, in this
sense, they are not immediately combinatorializable (see Remark 1.3.25).

196



If (X,G) is a framed regular cell, then its classifying stratification CStrX is the underlying
space of the cell mesh CellMsh(X,G), and this allows us to keep track of framing structures:
a ‘framed subdivision’ is a subdivision that restricts on each cell to a framed map, as
follows.

Definition 4.2.78 (Framed subdivisions of framed regular cells). For an n-framed regular
cell (X,F) and an n-framed regular cell complex (Y,G), a framed subdivision F :
CStr Y → CStrX is a subdivision such that, for each y ∈ Y , the cell inclusion F |y :

CellMsh(Y ≥y,G|y) ↪→ CellMsh(X,F) is (the top component of a) framed map of meshes.

Example 4.2.79 (Framed subdivisions of framed regular cells). In Fig. 4.16 we illustrate
the framed subdivision F of a framed regular cell by a framed regular cell complex, as
well as the condition that F restrict on each framed regular cell to the top component of
a framed map of meshes.

Figure 4.16: Framed subdivisions of framed regular cells

Lemma 4.2.80 (Framed subdivisions are flat). Given a framed subdivision F : (Y,G)�
(X,F) of an n-framed regular cell (X,F) by an n-framed regular cell complex (Y,F), then
(Y,G) is a flat.

The proof follows the description of framed regular cells as ‘section’ and ‘spacer’ cell from
Section 3.1.2, and we only provide an outline.

Proof. We argue inductively in n. First, assume (X,F) is a section cell. Then all cells in
(Y,G) must be section cells, and F induces a framed subdivision F : (Y,Gn−1)→ (X,Fn−1)
where (X,Fn−1) is the projected cell of (X,F), an (Y,G)n−1 is the complex of projected
cells (Y ≥y, (G|x)n−1) (see Terminology 3.1.18). By induction, this makes (Y,Gn−1) a flat
framed cell complex, which implies (Y,G) too is a flat framed cell complex.

Next, assume (X,F) is a spacer cell and denote its lower section cell by ∂−X. Denote
by ∂−Y ⊂ Y the preimage of ∂−X under F on entrance path posets (that is, under the map
EntrF : Y → X). Note that F restricts to a framed subdivision F : CStr ∂−Y → CStr ∂−X
(of the section cell (∂−X,F|∂−X) by the framed complex (∂−Y,G|∂−Y )). Consider the cell
projection pn : CStrX → CStrXn−1 of X to its projected cell Xn−1 (note Xn−1

∼= ∂−X,
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see Remark 3.1.16). The top 1-mesh bundle in the n-mesh CellMsh(X,F) endows pn with
the structure of an 1-mesh bundle. We may refine both the domain and codomain of pn
by F to obtain another 1-mesh bundle qn (with the same fiber 1-framing as pn) as shown:

CStr Y CStrX

CStr ∂−Y CStr ∂−X

F

qn pn

F

(The construction of qn uses that spacer and section cells must be alternatingly ‘layered’ over
cells in the lower section CStr ∂−Y ↪→ CStr Y ). Augmenting the inductively constructed
(n− 1)-mesh CellMsh(∂−Y, (G|∂−Y )n−1) by the 1-mesh bundle qn yields an n-mesh, which
we denote by M : by construction this satisfies MshCplxM ∼= (Y,G) and thus (Y,G) is a
flat framed regular cell complex as claimed.

Having established that all subdividing framed regular cell complexes (Y,G) must be flat
(which enables us to construct the cell mesh CellMsh(Y,G)), we may now equivalently
characterize framed subdivisions as follows.

Corollary 4.2.81 (Framed subdivision are mesh coarsenings). For an n-framed regular
cell (X,F) and cell complex (Y,G), a stratified coarsening F : CStr Y → CStrX is a framed
subdivision if and only if F is a n-mesh coarsening F : CellMsh(Y,G)→ CellMsh(X,F).

Terminology 4.2.82 (Space of subdivisions). For an n-framed regular cell (X,F) and cell
complex (Y,G), the space of ‘framed subdivision’ SubDiv(Y,G;X,F) is the space of mesh
coarsenings Meshcrs

n (CellMsh(Y,G),CellMsh(X,F)).

The notion of framed subdivisions of framed regular cells can be ‘combinatorialized’.

Notation 4.2.83 (Set of truss coarsening). For an n-block B and a closed n-truss T , denote
the set of truss coarsening T → B by Trscrs

n (T,B).

Corollary 4.2.84 (Framed subdivisions are up to homotopy truss coarsenings). The map
ETrs : SubDiv(Y,G;X,F)→ Trscrs

n (tt(Y,G), tt(X,F)) is a weak homotopy equivalence.

In other words, up to contractible choice in SubDiv(−;X,F), framed subdivisions of (X,F)
correspond exactly to truss refinements of tt(X,F).

Proof. We need to show that entrance path truss functor ETrs, mapping framed subdi-
visions SubDiv(Y,G;X,F) to truss coarsenings Trsn(tt(Y,G), tt(X,F)), has weakly con-
tractible preimages. This follows from Remark 4.2.42.

Remark 4.2.85 (Framed subdivisions can be made piecewise linear). Combining the
corollary with our earlier construction of ‘piecewise linear’ classifying mesh coarsenings
(see Construction 4.2.72), it follows that any framed subdivision is homotopic to a piecewise
linear framed subdivision.
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The corollary not only provides a combinatorialization (up to contractible choice) of framed
subdivisions, but the resulting combinatorialization is also computationally tractable:
namely, since truss refinements of tt(X,F) can be algorithmically listed, so can (up to
contractible choice) framed subdivisions of the framed regular cell (X,F). This stands in
further contrast to the classical observation that it is impossible to algorithmically decide
when a simplicial complex is piecewise linearly homeomorphic to the simplex.

Finally, the fact that framed subdivisions can combinatorialized in terms of morphisms
in the category of trusses (living in the same category as faces and degeneracies), is by
itself rather remarkable property of framed regular cells. In contrast, for most classes
of combinatorial shapes, notions subdivisions cannot be given in terms of combinatorial
‘morphism’ (for instance, in the case of simplices, a combinatorial description of subdivision
requires rather different techniques than the definition of simplicial maps, see [Pac91]).

4.2.5.2 Dualization of meshes As a second, and central, application of Theorem 4.2.1
we now construct the dualization functors between the categories of closed meshes with
singular maps and open meshes with regular maps. This proves our earlier Corollary 4.2.9.

Proof of Corollary 4.2.9. The ‘mesh dualization’ functors

† : M̄eshn ' M̊eshn : †

are defined by the respective composites in

M̄eshn T̄rsn T̊rsn M̊eshn
ETrs †

CMsh †

CMsh

ETrs

where the central arrows (labeled by ‘†’) are the dualization functors of trusses, see
Observation 2.3.89. Since each functor in the above composite is an equivalence, so are
the mesh dualization functors.

Example 4.2.86 (Meshes and their duals). In Fig. 4.17 we depict meshes M together
with their duals M † (note in particular, this turns open meshes into closed meshes and
vice versa). Note that the depicted closed 3-mesh contains two 3-cells (corresponding to
the two 0-cells in the depicted open 3-mesh); this is a subcomplex of the gluing depicted
earlier in Fig. 1.61.

Remark 4.2.87 (Dualization of flat framed regular cell complexes). While flat framed regular
cell complexes don’t dualize to flat framed regular cell complexes (they correspond to closed
meshes, which to open meshes), they do so ‘up to compactification’ (see Definition 4.2.53).
Namely, given a flat n-framed regular cell complex (X,F) define its ‘dual’ to be the flat
n-framed regular cell complex cc tt(X,F)† (that is, the framed complex translation of
the compactification of the dual of tt(X,F)). This is the ‘duality’ used in an earlier
example: namely, the framed complex in Fig. 1.61 ‘dualizes’ to the framed complex in
Fig. 1.60.

The fact that meshes admit a notion of dualization is fundamental, and provides the key
to many ideas in the interplay of framed combinatorial topology and geometric higher
category theory (such as those outlined in Section I.5).
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Figure 4.17: Meshes and their duals.
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CHAPTER 5
Combinatorializability of flat framed

stratifications

In the final chapter of this book we will begin our study of framed combinatorial stratified
topology, or more precisely, of its model stratifications given by so-called flat framed
stratifications. Flat n-framed stratifications provide a general class of stratifications
defined by the property of being ‘meshable’, i.e. admitting a framed refinement by some
n-mesh. Their ‘flat n-framing’ is induced by a framed embedding into standard n-framed
Rn. Flat framed stratifications provide ‘local models’ for more general, ‘global’ framed
stratified spaces (much as framed regular cells provide local models for framed regular
cell complexes). While we will not discuss ‘global’ framed stratifications here, the basic
machinery of flat framed stratifications developed in this chapter will be tailored towards
future applications in that and other related directions.

We outline the main results of this chapter. Recall, a stratified map is a ‘refinement
of its image’ if its underlying map of spaces is a homeomorphism. The definition of flat
framed stratifications can be formally given as follows.

Definition 5.0.1 (Flat framed stratifications). A flat n-framed stratification is a
stratification (Z, f) of a subspace Z ⊂ Rn, for which there exists an n-mesh M whose flat
n-framing (as a stratified map into Mn ↪→ Rn) refines (Z, f).

In Fig. 5.1, we illustrate several examples of flat n-framed stratifications (I3, f) of the open
3-cube I3 ⊂ R3. All examples can be seen to admit a refinement by the flat 3-framing of
an open 3-mesh. (Note that, in general, the underlying space Z ⊂ Rn of a flat framed
stratification (Z, f) need not be open, as it can be the image of the n-framing of any
mesh.)

We will prove that flat framed stratifications, despite their definition in stratified
topological terms, have an unexpected combinatorial counterpart. While we’ve shown in
the previous chapter that meshes are ‘weakly’ equivalent to constructible combinatorial
objects (namely, to trusses), the above definition of flat framed stratifications makes
reference merely to the existence of some mesh refinement without singling out a particular
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Figure 5.1: Examples of flat 3-framed stratifications of the open 3-cube representing (from
left to right) a ‘braid’, a ‘Hopf circle’, a ‘Mobius band’, a ‘pair of pants with defects’, and
a ‘cusp singularity’.

such refinement. It therefore remains entirely unclear that flat framed stratifications can
themselves be combinatorialized as claimed.

For the combinatorialization of meshes to transfer to that of flat framed stratifications,
we will have to understand the class of all refining meshes in combinatorial terms. This
will be achieved by the notion of ‘stratified trusses’. The notion is a specialization of our
earlier definition of ‘labeled n-trusses’ (see Definition 2.3.44) requiring the labeling to be
the characteristic map of a stratification (here, we regard posets as topological spaces via
their specialization topology, see Convention B.0.2).

Definition 5.0.2 (Stratified n-truss). A stratified n-truss T is a labeled n-truss T
whose labeling lblT is the characteristic map of a stratification on the total poset Tn of
T .

The correspondence between n-trusses and n-meshes can now be extended to a corre-
spondence between stratified n-trusses and refinements of flat framed stratifications by
n-meshes (up to ‘framed stratified homeomorphism’). Namely, given a refinement of a flat
framed stratification by an n-mesh, we can first consider the n-truss corresponding to the
n-mesh, and then produce a labeling of that n-truss by precomposing the characteristic
map of the stratification with the refinement’s entrance path poset map. To obtain unique
combinatorial representatives of flat framed stratifications, we will be interested in the
following subclasses of stratified trusses, consisting of those stratified trusses that do
not admit a non-identity ‘label preserving truss coarsening’ (see Terminology 2.3.61 and
Terminology 2.3.97).

Definition 5.0.3 (Normalized stratified n-trusses). We say a stratified n-truss T is
normalized if any label preserving truss coarsening of T is an identity.

Our main theorem in this chapter will show that flat framed stratifications are indeed
‘combinatorializable’, by producing a correspondence of flat framed stratifications (up to
framed stratified homeomorphism) with normalized stratified trusses (up to ‘stratified
truss isomorphisms’), as follows.

Theorem 5.0.4 (Normalized stratified trusses classify flat framed stratifications). Framed
stratified homeomorphism classes of flat n-framed stratifications are in correspondence
with isomorphisms classes of normalized stratified n-trusses.

The theorem’s proof will be based on the following observation: while, a priori, flat framed
stratifications may have many refining meshes, there is, in fact, always one canonical
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(namely, ‘coarsest’) refining mesh. The correspondence of the theorem will take a given
flat n-framed stratification to the stratified n-truss representing the coarsest n-mesh
refinement of that stratification. The proof will therefore hinge on the construction of
coarsest refining meshes which, in turn, will be based on a key property of meshes: the
existence of so-called ‘mesh joins’. As suggested by the name, mesh joins are finest mutual
coarsenings of any two given meshes (with identical support). The proof of the existence of
mesh joins and the construction of coarsest refining meshes will take up all of Section 5.1.
This will provide the technical groundwork for Section 5.2.1 where we will spell out the
proof of Theorem 5.0.4.

Remark 5.0.5 (Bundles of flat framed stratifications). Definition 5.0.2, Definition 5.0.3 and
Theorem 5.0.4 all have immediate generalizations to the case of bundles; that is, ‘bundles
of flat framed stratifications’ will correspond to ‘normalized stratified truss bundles’. We
will address this generalization at the end of Section 5.2.1.

Theorem 5.0.4 has several key corollaries, as we now outline. Most immediately,
the theorem implies that (up to homotopically unique homeomorphism) any flat framed
stratification may be replaced by a canonical piecewise linear one; here, a ‘piecewise linear
stratification’ means a stratification that admits a triangulation by linear simplices in Rn.

Corollary 5.0.6 (Flat framed stratification are piecewise linear). Any flat framed strat-
ification is framed stratified homeomorphic to a canonical piecewise linear flat framed
stratification.

The canonical piecewise linear flat framed stratification can be obtained by constructing
the ‘classifying stratification’ of the normalized stratified trusses corresponding to the
given flat framed stratification. This corollary, in particular, entails that flat framed
stratifications are better behaved than mere topological stratifications: indeed, there are
bounded stratifications in Rn that are not topologically (nonframed) homeomorphism to
any piecewise linear stratifications (for instance, take any embedding of the E8 manifold
in euclidean space).

Not only are flat framed stratifications framed stratified homeomorphic to piecewise
linear ones, but the notions of ‘framed stratified homeomorphism’ and ‘framed stratified
PL homeomorphism’ coincide.

Corollary 5.0.7 (Flat framed Hauptvermutung). Any framed stratified homeomorphism
between piecewise linear flat framed stratifications is homotopic to some framed stratified
piecewise linear homeomorphism.

In fact, the homotopy is ‘unique up to contractible choice’. As we will discuss, the classical
nonframed analog of the statement fails to hold: namely, there are bounded piecewise
linear stratifications in Rn that are topologically stratified homeomorphic but not piecewise
linearly stratified homeomorphic.

Finally, we also have the following ‘converse’ to Corollary 5.0.6.

Proposition 5.0.8 (Piecewise linear stratifications are flat framed). Any bounded piece-
wise linear stratification in Rn is (up to adding an ‘ambient’ stratum) a flat framed
stratification.
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The previous three results will be content of Section 5.2.2. Together, they establish the
‘polyhedrality’ of flat framed stratifications, and they can be summarized as follows.

Remark 5.0.9 (Framed, framed piecewise linear, and piecewise linear categories). Corol-
lary 5.0.6 shows that the functor from ‘piecewise linear flat framed stratifications’ into ‘flat
framed stratifications’ is surjective on homeomorphism classes, and Corollary 5.0.7 shows
that it is injective on homeomorphism classes. Further, Proposition 5.0.8 shows that the
functor from ‘piecewise linear flat framed stratifications’ to ‘piecewise linear stratifications’
is surjective on homeomorphism classes. However, observe that that functor is far from
being injective since framed stratified PL homeomorphism is a much finer equivalence
relation than (nonframed) stratified PL homeomorphism, and the two categories are far
from being equivalent.

A second important area of applications of the combinatorializability of flat framed
stratifications concerns their ‘computability’ properties. We will highlight the following
two results.

Corollary 5.0.10 (Canonical mesh refinement are computable). Given a flat framed
stratification in Rn, its coarsest refining mesh can be algorithmically computed.

The proof of this result will translate the process of ‘coarsening mesh refinements’ into
a combinatorial notion of ‘reduction’ of stratified trusses. Any chain of reductions of a
given stratified truss eventually ends in the same normalized stratified truss (which is a
consequence of the existence of coarsest mesh refinements) and this normalized stratified
truss can be algorithmically computed. It follows that coarsest refining meshes also can
be algorithmically computed.

A second corollary will be the following.

Corollary 5.0.11 (Decidability of framed stratified homeomorphism). Given two flat
framed stratifications, presented as piecewise linear stratifications in Rn, we can algorith-
mically decide whether they are framed stratified homeomorphic.

The preceding two results will be discussed in Section 5.2.3.
The results in this chapter provide a first set of core properties of flat framed stratifi-

cations, in particular establishing their ‘combinatorial and computational tractability’.
We will end the chapter in Section 5.3 with a short of overview of further steps in the
program of framed combinatorial topology.

5.1 Flat framed stratifications have canonical meshes

Recall from Definition 5.0.1 that a flat n-framed stratification (Z, f) is a stratification of
a subspace Z ⊂ Rn for which there is a ‘refining’ n-mesh M , given by a tower of 1-mesh
bundles pi : (Mi, fi)→ (Mi−1, fi−1) and n-framing components γi : Mi ↪→ Ri, such that
γn : (Mn, fn) → (Z, f) is a stratified refinement of (Z, f) by (Mn, fn). Our goal in this
section, will be to show that there is a canonical such refining n-mesh: namely, we will
construct the ‘coarsest’ refining n-mesh of a given flat framed stratification. The following
notational convention will be helpful.
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Notation 5.1.1 (Keeping n-framings implicit). When working with n-meshes M (resp.
n-mesh bundles p over a base (B, g)) given by towers of 1-mesh bundles pi : (Mi, fi)→
(Mi−1, fi−1) and framing γ as defined in Construction 4.1.47 (resp. Construction 4.1.54)
we will usually identify the space Mi with the image of γi : Mi ↪→ Ri (resp. of γi : Mi ↪→
B × Ri). We call Mn ⊂ Rn resp. Mn ⊂ B × Rn the ‘support’ of M resp. p.

In particular, M is a refining mesh of a flat framed stratification (Z, f) exactly if
(Mn, fn) → (Z, f) is a stratified refinement (whose underlying map is the identity on
Mn = Z ⊂ Rn).

5.1.1 Definition of mesh joins A key step to prove the existence of coarsest mesh
refinements will be the construction of so-called ‘mesh joins’. A ‘join’ of two stratifications
on the same space is the finest mutual coarsening of both stratifications; in general, this
may be a prestratification as the following definition records (recall, a prestratification
allows cycles in the formal entrance path relation, see Terminology B.1.3).

Definition 5.1.2 (Joins of stratification). Given stratifications f and g of a space X, the
join f ∨ g is the unique prestratification of X that coarsens both f and g, and such that,
for any other prestratification h of X, if h coarsens both f and g then it must be finer
that f ∨ g.

Explicitly, the join may be constructed as follows.

Construction 5.1.3 (Joins of stratifications). Given a space X, and stratifications
(X, f), (X, g), let ∼ denote the (transitive closure of the) relation on the union of strata
of both f and g given by

s ∼ t ⇐⇒ (s ∩ t 6= ∅)

Then the join f ∨ g is the prestratification of X given by the decomposition of X into
non-empty connected subspaces

⋃
s∈s s, where s is an equivalence class under the relation

∼.

Remark 5.1.4 (Joins as pushouts). Joins of (pre)stratifications (X, f) and (Y, g) may
be equivalently defined as pushouts in the category of prestratifications of the span of
stratified coarsenings

(X, f)← (X, discr(X))→ (X, g)

where discr(X) is the discrete stratification on X (see Terminology B.1.11). Note that
this pushout is preserved when passing to entrance path preorders, yielding a pushout in
the category of preorders.

Notation 5.1.5 (Equivalence classes and strata in joins). Given stratifications (X, f)
and (X, g), abusing notation we often denote their strata by s ≡

⋃
s∈s s, where s is an

equivalence class of strata—that is, we consider s both as an equivalence class of strata
(for instance, we write r ∈ s to mean a member r of that class) and as a stratum of f ∨ g
(for instance, we write x ∈ s to mean a point in that stratum). Further, we denote by sf
the subclass of s consisting of strata that lie in f , and by sg the subclass of strata in s
that lie in g.

Note that the disjoint unions
⊔
s∈sf s and

⊔
s∈sg s in Mn both equal the stratum s.
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Example 5.1.6 (Joins of stratifications). In Fig. 5.2 we depict the joins of two strati-
fications. Note that in the second case, the join is in fact a prestratification, and not a
stratification (using Remark 5.1.4, this reflects that pushouts of diagrams of posets in the
category of preorders need not themselves land in the subcategory of posets).

Figure 5.2: Joins of stratifications.

For fixed domain and codomain, the join operations extend to stratified maps as the
following observation records.

Observation 5.1.7 (Joins of stratified maps). Given stratifications (X, f), (X, g), (X ′, f ′),
(X ′, g′), and stratified maps F : (X, f) → (X ′, f ′) and G : (X, g) → (X ′, g′) that are
identical as maps of underlying spaces X → X ′, then the latter map of spaces also
underlies a stratified map F ∨G : (X, f ∨ g)→ (X ′, f ′ ∨ g′). We call F ∨G the ‘join’ of
the stratified maps F and G.

Specifically, we will be interested in the joins of meshes and their bundles. Recall from
Notation 5.1.1 that we consider meshes resp. their bundles as (fiberwise) trivialized in Rn.

Definition 5.1.8 (Mesh bundle joins). Given two n-mesh bundles p and p′ consisting
of 1-mesh bundles pi : (Mi, fi) → (Mi−1, fi−1) resp. p′i : (M ′i , f

′
i) → (M ′i−1, f

′
i−1) over

(M0, f0) = (B, g) = (M ′0, f
′
0) such that M and M ′ have identical support in B × Rn,

then the mesh bundle join p ∨ q is the tower stratified maps pi ∨ p′i : (Mi, fi ∨ f ′i) →
(Mi−1, fi−1 ∨ f ′i−1) (where each Mi is a stratified subspace of B × Ri).

The definition specializes to a notion of ‘mesh joins’ M ∨M ′ of n-meshes M and M ′ by
setting the base to be trivial, i.e. (B, g) = ∗.

Example 5.1.9 (Mesh joins). In Fig. 5.3 we depict the mesh join of two open 2-meshes.
Note that mesh join is in fact again a 2-mesh.

The crucial fact, illustrated by the preceding example, is the following: mesh joins are
meshes (automatically endowed with an n-framing by virtue of being subtowers of Π).
The proof of this fact will take up the next section.
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Figure 5.3: The join of two open meshes.

5.1.2 Construction of mesh joins This section will be concerned with the following
‘key lemma’.

Key Lemma 5.1.10 (Join stability of meshes). Given n-meshes M and M ′ with identical
support, then their mesh join M ∨M ′ is an n-mesh (with the same support).

Proof of Key Lemma 5.1.10. The proof is by induction in n. Inductively, the mesh join
M<n ∨M ′<n of the (n− 1)-truncations M<n and M ′<n is an (n− 1)-mesh. The inductive
step requires us to show that the stratified map pn∨p′n : fn∨f ′n → fn−1∨f ′n−1 is in fact a
1-mesh bundle; this follows from Lemma 5.1.11 (using that both fn−1 and f ′n−1 are finite
frontier-constructible stratifications by Observation 4.1.44 and Observation 4.1.45).

Lemma 5.1.11 (Join stability of 1-mesh bundles). Let (B, g) and (B, g′) be finite frontier-
constructible stratifications. Given 1-mesh bundles p : (M,f)→ (B, g) and p′ : (M,f ′)→
(B, g′) that are identical as maps of spaces, then their join p∨ p′ : (M,f ∨ f ′)→ (B, g∨ g′)
is again a 1-mesh bundle.

Before proving the lemma we will show the following auxiliary results.
1. In Lemma 5.1.12 we show that image of any stratum in f ∨ f ′ under p is exactly a

stratum in g ∨ g′.
2. In Lemma 5.1.16 we show that each stratum s in fn ∨ gn whose image under pn

is the stratum r in (f ∨ g)n−1, admits continuous sections γ̂±s : r → r × R which
fiberwise bound s from above and below.

We will then assemble these observations into a proof of Lemma 5.1.11.

Lemma 5.1.12 (Joined strata project onto joined strata). For 1-mesh bundle p : (M,f)→
(B, g) and p′ : (M,f ′)→ (B, g′) with identical underlying maps, the image of any stratum
s of f ∨ f ′ under p ∨ p′ is exactly a stratum in g ∨ g′.

Notation 5.1.13 (Identifying bundle maps). We often notationally identify p ≡ p′ ≡ p ∨ p′
(since p, p′, and p ∨ p′ are all identical as maps of spaces).

Proof of Lemma 5.1.12. First note p(s) is contained in some stratum r of g ∨ g′ (see
Observation 5.1.7). Now, since p is 1-mesh bundle, images of strata in f are exactly strata
of g (and similarly for p′). Consequently, there is a subclass rsf of rf (see Notation 5.1.5)
such that the union of strata in rsf is exactly p(s). To proof the lemma, we show rsf = rf .

207



If rsf ( rf , then we could find a stratum r′ in the class rf ′ which intersects both rsf and
rf \ rsf . Pick a stratum r in rsf that intersects r′. By definition of rsf , there is a stratum s
in the class sf lying over r. Since M and N have identical support, and since r intersects
r′, there is at least one stratum s′ in f ′ lying over r′ that intersects s. This implies s′ is a
member of the class s. But since p(s′) = r′, and p(s′) ⊂ p(s) = rsf , and r

′ intersects rf \ rsf
non-trivially, this constructs a contradiction.

We next want to show that the following ‘upper and lower fiber bounds’ are in fact images
of continuous sections.

Notation 5.1.14 (Upper and lower fiber bounds). Under the assumptions of Lemma 5.1.12,
given a stratum s of f ∨ f ′ for each point x ∈ p(s) we denote by sx the restriction of s
to the R-fiber of the projection r × R→ r. We further denote by γ̂−s (x) resp. γ̂+

s (x) the
‘lower resp. upper bound’ of the subspace sx in R.
Observation 5.1.15 (Upper and lower boundaries lie in singular strata). Using the previous
notation, we emphasize the basic but important observation that, for each x ∈ p(s), the
point γ̂±s (x) ∈ r × R either equals γ±(x) (where γ± : B → B × R are the 1-fiber framing
bounds of both the 1-mesh bundles p and p′) or the point lies in singular strata of both
f and f ′. Indeed, it cannot lie in regular strata of either f or f ′, since regular strata
intersect fibers of B × R→ B in open intervals.

Lemma 5.1.16 (Joined strata are bounded by continuous sections). For 1-mesh bundles
p : (M,f) → (B, g) and p : (M,f ′) → (B, g′) with finite frontier-constructible base
stratifications, then, given any stratum s in f ∨f ′ lying over r = p(s) in g∨ g′, the function
γ̂±s : r→ r × R mapping x to γ̂±s (x) is continuous.

Proof. We first observe that, for each stratum v in the equivalence class r, the mapping
γ̂±s restricts to a continuous map on v. Indeed, assume v ∈ rf (or similarly, v ∈ rf ′). Then
the intersection s ∩ p−1(v) is exactly a union of strata in f , namely those strata sv ⊂ sf
which lie over v. The image γ̂±s (v) of γ̂±s : v → v × R is therefore either equal to γ±n (v) or
to some singular stratum in f lying over v. In either case, γ̂±s is continuous on v.

The following terminological distinction will be useful. If a stratum u ∈ r contains a
point x at which γ̂± is not continuous (that is, γ̂±s is not continuous in any neighborhood
of x in the stratum r) we say u is ‘bad’; otherwise, we say u is ‘good’. Note, by our first
observation, bad strata cannot be minimal elements in either rg or rg′ (considered as full
subposets of Entr(g) resp. Entr(g′)). In particular, there exist at least some good strata;
namely the minimal elements in rg and rg′ .

We first show at given a bad stratum u, then γ̂±s is not continuous at any point of
u. Assume u ∈ rg (the argument is the same if u ∈ rg′). By assumption, there is x ∈ u
at which γ̂±s is not continuous. Since g is finite and frontier-constructible, there must
be ũ → u (in Entr(g)) such that γ̂±s is not continuous at x when restrict to ũ ∪ u. As
observed earlier, the subspaces γ̂±s (u) (resp. γ̂±s (ũ)) are either singular strata in f or of
the form γ±(u) (resp. γ±(ũ)). It follows by constructibility of p : f → g and continuity of
γ±, that either γ̂±s (ũ) contains all or else none of γ̂±s (u) in its closure. The latter case
must be true, since we assumed that γ̂±s is not continuous on ũ ∪ u at x. We deduce that
γ̂±s is discontinuous at all points in u as claimed.
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To see that γ̂± is continuous on all of r we now argue by contradiction. Assume a bad
stratum u0 (say, u0 ∈ rg) exists. Now, let ru0f ′ denote the subclass of strata in rf ′ which
intersect u0. Note all strata in ru0f ′ are bad, since they all intersect u0 at least in one point.
Moreover, since good strata exists (and thus u0 ( r), the union of strata in ru0f ′ covers u0

but it cannot cover u0 exactly. Thus, pick a u1 ∈ ru0f ′ which contains points outside of u0.
Denote by ru0,u1f the strata of rf which non-trivially intersect u0 ∪ u1. Again, since good
strata exist (and thus u0 ∪ u1 ( r), the union of strata ru0,u1f cannot cover u0 ∪ u1 exactly.
Thus, pick a stratum u2 ∈ ru0,u1f which contains points outside of u0 ∪ u1. Once more, u2

is bad. Repeating the argument in this way, we obtain a sequence of strata ui, such that
each ui has points outside of u1 ∪ ... ∪ ui−1. The fact that the sequence is non-repeating
contradicts the finiteness of the equivalence class r and thus completes the argument.

We can now proof that the join of 1-mesh bundles is again a 1-mesh bundle.

Proof of Lemma 5.1.11. We first check that p : f ∨f ′ → g∨g′ is a stratified bundle whose
fibers are 1-meshes. Given a stratum s of f ∨ f ′ lying over a stratum r of g ∨ g′, denote by
γ̂±s (r) the respective images of r under the mappings γ̂±s : r→ r × R. Constructibility of
both p : f → g and p : f ′ → g′ implies that either γ̂±s (r) = γ±(r) or else γ̂±s (r) is a union
of singular strata in both f and f ′. In the latter case, γ̂±s (r) is also a stratum in f ∨ f ′. It
follows that either (1) γ̂−s (r) = γ̂+

s (r) or else (2) γ̂−s (r) and γ̂+
s (r) are disjoint. If (1) holds,

s is a ‘singular stratum’, that is, a section of pn : Mn →Mn−1 (restricted to r in the base).
If (2) holds, s is a ‘regular stratum’ over r, fiberwise bounded by the continuous sections
γ̂±s . This shows that pn : fn ∨ gn → (f ∨ g)n−1 is stratified bundle with 1-mesh fibers.
(The bundle of course trivially inherits its fiber 1-framing from that of p.)

Finally, we observe that p : f ∨ f ′ → g ∨ g′ is constructible. Indeed, since both
p : f → g and p : f ′ → g′ are constructible, one easily checks that closure of singular
strata in f ∨ f ′ only contain singular strata, and that lifts of entrance paths in Entr(g ∨ g′)
to singular strata in Entr(f ∨ f ′) are unique.

This completes our construction of mesh joins, and thus the proof of Key Lemma 5.1.10.
The reader may have noted already that our arguments immediately carry over to the
case of mesh bundles as well. We record this in the following result.

Lemma 5.1.17 (Join stability of n-mesh bundles). Let p and q be n-mesh bundles over
finite frontier-constructible base (B, g) resp. (B, g′) with the same support in B × Rn.
Then the join p ∨ q is again an n-mesh bundle.

Proof. The proof of Key Lemma 5.1.10 applies almost verbatim (replacing ‘meshes’ by
‘mesh bundles’).

5.1.3 The coarsest refining mesh We now define and then prove the existence of
coarsest refining meshes of flat framed stratifications.

Definition 5.1.18 (Coarsest refining meshes). Given a flat framed stratification (Z, f),
a refining n-mesh M , with refinement (Mn, fn)→ (Z, f), is the coarsest refining mesh
of (Z, f) if for any other refining n-mesh N , with refinement (Nn, gn)→ (Z, f), there is a
refinement (Nn, gn)→ (Mn, fn) factoring the latter refinement (of f by gn) through the
former refinement (of f by fn).
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The fact that coarsest refining meshes exists can be proven as follows.

Theorem 5.1.19 (Construction of coarsest refining meshes). Any flat n-framed stratifi-
cation (Z, f) has a (necessarily unique) coarsest refining n-mesh.

Proof. Given any two refining n-meshes M and N of (Z, f), note that the mesh join
M ∨N (as constructed in Key Lemma 5.1.10) yields another n-mesh refining (Z, f), which
is coarser than both M and N . Since meshes are finite stratifications (which excludes the
possibility of infinite chains of coarsenings starting at any given mesh) it follows that there
must exists a unique coarsest mesh through which all other meshes factor as claimed.

Importantly, the construction of coarsest refining meshes is also compatible with framed
stratified homeomorphisms of flat framed stratifications, in the following sense.26

Terminology 5.1.20 (Framed maps). Given subspaces Z ⊂ Rn and W ⊂ Rn, a map
F : Z →W is called a ‘framed map’ if for each 0 < i < n, F descends along the standard
projection π>i = πi+1 ◦ ...πn−1 ◦ πn : Rn → Ri to a map Fi : π>iZ → π>iW .

Terminology 5.1.21 (Framed stratified homeomorphism and mesh isomorphism). A ‘framed
stratified homeomorphism’ (Z, f) → (W, g) of flat framed stratifications is a stratified
homeomorphism whose underlying map Z → W is framed. Note that, in contrast, we
continue to speak of ‘n-mesh isomorphisms’ to mean isomorphisms in the category Meshn
(since meshes are not just mere stratifications, but towers of 1-mesh bundles).

Lemma 5.1.22 (Homeos of flat framed stratifications induce isos of their coarsest refining
meshes). Let (Z, f) and (W, g) be flat n-framed stratifications with coarsest refining meshes
M resp. N . If there is a framed stratified homeomorphism F : f ∼= g then F induces an
n-mesh isomorphism F : M → N between their respective coarsening refining meshes.

Proof. Since F is a framed stratified homeomorphism, note that there is a ‘push-forward’
mesh FM refining g: the mesh FM is determined by an n-mesh isomorphism M ∼= FM
whose top component is F . Conversely, there is a ‘pull back’ mesh F−1N refining f
determined by N ∼= F−1N having top component F−1. Note that, since N is the
coarsest refining mesh of g, the refining mesh FM must be finer than N . If FM were
strictly finer than N (that is, FM → N is a non-identity coarsening of FM), then
M = F−1FM → F−1N would be a non-identity coarsening of M . This is impossible
since M is the coarsest refining mesh of g. We deduce that FM = N , and thus we obtain
an induced n-mesh isomorphism M ∼= N with top component F : Z → W . Abusing
notation, we denote this mesh isomorphism again by F : M ∼= N .

Having shown the existence of coarsest refining meshes (and their compatibility with
framed stratified homeomorphism of flat framed stratification), we now give several
illustrative examples. The slogan for these illustrations is that ‘coarsest refining meshes
are refining meshes that record exactly where changes in framed stratified homeomorphism
type of a flat framed stratification happen’. (Heuristically, they bear visual resemblance
with ‘critical level set’ decompositions from (higher) Morse theory.)
26Yet more generally, this observation in fact also holds for ‘weak equivalences’ of flat framed stratifications,
i.e. weakly invertible maps of flat framed stratifications, in an appropriate sense.
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Example 5.1.23 (Coarsest refining meshes of the circle, the braid and Hopf circle). In
Fig. 5.4 we depict three flat framed stratifications (together with their respective coarsest
refining meshes): these include flat 2-framed stratification of the open 2-cube obtained
by an embedded circle and its complement, the flat 3-framed stratification of the open
3-cube given by the braid and its complement, and the flat 3-framed stratification given
by the ‘Hopf circle’ in the 3-cube and its complement. Observe that the last two examples
recover the first two examples in Fig. 5.1 up to a rotation of the ambient R3.

Figure 5.4: Coarsest refining meshes of the circle, the braid, and Hopf circle.

Example 5.1.24 (Non-coarsest refining meshes of the circle). In Fig. 5.5 we depict
two refining 2-meshes of a flat framed stratification of the open 2-cube obtained by an
embedded circle and its complement. Neither of the two refining meshes is the coarsest
refining mesh.

Figure 5.5: Non-coarsest refining meshes of the circle.

Example 5.1.25 (Coarsest refining mesh of the cusp). In Fig. 5.6 we depict the coarsest
refining mesh of the cusp singularity (which appeared as the last example in our earlier
Fig. 5.1).
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Figure 5.6: Coarsest refining mesh of the cusp.

Remark 5.1.26 (Twisted circle embedding). We revisit the Hopf circle embedding from
Example 1.3.65. As a flat framed stratification of the open 3-cube, its coarsest refining
mesh is an open 3-mesh M , as shown in Fig. 5.4. As a stratification of the closed cube,
its coarsest refining mesh M is a closed 3-mesh (and equals, up to isomorphism, the
classifying mesh CMsh ETrsM of the compactification ETrsM of the entrance path truss
ETrsM of M). The mesh complex of M (see Terminology 4.2.75) recovers exactly the flat
framed regular cell complex given earlier in Example 1.3.65.

5.2 Tractability of flat framed stratifications

In this section we discuss the ‘combinatorializability’ of flat framed stratifications and
its corollaries, as outlined in the beginning of the chapter. We prove the central theorem
about the combinatorializability of flat framed stratifications in Section 5.2.1. A first set
of corollaries relating to the ‘polyhedrality’ of flat framed stratifications will be discussed
in Section 5.2.2. Finally, the theorem also implies the ‘computability’ of flat framed
stratification as we will explain in Section 5.2.3.

5.2.1 Combinatorializability

5.2.1.1 Stratified trusses Recall from Definition 5.0.2, that a stratified n-truss is a
poset labeled n-truss T (that is, a ‘underlying’ n-truss T = (Tn → ... → T0) together
with a ‘labeling’ lblT : Tn → P in some poset P ) with the condition that the labeling
lblT is the characteristic map of a stratification on Tn. This last condition can be more
concretely rephrased as follows.

Remark 5.2.1 (Characteristic maps are connected-quotient maps). A ‘quotient map’ of
posets is a surjective poset map for which subposets in the codomain are open, i.e.
downward closed, if and only if their preimages are open in the domain. A ‘connected-
quotient map’ of posets is a quotient map of posets whose preimages are connected. A
truss labeling lblT : Tn → P in a poset P is the characteristic map of a stratification on
Tn if and only if it is a connected-quotient map. This is shown (in slightly more general
form) in Lemma B.1.29.

To highlight that a labeled truss T = (T , lblT ) is a stratified truss we will usually denote
the poset of labels by Entr(T ) (and thus write lblT : Tn → Entr(T ) for the labeling of T ).
Before discussing the notion of stratified n-trusses further, let us give a first example.

Example 5.2.2 (Stratified trusses). In Fig. 5.7 we depict a stratified open 2-truss.

212



Figure 5.7: A stratified open 2-truss.

Terminology 5.2.3 (Entrance path posets and strata of stratified trusses). Given a stratified
n-truss T ≡ (T , lblT : Tn → Entr(T )) we call Entr(T ) the ‘entrance path poset’ of T . The
‘strata’ of T are the (by definition, connected) subposets of Tn given by the preimages of
lblT .

Note that, up to isomorphism of entrance path posets, any decomposition of Tn into
connected subposets fully determines a stratified n-truss T . One may further obtain
stratified trusses from ‘P -labelings’ as follows.

Remark 5.2.4 (Poset-labeled truss yields stratified trusses). Note that any poset labeled
truss T = (T , lblT : Tn → P ) yields a stratified n-truss T̃ , by defining strata of T̃ to be the
connected components of the non-empty preimages of lblT . (This ‘connected component
splitting’ construction is formalized, in more general form, in Construction B.1.34.) While
we will not formally need this construction here, it turns out to be somewhat useful when
illustrating examples: it allows us to reduce the number of colors needed in the depiction
of stratified trusses, by replacing a given connected-quotient map with some (non-unique
choice of) poset map that has smaller domain and whose connected component splitting
recovers the original connected-quotient map.

For instance, in Fig. 5.7 we may replace the labeling by a map to the poset (0→ 1),
mapping both the blue and green stratum to 0, and the red stratum to 1.

The notion of maps for stratified n-trusses carries over from that of labeled n-trusses,
but we may further make the following terminological distinctions.

Terminology 5.2.5 (Stratified maps and coarsenings). A ‘stratified map’ of stratified n-
trusses T and S is a labeled n-truss map F ≡ (F , lblF ) : T → S (that is, a map of
n-trusses F : T → S, together with a map of labelings lblF : Entr(T )→ Entr(S) such that
lblF lblT = lblSFn commutes).

1. We call F a ‘(truss preserving) label coarsening’ if F = id is the identity truss map
and lblF is a connected-quotient map (see Remark B.1.27).

2. We call F ‘(label preserving) truss coarsening’ if F is an n-truss coarsening (see
Terminology 2.3.97) and lblF = id.

3. We call F a ‘coarsening’ if F is an n-truss coarsening and F is a connected-quotient
map.

Note that the definition of ‘label coarsenings’ reflects that, in the context of topological
stratifications, connected-quotients of entrance path posets to poset describe exactly the
coarsenings of a given stratification (see Lemma B.2.12).
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Example 5.2.6 (A truss coarsening). We depict a label preserving truss coarsening
F : T → S of stratified 2-trusses S and T in Fig. 5.8.

Figure 5.8: A truss coarsening of stratified trusses.

Note that every coarsening can be written both as a unique composite of a truss coarsening
followed by a label coarsening, and as a unique composite of a label coarsening followed
by a truss coarsening.

5.2.1.2 Stratified meshes Stratified trusses (as well as their maps) can be obtained
from flat framed stratifications together with chosen refining meshes. We call the latter
structure a ‘stratified mesh’.

Definition 5.2.7 (Stratified mesh). A flat n-framed stratification (Z, f) together with a
refining mesh M of (Z, f) will be called a stratified mesh and denoted by a tuple (M,f)
(note that Z may be recovered as the subspace Mn ⊂ Rn).

Definition 5.2.8 (Stratified mesh map). A map of stratified meshes F : (M,f) →
(N, g) is a mesh map F : M → N whose top component is a map of stratifications
Fn : f → g.

Terminology 5.2.9 (Maps of stratified meshes and their coarsenings). Given a map of
stratified meshes F : (M,f)→ (N, g) we make the following terminological distinction.

1. If Fn : f ∼= g, and if N is a coarser refining mesh of f than M (i.e. F : M → N
is an n-mesh coarsening) then we call F : (M,f)→ (N, f) a ‘mesh coarsening’ of
stratified meshes.

2. If F : M ∼= N and g is coarser than f (i.e. Fn : f → g is a coarsening), then we call
F : (M,f)→ (N, f) a ‘stratification coarsening’ of stratified meshes.

3. If both F : M → N and Fn : f → g are coarsenings, we call F : (M,f) → (N, f)
simply a ‘coarsening’ of stratified meshes.
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Example 5.2.10 (A mesh coarsening). We depict a mesh coarsening F : (M,f)→ (N, g)
of stratified 2-meshes (M,f) (withM = (q2, q1)) and (N, g) (with N = (p2, p1)) in Fig. 5.9.

Figure 5.9: A mesh coarsening of stratified meshes.

5.2.1.3 Stratified entrance path trusses Every stratified mesh has a ‘stratified
entrance path truss’.

Definition 5.2.11 (Stratified entrance path trusses). Given a stratified n-mesh (M,f)
define the stratified entrance path truss ETrs(M,f) to be the stratified n-truss
(ETrsM, lblM,f ) whose underlying n-truss is the entrance path truss ETrsM of M , and
whose labeling lblM,f : Tn → Entr(f) is the entrance path poset map Entr(fn → f) :
Entr fn → Entr f of the stratified coarsening (Mn, fn)→ (Z, f).

Definition 5.2.12 (Stratified entrance path truss maps). Given a stratified mesh map F :
(M,f)→ (N, g), define the stratified entrance path truss map ETrsF : ETrs(M,f)→
ETrs(N, g) to be the map of stratified n-trusses whose underlying map of trusses ETrs(M →
N) is the entrance path truss map of the mesh map F : M → N , and whose label map
Entr(f → g) is the entrance path poset map of the stratified map Fn : f → g.

Observation 5.2.13 (Translations of notions of coarsenings). Notions of coarsenings of
stratified meshes translate to the corresponding notions of coarsenings of stratified trusses.
Namely, given a mesh coarsening, a stratified coarsening, a coarsening of stratified meshes
(M,f) → (N, f), then ETrs((M,f) → (M, g)) : ETrs(M,f) → ETrs(M, g) is a truss
coarsening, resp. a label coarsening, resp. a coarsening of stratified trusses.

Example 5.2.14 (Translating mesh coarsenings to truss coarsenings). The mesh coars-
ening in Fig. 5.9 translates to the truss coarsening in Fig. 5.8.

5.2.1.4 Stratified classifying meshes The stratified entrance path truss construction
has a converse construction as follows. Recall that stratified coarsenings of a given
stratification are exactly determined by connected-quotient maps of the stratification’s
entrance path poset (see Lemma B.2.12).

Definition 5.2.15 (Stratified classifying meshes of stratified trusses). Let T be a stratified
n-truss. Its stratified classifying mesh CMshT is the stratified mesh (CMshT , fT )
whose underlying mesh CMshT is the classifying mesh of the underlying n-truss T
of T , and whose stratification fT is the stratification of Z = Mn ⊂ Rn obtained by
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coarsening (Mn, fn) by the connected-quotient map lblT : Tn → Entr(T ) on entrance path
posets.

Note in particular, that (Z = Mn, fT,f ) is a flat framed stratification. The stratified
classifying mesh construction extends to maps of stratified trusses as follows.

Definition 5.2.16 (Stratified classifying mesh maps of stratified trusses maps). Given
a map F = (F , lblF ) : T → S of stratified trusses T = (T , lblT ) and S = (S, lblS), we
define the stratified classifying mesh map CMshF : CMshT → CMshS of stratified
n-meshes to be the classifying n-mesh map CMshF : CMshT → CMshS which, by
definition of stratified classifying meshes, can be seen to descend to a stratified map
CMshFn : fT → fS as required.

The construction are mutually (weakly) inverse in the following sense.

Observation 5.2.17 (Mutual invertibility). Let T be a stratified truss, and (M,f) be a
stratified mesh.

1. There is a unique isomorphism T ∼= ETrs CMsh(M,f). This follows since T ∼=
ETrs CMshM uniquely, and from the definitions of stratified entrance path trusses
resp. stratified classifying meshes.

2. There is a (up to contractible choice of homotopy unique) isomorphism of stratified
meshes (M,f) ∼= CMsh ETrs(M,f). This follows since there is a (up to contractible
choice of homotopy unique) mesh isomorphism M ∼= CMsh ETrsM , and from the
definitions of stratified classifying meshes resp. stratified entrance path trusses.

Observation 5.2.18 (Translations of notions of coarsenings). Conversely to Observa-
tion 5.2.13, notions of coarsenings of stratified trusses translate to the corresponding notions
coarsenings of stratified meshes. Namely, given a truss coarsening (resp. label coarsening
resp. coarsening) of stratified trusses T → S, then ETrs(T → S) : ETrsT → ETrsS is a
mesh coarsening (resp. stratification coarsening resp. coarsening) of stratified meshes.

While not used for the main result of the chapter, the case of coarsenings will be of separate
importance to us, and, as discussed before, it needs additional care (see Observation 4.2.69).
Recall that truss coarsenings can be realized as mesh coarsenings, via the ‘classifying
mesh coarsening’ construction (see Construction 4.2.72).

Definition 5.2.19 (Stratified classifying mesh coarsening of stratified trusses coarsening).
Given a coarsening of stratified trusses F : T → S, we define the stratified classifying
mesh coarsening CMshF : CMshT → CMshS of stratified n-meshes to be the classi-
fying n-mesh coarsening CrsMshF : CMshT → CMshS which, by definition of stratified
classifying meshes, can be seen to descend to a stratified map CrsMshFn : fT → fS as
required.

5.2.1.5 Normalization and combinatorializability Recall the definition of ‘coars-
est refining meshes M ’ of flat framed stratifications (Z, f): this is precisely a stratified
meshes (M,f) to which no non-identity mesh coarsening applies. Combinatorially, this
motivates our earlier Definition 5.0.3 of ‘normalized’ stratified trusses: namely, a nor-
malized stratified truss T is precisely a stratified truss to which no non-identity truss
coarsening applies. Our earlier Observation 5.2.17 about the correspondence of stratified
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meshes and stratified trusses now specializes to a correspondence of coarsest stratified
meshes (meaning stratified meshes (M,f) such that M is the coarsest refining mesh of f)
and normalized stratified trusses up to isomorphism. This ‘almost’ proves Theorem 5.0.4,
claiming the correspondence of flat framed stratifications and normalized stratified trusses
up to isomorphism. The only missing ingredients lies in the comparison of framed stratified
homeomorphisms of flat framed stratifications and isomorphisms of coarsest stratified
meshes; but this comparison was exactly provided by our earlier Lemma 5.1.22.

Proof of Theorem 5.0.4. Given a normalized stratified truss T , define its corresponding
flat framed stratification to be fT where (CMshT, fT ) is the stratified classifying mesh of
T . Note that, given another normalized stratified truss S and T ∼= S by a label preserving
balanced truss isomorphism, then (CMshT, fT ) ∼= (CMshS, fS) as stratified meshes which
descends to a framed stratified homeomorphism fT ∼= fS of flat framed stratifications.
Conversely, given a flat framed stratification (Z, f), define its corresponding normalized
stratified truss T to be the stratified entrance path truss ETrs(M,f) where M is the
coarsest refining mesh of f . Note that, given another flat framed stratification (W, g),
with f ∼= g, we obtain an isomorphism of stratified meshes (M,f) ∼= (N, g) (where
N is the coarsest refining mesh of g) by Lemma 5.1.22, and thus a label preserving
balanced truss isomorphism ETrs(M,f) ∼= ETrs(N, g). Now, Observation 5.2.17 implies
that both constructions are mutually inverse to each other, which proves the claim of the
theorem.

Corollary 5.2.20 (Normalization vs coarsest mesh refinements). Let (M,f) be a stratified
mesh and T a stratified truss such that T ∼= ETrs(M,f) (or equivalently, (M,f) ∼= CMshT ).
Then T is normalized if and only if M is the unique coarsest mesh refining f .

We will use the rest of this section to briefly illustrate the correspondence established
by Theorem 5.0.4.

Example 5.2.21 (The normalized stratified truss of the circle). The normalized stratified
truss corresponding to the flat framed stratification of the circle in the open 2-cube (see
the first example in Fig. 5.4) is the stratified truss given in Fig. 5.7.

Example 5.2.22 (The normalized stratified truss of the braid). The normalized stratified
truss corresponding to the braid (see the second example in Fig. 5.4) is the stratified
3-truss depicted in Fig. 5.10 (note that for readability we depict only generating arrows,
see Construction 2.3.69). Note that this fulfils our earlier promises in Preview 2.3.5.

Example 5.2.23 (The normalized stratified truss of the cusp). The normalized stratified
truss corresponding to the cusp singularity (see Fig. 5.6) is the stratified 3-truss depicted
in Fig. 5.11 (note again, that for readability we depict only generating arrows).

5.2.1.6 The case of bundles We briefly discuss how our combinatorializability re-
sults generalize from flat framed stratifications to bundles of flat framed stratifications,
addressing our earlier Remark 5.0.5.

Firstly, a ‘flat framed stratifications over (B, g)’ is of course a stratification of a
subspace of B × Rn that can be refined by an n-mesh bundle over (B, g). Assuming B
is sufficiently nice (e.g. finite frontier-constructible), the proofs of Theorem 5.1.19 and
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Figure 5.10: The normalized stratified truss of the braid.

Figure 5.11: The normalized stratified truss of the cusp.

Lemma 5.1.22, now using Lemma 5.1.17 in the place of Key Lemma 5.1.10, immediately
carry over to case of bundles as follows.

Theorem 5.2.24 (Coarsest refining mesh bundles). For finite frontier-constructible (B, g),
any flat framed stratification bundle (Z, f) over (B, g) has a unique coarsest refining mesh
bundle. Moreover, any stratified bundle homeomorphism of flat framed stratification
bundles over (B, g) preserves this coarsest refining mesh bundle.

Secondly, a ‘stratified n-truss bundle’ is of course a labeled truss n-bundle whose
labeling is a characteristic map, which stratifies the total poset of the bundle (with the
condition that strata live in the poset fibers of the bundle). A stratified n-truss bundle is
normalized if no truss bundle coarsening applies to it (where a ‘truss bundle coarsening’
is a label and base preserving truss bundle map that is fiberwise a truss coarsening).
Assuming (B, g) is also cellulable, our results from chapter 4 apply (at least, in the case of
closed resp. open bundles). Re-using the proof of Theorem 5.0.4 with evident adaptations
then yields the following result.

Theorem 5.2.25 (Normalized stratified truss bundles classify flat framed stratification
bundles). Let (B, g) be a finite, open cellulable and frontier-constructible stratification.
Framed stratified bundle homeomorphism classes of (closed resp. open) flat n-framed
stratification bundles over (B, g) are in correspondence with isomorphism classes of (closed
resp. open) normalized stratified n-truss bundles over Entr(g).
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Certainly, with further care, the result can also be generalized to the case of general
bundles and/or to the case of over non-finite, but locally finite base stratifications.27 Note
that, while the conditions on the base stratifications are lengthy sounding, the conditions
are rather mild (e.g. any finite conical PL stratification satisfies them).

5.2.2 Polyhedrality In this section we discuss the relationship of flat framed stratifi-
cations and ‘piecewise linear stratifications’. We introduce the latter notion below. Note
that all simplicial complexes K in this section will be assumed to be compact and ‘linearly
realized’ in Rn, i.e. they come equipped with an embedding |K| ↪→ Rn of their geometric
realization with compact image, and such that the embedding is linear on each simplex
(in particular, note that the underlying space of a simplicial complex, as a subspace of Rn,
is a polyhedron in the usual sense, see [RS72, Defn. 1.1]).

Definition 5.2.26 (Piecewise linear stratifications). A piecewise linear stratification
is a stratification (Z, f), Z ⊂ Rn, for which there exists a ‘triangulating’ simplicial complex
K such that each stratum of f is a union of open simplices in K.

Note that we do not require Z to have the same support as K (as a subspace in Rn).
In particular, Z itself may be non-compact. We further record terminology for those
piecewise linear stratifications whose underlying space Z is that of a mesh.

Terminology 5.2.27 (Mesh-supported piecewise linear stratifications). A piecewise linear
stratification (Z, f) is called ‘mesh-supported’ if Z ⊂ Rn is the space underlying some
n-mesh M ⊂ Rn.
Note that every piecewise linear stratification (Z, f) can be trivially extended to a mesh-
supported one, by the following construction. Pick r ∈ R large enough such that the open
n-cube (−r, r)n contains Z and such that (−r, r)n \Z has one connected component. Since
the open cube (−r, r)n underlies an open n-mesh (for instance, the terminal open n-mesh),
we obtain a stratification (Z+, f+) where Z+ = (−r, r)n and f+ contains strata of f
together with (−r, r)n \Z as a new ‘ambient’ stratum. One checks that (Z+, f+) is again
a piecewise linear stratification (in fact, this also follows from our later Observation 5.2.29).
Therefore, ‘up to adding an ambient stratum’, we may think of all piecewise linear
stratification as being mesh-supported. Note, for notational convenience (and ‘up to
scaling’) we will usually assume r = 1, and work in the open unit n-cube In := (−1, 1)n.

As a first, and most immediate corollary to the combinatorializability of flat framed
stratifications, let us observe that any flat framed stratification is in fact framed stratified
homeomorphic to a piecewise linear stratification (which is necessarily ‘mesh-supported’).
This proves our earlier claim in Corollary 5.0.6.

Proof of Corollary 5.0.6. Given a flat framed stratification (Z, f), let M be its coars-
est refining mesh. Then f is framed stratified homeomorphic to the piecewise linear
stratification fETrs(M,f) obtained from the stratification of the stratified classifying mesh
CMsh ETrs(M,f) (note that the fact that fETrs(M,f) is piecewise linear follows from our
construction of classifying meshes, which realizes truss posets linearly in Rn, see Defini-
tion 4.2.47 and Definition 4.2.59).
27Meaningfully weakening the conditions of cellulability and frontier-constructibility is maybe less obvious.
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We will now prove two further corollaries of the combinatorializability of flat framed
stratifications in this section. Firstly, we address a ‘converse’ to Corollary 5.0.6: namely,
we will show that every piecewise linear stratification is, in fact (up to ambient extension) a
flat framed stratification, which proves the claim of our earlier Proposition 5.0.8. Secondly,
we will discuss a variation of a classical question posed by the so-called ‘Hauptvermutung’:
this asks whether topological homeomorphism of piecewise linear structures can be, up to
homotopy, replaced by piecewise linear homeomorphism. As we will recall, the conjecture
fails to hold in the classical setting of piecewise linear stratifications in Rn. We then show
the conjecture does hold when appropriately adapted to the flat framed setting, proving
our earlier Corollary 5.0.7.

5.2.2.1 Piecewise linear stratifications are flat framed We prove the claim that
any piecewise linear stratification (up to passing to its ‘ambient extension’) defines a flat
framed stratification in Rn. The proof will rely on the following observations.

Observation 5.2.28 (Intersection refinements). Let K be a finite simplicial complex, and
F : |K| → Rn a simplex-wise linear (not-necessarily injective) map. By standard results,
there exists a simplex-wise linear embedding G : |L| ↪→ Rn−1 of some simplicial complex
L, such that the image F |x| of each simplex x in K is a union of images G |y| of simplices
y in L (see [RS72, Thm. 2.15]). We call the simplicial complex L (linearly realized in Rn
via G) an ‘intersection refinement’ of F .

Observation 5.2.29 (Refining meshes of simplicial complexes). Let K be a simplicial
complex linearly realized in Rn. Up to scaling, we may assume K lives in the open
unit n-cube In = (−1, 1)n. Consider K as a piecewise linear stratification in which each
open simplex is a stratum, and pass to its ambient extension K+ in In (whose strata
are open simplices of K, as well as the complement In \ K). We construct an open
n-mesh M that refines K+. First, restrict the projection pn : In → In−1 to K, obtaining
a map pn : K → In−1 and, via Observation 5.2.28, construct an intersection refinement
L ↪→ In−1 for it. Observe that the projection pn : K+ → L+ (with codomain the ambient
extension of L in In−1) is ‘almost’ a 1-mesh bundle (but generally, fails to be a stratified
map): indeed, if we define K+

L to be the refinement of K+ whose strata are connected
components of intersections p−1

n (s) ∩ r where s and r are strata in L+ resp. K+ (note, if
r is an open simplex in K, then this intersection is necessarily connected) then, since L is
an intersection refinement, one checks that pn : K+

L → L+ is now a 1-mesh bundle.
Now, arguing inductively, we construct an (n − 1)-mesh M<n which refines L+,

consisting of 1-mesh bundles pi : (Mi, fi)→ (Mi−1, fi−1) (where Mi = Ii). To construct
the n-mesh M , we augment M<n by a 1-mesh bundle pn : (Mn, fn) → (Mn−1, fn−1)
defined as the pullback bundle of the 1-mesh bundle pn : K+

L → L+ along the refinement
(Mn−1, fn−1) → L+. Since (Mn, fn) → K+

L → K+ is a refinement, this completes the
construction of the mesh M refining K.

Example 5.2.30 (Piecewise linear stratifications are flat framed). In Fig. 5.12 we depict
a simplicial complex K linearly realized in R2 (and bounded by the 2-cube I2) together
with a 2-mesh M refining it, as it may be constructed via Observation 5.2.29.

The preceding observations assemble into a proof of Proposition 5.0.8, which claimed
that all piecewise linear stratifications are flat framed, as follows.
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Figure 5.12: A simplicial complex in R2 with refining mesh.

Proof of Proposition 5.0.8. Let (Z, f) be a piecewise linear stratification with triangulating
simplicial complex K. Up to scaling, we may assume (Z, f) and K lie inside the open unit
n-cube In = (−1, 1)n. Using Observation 5.2.29 we can construct an n-mesh M refining
the ambient extension K+, and thus also refining the ambient extension (In, f+). This
shows that (up to ambient extension) (Z, f) is a flat framed stratification as claimed.

Observation 5.2.31 (Refining meshes of mesh-supported piecewise linear stratification). Let
(Z, f) be a piecewise linear stratification. Assume that (Z, f) is mesh-supported (in the
sense of Terminology 5.2.27). Then, as in the preceding proof, we can construct a refining
mesh M of the ambient extension (In, f+) of (Z, f) to the open n-cube In. Now, we may
restrict the n-mesh M (and its tower of 1-mesh bundles pi : (Mi, fi)→ (Mi−1, fi−1)) to
the constructible substratification (MZ

n , f
Z
n ) of (Mn, fn) of strata lying in the subspace Z

of In (in particular, MZ
n = Z as subspaces in In). The assumption that (Z, f) is mesh

supported implies that this defines a tower of 1-mesh bundle, and thus an n-mesh MZ .
This mesh refines (Z, f), which shows that (Z, f) itself is in fact a flat framed stratification
(without the need for ambient extension to In).

Finally, the following condition on refining meshes of piecewise linear stratifications will
be useful to record. Recall from Definition 4.2.59, that the classifying mesh CMshT of an n-
truss T is obtained as a constructible substratification of the classifying mesh CMshT of its
compactification T , with the latter mesh being isomorphic to the classifying stratification
CStr T . An ‘open simplex’ in CMshT will refer to an open simplex in the simplicial
complex

∣∣Tn∣∣ (triangulating the stratification CMshTn) that lies in CMshTn ↪→ CMshTn.

Terminology 5.2.32 (Linear meshes). An n-mesh M is called a ‘linear mesh’ if, setting
T = CMshM , there is an isomorphism CMshT ∼= M that is linear on each open simplex
in CMshT .

Observation 5.2.33 (Linear refining meshes). Every finite simplicial complex K (and
similarly, every piecewise linear stratification) has, up to ambient extension, a linear refining
n-mesh M . Indeed, this follows inductively, if in the inductive step of Observation 5.2.29
we chose M<n to be a linear (n− 1)-mesh. Tracing through the rest of the construction
one checks that M as constructed is necessarily linear as well. As an example, note that
the refining 2-mesh in Fig. 5.12 is linear.

5.2.2.2 Flat framed Hauptvermutung We next prove that notions of framed strat-
ified homeomorphisms and piecewise linear framed stratified homeomorphism coincide, as
recorded in the ‘flat framed Hauptvermutung’. We begin with a brief recollection of the
classical Hauptvermutung (see e.g. [RCS+96]).

Disproven Conjecture 5.2.34 (Hauptvermutung). Every homeomorphism P ∼= Q
between polyhedra P , Q is homotopic to a PL homeomorphism.
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The Hauptvermutung, and its related conjectures, have been famously disproven in various
ways: not only are there polyhedra with different PL structures (where ‘PL structure’
means ‘PL homeomorphism class’), but there are also topological manifolds with different
PL structures and even topological manifolds that don’t admit a PL structures at all
(that is, the inclusion of PL manifolds into topological manifolds is not surjective on
homeomorphism classes). The failure of the Hauptvermutung may be understood as a
symptom of the ‘wildness’ of topological homeomorphism which finds no counterpart
in combinatorial topology; ‘taming’ this wildness is possible (making, in particular, the
Hauptvermutung a true statement) while usually rather technically cumbersome (cf.
[Shi14] [Shi13]). Our goal in this section will be to show that a ‘flat framed’ variation
of the Hauptvermutung holds naturally in the setting of flat framed stratifications. An
adequate classical analog to this statement (for the case of stratifications embedded in Rn)
may be phrased as follows. Note that we take a ‘stratified homotopy’ to mean a homotopy
of stratified maps that is constant on entrance path posets.

Disproven Conjecture 5.2.35 (Ambient stratified Hauptvermutung). Every stratified
homeomorphism between (mesh-supported) piecewise linear stratifications is stratified
homotopic to a piecewise linear stratified homeomorphism.

Like its non-ambient counterpart the ambient Hauptvermutung fails to hold in general.28

Disproof of the ambient Hauptvermutung. We construct homeomorphic mesh-supported
piecewise linear stratification f and g by piecewise linear embeddings P0 ↪→ In and
P1 ↪→ In of polyhedra (where In is the open unit cube, stratified by Pi and its complement
in each case) as follows.

Step 1 : Take simplicial complexes K and L that are both PL homotopy 5-tori but not
PL homeomorphic. Then both K and L are homeomorphic to the 5-torus T 5. (References
for step 1 : Hsiang and Shaneson showed that there are non-standard PL homotopy
5-tori [HS70]. Later, Hsiang and Wall showed that all PL homotopy 5-tori are in fact
homeomorphic to the 5-torus [HW69].)

Step 2 : PL embed both K and L in In; the image of the embeddings define the
polyhedra P0 ↪→ In and Q0 ↪→ In. We can assume these embeddings are locally flat.
(References for step 2 : Rourke and Sanderson construct the required embeddings in [RS72,
Theorem 5.5]; the following remark says they are locally flat. In the case of homotopy
5-tori the construction requires n = 10.)

Step 3 : If we enlarge to n = 12, then the topological embeddings P0 ↪→ In and
Q0 ↪→ In become ambient isotopic by a compactly supported isotopy since P0 are Q0

are both the 5-torus up to homeomorphism. (References for step 3 : This follows from
[DV09, Thm 4.4.2]; see also Corollary 4.4.3 loc. cit. This states homotopic topological
embeddings of high codimension into a PL manifold, with 1-LCC images, are compactly
supported ambient isotopic. Here 1-LCC stands for ‘1-local-co-connected’ and is implied
by the embeddings being locally flat (see Prop. 1.3.1 loc. cit.).)

Step 4 : The last time slice of the isotopy provides the topological homeomorphism of
pairs. A PL homeomorphism of pairs cannot exist by initial choice of PL structures.
28We are indebted to Mark Powell for outlining the given counter-example to us.

222



In contrast, the ‘flat framed’ variation of the Hauptvermutung is true. Recall, as
stated in Corollary 5.0.7, this claims that any framed stratified homeomorphism between
piecewise linear flat framed stratifications is stratified homotopic to some framed piecewise
linear homeomorphism. In fact we will see that the homotopy is unique up to contractible
choice (among stratified homotopies of framed stratified homeomorphisms).

Proof of Corollary 5.0.7. Let (Z, f) and (W, g) be piecewise linear flat framed stratifica-
tion that are framed stratified homeomorphic by a framed stratified homeomorphism
F : (Z, f) ∼= (W, g). By definition of piecewise linearity, (Z, f) and (W, g) have triangula-
tions K resp. L. Using Observation 5.2.31 construct n-meshes M and N that refine the
triangulations K resp. L (restricted to the subspaces Z resp. W ). In particular, M and
N refine (Z, f) resp. (W, g). By Observation 5.2.33, we may choose M and N to be linear
n-meshes, that is, CMshT ∼= M and CMshS ∼= N piecewise linearly where T = ETrsM
and S = ETrsN . Let Q be the coarsest refining mesh of (Z, f), and set R = ETrsQ.
Since coarsest refining meshes are compatible with framed stratified homeomorphism
(see Lemma 5.1.22) it follows that F : Q → FQ yields the coarsest refining mesh FQ
of (W, g). In particular, Q is coarser than M , and FQ is coarser than N , and thus R
is coarser than both T and S by the coarsenings ETrs(M → Q) resp. ETrs(N → FQ).
Recall the construction of ‘classifying mesh coarsenings’ (see Construction 4.2.72) and note
that these are linear on each open simplex in their domain. This allows us to construct
piecewise linear coarsenings CrsMsh(T → R) and CrsMsh(S → R). We obtain the maps
in the upper row of the following diagram

(Mn, fn) CMshTn CMshRn CMshSn (Nn, gn)

(Z, f) (W, g)

∼

F
.

This is a zig-zag of piecewise linear homeomorphisms (namely, the outer two arrows)
and piecewise linear coarsenings (namely, the inner two arrows). Since all maps are
piecewise linear homeomorphisms of underlying spaces, the upper row defines piecewise
linear homeomorphism G : Z → W . By construction, the map also induces a stratified
homeomorphism G : (Z, f)→ (W, g) which therefore provides a piecewise linear stratified
homeomorphism between the two stratifications.

Finally, note that F and G induce n-mesh maps F,G : Q → FQ on the respective
minimal meshes of (Z, f) and (W, g) which are identical on entrance path trusses. Thus
(by faithfulness of the entrance path functor construction, see Proposition 4.2.40 and
Remark 4.2.42) we deduce that F and G are in fact homotopic as n-mesh maps (in fact,
uniquely so up to contractible choice). It follows that they are homotopic as stratified
maps F,G : (Z, f)→ (W, g) as well (in fact, again uniquely so up to contractible choice).
This proves that every framed stratified homeomorphism of piecewise linear stratification
is homotopic to a piecewise linear framed stratified homeomorphism as claimed.

Remark 5.2.36 (Equivalence of all triangulations). Let (Z, f) be a piecewise linear stratifi-
cation with two different triangulations K and L. Running the preceding proof (setting
(W, g) = (Z, f) and F = id) shows that all triangulations are piecewise linearly equiva-
lent.
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Remark 5.2.37 (Contractibility of framed structure groups). The fact that the Hauptver-
mutung fails in the nonframed setting but holds in the framed setting is underpinned
by the following intuition: while the automorphism groups AutTOP(Rn) and AutPL(Rn)
differ, the groups of framed automorphisms Autfr

TOP(Rn) and Autfr
PL(Rn) (see Terminol-

ogy 5.1.20) are both contractible and thus trivially equivalent. In fact, one would expect
the same should hold using classical notions of framings, that is, the notions of ‘framed
topological’ and ‘framed PL’ homeomorphisms (up to details of their definitions) should
coincide.

5.2.3 Computability Finally, we briefly address two basic computability questions
about the theory of flat framed stratifications. First, we will see that ‘coarsest refining
meshes’ may in fact be algorithmically constructed. Secondly, as a corollary we will
find that it can always be decided whether or not two framed stratifications are framed
stratified homeomorphic or not. The idea is to reduce both problems to combinatorial
problems by passing to entrance path posets.

Proposition 5.2.38 (Truss coarsenings are confluent). Let T be a stratified n-truss. Any
chain of non-identity truss coarsenings of T eventually ends in the same normalized n-truss
JT K, and the truss coarsening T → JT K is unique.

Terminology 5.2.39 (Normal forms). We call JT K the ‘normal form’ of T .

Proof. Let F1 : T → T1 and F2 : T → T2 be non-identity truss coarsenings of T . The
underlying maps of trusses are coarsenings F i : T → T i of T . Construct the classifying
mesh coarsenings CrsMshF i : CMshT → CMshT i using Construction 4.2.72 (up to
pulling back CMshT i along CrsMshF i we will assume that CrsMshT i and CrsMshT all
have the same support in Rn). By Key Lemma 5.1.10, we may take the join of CMshT 1

and CMshT 2 obtain the mesh CMshT 1 ∨ CMshT 2, and abbreviate it by M . Construct
the stratified classifying mesh (CMshT , fT ) of T . Note that, since F1 and F2 are truss
coarsenings, both CMshT 1 and CMshT 2 refine fT . Thus their join M refines fT as well.
Passing to stratified entrance path trusses, this yields a diagrams of truss coarsenings

Ti

T S

T2

F1

F2

where Ti = ETrs(CMshT 2, fT ) and S := ETrs(M, fT ). Since any chain of truss coarsenings
of T must ends eventually in some normalized truss, to above implies all chains must
end in the same normalized n-truss JT K. Note also that the truss coarsening T → JT K is
unique (otherwise, if there were two truss coarsening F1 and F2, repeat the above steps to
contradict that JT K is normalized).

Remark 5.2.40 (Mesh joins as truss pushouts). While the preceding proof of Proposi-
tion 5.2.38 crucially relies on our earlier construction of mesh joins, one may also prove
the statement in purely combinatorial terms. Namely, the constructed diagram of truss
coarsening in the proof of Proposition 5.2.38 is a pushout of the n-truss coarsenings
F 1 : T → T 1 and F 2 : T → T 2 in the category of n-trusses and their maps, and these
pushouts can be shown to exist by purely combinatorial arguments. The construction
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of pushouts of truss coarsenings may be regarded as a combinatorial counterpart to the
construction of joins of meshes (see Remark 5.1.4).

Observation 5.2.41 (Normal forms are computable). Given a stratified truss T , there is a
finite set of label preserving surjective truss maps F : T → S from T to another stratified
truss S. Searching this set for truss coarsenings, and selecting the truss coarsening
with smallest codomain, provides an algorithm to compute the normal form coarsening
T → JT K.29

Recall Corollary 5.0.10, which stated that coarsest refining meshes of flat n-framed
stratifications (Z, f) can be algorithmically computed.

Proof of Corollary 5.0.10. Let (Z, f) be a flat framed stratification. Since it is flat framed
it must have some refining mesh M (we exclude the non-constructive existence of refining
meshes). Compute its entrance path truss ETrs(M,f) and the resulting normal form
JETrs(M,f)K. This yields a coarsening of M (determined by the coarsening ETrs(M,f)→
JETrs(M,f)K on entrance path posets), that coarsens M to the coarsest refining mesh of
(Z, f).

Immediately, we deduce that the question of framed stratified homeomorphism between
flat framed stratifications is decidable, as stated Corollary 5.0.11.

Proof of Corollary 5.0.11. Given flat framed stratifications (Z, f) and (W, g) construct
their coarsest refining meshes M and N . (Z, f) and (W, g) are framed stratified homeo-
morphic if and only if the corresponding stratified trusses ETrs(M,f) and ETrs(N, g) are
related by a label preserving balanced isomorphism (note it must be unique if it exists).
Since the latter isomorphism problem can be algorithmically solved (e.g., by brute force)
so can the former homeomorphism problem.

The above results establish the ‘computational tractability of flat framed stratifications’.
Note that the existence of coarsest refining meshes (which, conceptually, is ‘opposite’
to the classical quest for constructing mutually refining triangulations in the classical
Hauptvermutung) plays a most fundamental role in this story.

5.3 Towards transversality, tangles, singularities, and
stability

In this final section, among a large pool of further topics that deserve discussion, we select
and briefly discuss two future directions in the program of framed combinatorial topology,
which we plan to address in subsequent work.

1. In Section 5.3.1 we will describe a class of flat framed stratifications whose strata
are ‘transversal’. We call such stratifications manifold diagrams. Manifold diagrams
solve the long-standing problem of generalizing string diagrams and surface diagrams
to higher dimensions.

2. In Section 5.3.2 we describe a class of flat framed stratification that model tame
tangles. We discuss how these tangles may be ‘perturbed’, and how ‘perturbation-
stable’ tangles singularities provide a combinatorial model for singularity theory.

29Note that there are better algorithms than the brute-force search described here.
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In Section 5.3.3 we mention four specific problem for potential future research.

Remark 5.3.1 (Geometric higher category theory). We also emphasize that there is (at least)
one central omission in our discussion of future work here. One may of course ‘globalize’ our
discussion of flat framed structures to more general (non-flat) framed combinatorial spaces
and stratified spaces. This direction of investigation provides novel geometric models for
various objects endowed with ‘directed higher structure’. The fundamental idea is that
we can think of truss blocks and presheaves on blocks in a categorical manner: k-blocks
are shapes of k-morphisms, and presheaves on blocks (or more precisely ‘sheaves’ in an
appropriate sense) can be used to model higher categories. This model of higher categories
has some striking differences from other presheaf models [Lei04] [CL04] [Ber20] [Had20].
Traditional ‘filler’ or ‘contractibility’ conditions are absent in this model, and moreover
the model allows us to work with ‘small examples’ of higher categories. For instance, the
block model provides an n-category that has a single generating 2-endmorphism on an
object: higher coherence data is encoded in the geometry of pastings of cell diagrams. At
the same time, due to the tight correspondence of combinatorics and stratified topology
built into our model, this approach allows the formalization of several various folklore
intuitions about the interaction of higher category theory and stratified topology.

5.3.1 Transversality and manifold diagrams Strata in flat n-framed stratifications
may inherit different types of framings by restricting the ambient flat framing of Rn
to a given stratum (the resulting framing may of course include ‘singularities’). For
an unordered 1-simplex, consider linear embeddings of the 1-simplex in R2 as shown in
Fig. 5.13 on the left. Requiring such an embedding to be a framed realization uniquely
determines a 2-embedded frame on the 1-simplex (see Definition 1.1.38). While there
are two 2-embedded frames of the 1-simplex (with frame label ‘1’ resp. ‘2’ as indicated),
only one of them is ‘generic’ in the sense that it determines an open dense subset in
the space of all linear embeddings. This genericity may be expressed in more familiar

Figure 5.13: Genericity of framings of 1-strata in R2.

terms as a transversality condition: a linear embedding e : |S| ↪→ R2 of a 1-simplex S
is ‘transversal’ if it is transversal to the fibers of the projection π1 : R2 → R1. This
transversality condition can alternatively be phrased as requiring π1 ◦ e : |S| → R1 to be
a homeomorphism onto its image.

The idea of transversality applies more generally as follows. We may say a 1-stratum
in R2 is ‘transversal’ at a point if the projection π1 : R2 → R1 restricts, in a small
neighborhood of the point in the stratum, to a homeomorphism onto its image. We
illustrate this on the right in Fig. 5.13 for two points in a 1-stratum; at one point the
stratum is transversal while at the other it is not. More generally, we call a k-dimensional
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stratum s in Rn ‘transversal at a point’ p ∈ s if the projection π>k : Rn → Rk restricts to
a homeomorphism from a neighborhood of p in the stratum s onto its image.

In Fig. 5.14 we illustrate two flat 3-framed stratifications: the left one (consisting of
the green 2-dimensional stratum and the two connected components of its complement)
is refined by the right one. While the right stratification is transversal at all points, the
left stratification fails to be transversal. Indeed, the above transversality condition is
not satisfied at any point that, after passing to the refinement, lies in either the 1- or
0-dimensional strata (indicated in blue and red).

A manifold n-diagram is a flat framed stratification of the open unit n-cube In in which
every stratum is transversal, i.e. transversal at all points.30 The flat framed stratification
depicted on the right in Fig. 5.14 is an example of a manifold 3-diagram. This definition

Figure 5.14: A non-transversal stratum and its transversal refinement.

of manifold n-diagrams in terms is given in terms of topological transversality condition,
but manifold diagrams admit a fully combinatorial representation. This representation is
based on the correspondence of flat framed stratifications to normalized stratified trusses,
together with the observation that transversality of strata in flat framed stratifications can
be phrased as a combinatorial condition on strata in the corresponding stratified trusses.
Alltogether, we obtain a correspondence between manifold n-diagrams and so-called
normalized transversally stratified trusses. Note further, the combinatorial condition of
transversality is computably verifiable, so we can algortihmically recognize transversally
stratified trusses among all stratified trusses.

This formalization of manifold n-diagrams in all dimensions resolves a long-standing
open problem. Previously, stratified topological definitions of ‘manifold diagrams’ had
only been given in low dimensions, initially in dimension 2 [JS91], later in dimension
3 [Hum12], [BMS12] (see also [Tri99]), and in restricted form in dimension 4 [CKS96]
[CS98]. The importance of manifolds diagrams derives in part from their dual connection
to cellular pastings and from their usefulness for ‘diagrammatic reasoning’ via geometric
deformations of the underlying stratifications [Sel10]. The approach outlined here provides
formal underpinnings for such techniques in all dimensions. In particular, it allows us
to formalize manifold n-diagram deformations as specific instances of manifold (n+ 1)-
diagrams (namely, those that do not have point singularities).

The relationship of ‘manifold’ and ‘cellular’ geometry relies on the dualization opera-
tions on meshes and trusses described in previous chapters. Given a manifold n-diagram
(Z, f), By our results on flat framed stratifications (see Theorem 5.1.19), we may first
30 Technically, we also want manifold n-diagrams to be conical stratifications, with the additional condition
that conical neighborhoods C × U of strata s can be chosen such that the stratum s is ‘transversal’ to
the cone C. We defer a more detailed discussion of this condition and the resulting notion of ‘framed
conicality’ to future work.
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pass to its coarsest refining open mesh M , obtaining a stratified mesh (M,f) (see Defini-
tion 5.2.7). Dualizing the mesh M , we obtain a closed mesh M †, and the stratification
f induces a stratification (M †, f †) on this mesh. (Formally, this stratification is the
stratified classifying mesh of the dual ETrs(M,f)† of the labeled truss ETrs(M,f).) We
call (M †, f †) a ‘pasting diagrams of cells with degeneracies’. (Note, in particular, that
M † is a framed regular cell complex, see Terminology 4.2.75.) To obtain a ‘traditional
pasting diagram’ (without degeneracies) corresponding to the manifold diagram (Z, f),
we may further ‘quotient’ M † by collapsing to a single cell all the cells in each stratum of
f †.The process is illustrated in Fig. 5.15.

Figure 5.15: The pasting diagram dual to a manifold diagram.

5.3.2 Tangles, perturbative stability, and singularity theory Having discussed
transversality and the class of ‘manifold n-diagrams’, we now introduce another important
and related class of flat framed stratifications, namely ‘tame tangles’. Tame tangles
provide a combinatorializable counterpart to the classical notion of tangles given by
manifolds with corners embedded in the closed unit cube. Formally, we define a tame
k-tangle in codimension (n− k) to be a flat framed stratification of the open unit n-cube
In consisting of an open k-manifold M in In (with strata being the connected components
of M and In \M) that can be refined by an n-manifold diagram. As in the case of
both flat n-framed stratifications and manifold n-diagrams, tangles may be captured in
purely combinatorial terms by their normalized entrance path trusses, which we refer to
as tangle trusses.31 We illustrate two (tame) tangles together with their coarsest refining
manifold diagram in Fig. 5.16. Note that, to obtain a ‘classical’ tangle as a manifold

Figure 5.16: Tangles and their refining manifold diagrams.

with corners we may always compactify the open cube stratification to a closed cube
stratification. (Formally, this compactification process uses our earlier combinatorial
31It is, moreover, reasonable to ask that tangles M ⊂ In to not just be topological manifolds but
combinatorial manifolds with piecewise linear structure induced by their combinatorialization as
stratified trusses; this avoids ‘wildness’ phenomena of [Can79].
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definition of ‘cubical compactifications’, see Definition 4.2.53; compactification establishes
an equivalence between ‘open’ and ‘closed’ tame tangles, and we may work with either
perspective.)

If the coarsest refining manifold diagram of a tangle contains a point stratum, then
we call a small open neighborhood around this point (on which the tangle restricts to
a ‘subtangle’) a ‘tangle singularity’. For instance, the tangle depicted on the right of
Fig. 5.16 has two (red) point singularities in its coarsest refining manifold diagram; passing
to the ‘subtangles’ around those points yields the tangle singularities depicted in Fig. 5.17.

Figure 5.17: Tangle singularities.

Not all tangles are created equal, and the space of all tangles carries a natural
stratification. This stratification is, roughly speaking, a measure of the complexity of
a tangle’s singularities. More precisely, there is a notion of ‘perturbing a tangle S to a
tangle T ’: using the machinery of truss bundles, we may more define this perturbation
by considering ‘bundles of tangles’ over the 1-simplex [1] = (0→ 1) whose generic fiber
(over 0) is the tangle T , and whose special fiber is the tangle S. We may then say that a
tangle singularity S is ‘perturbation-stable’ if, for any perturbation to another tangle T ,
the resulting singularities in T look no less ‘complex’ than the singularities in S that they
perturb. (Owing to the combinatorial nature of tangles, the ‘complexity’ of a singularity
can be measured in elementary combinatorial terms, for instance by counting the size of
the singularity’s normalized stratified entrance path truss). We illustrate two instances
of perturbations of tangle singularities in Fig. 5.18. In the first case, a ‘monkey saddle’
(see [Mil63]) is perturbed into two saddles, which are strictly ‘less complex’; thus the
monkey saddle is not perturbation-stable. In contrast, in the second case, a saddle is
perturbed into three tangle singularities (two saddles and a maximum) and these have the
same complexity as the saddle we started with; indeed, the saddle is a perturbation-stable
tangle singularity.

Figure 5.18: Perturbations of tangle singularities.

Perturbation-stable tangle singularities will be referred to as ‘elementary tangle singu-
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larities’. The notion of perturbation-stability moreover extends from tangle singularities
to general tangles, and the resulting subspace of ‘perturbation-stable tangles’ forms the
deepest stratum in the stratification of the space of tangles, In particular, such tangles
can only contain elementary singularities. Roughly speaking, the rest of the stratifica-
tion may then be constructed by defining its entrance paths to be complexity-reducing
perturbations.

Elementary tangle singularities turn out to be a particularly interesting class of tangles,
and are intimately related to classical singularity theory. In Fig. 5.19 we depict all
elementary 2-tangles in codimension-1.32 It happens that these 2-tangle singularities

Figure 5.19: Perturbation stable 2-tangles (in codimension-1).

exactly recover a collection of classical 2-dimensional singularities, namely namely the
Morse-type singularities (saddles, minima, and maxima) and Cerf-type singularities (‘cusps’
of 1-parameter families of 1-variable functions). For codimension-1 k-tangle singularities
with k > 2, the parallel with classical singularities initially appears to continue into
higher dimensions. Some elementary tangle singularities maybe be associated to known
classical singularities, including some of the ‘elementary singularities’ that were described
in the work of Thom [TF18] and Arnold [Arn75], such as the ‘swallowtail’ singularities
(succeeding the cusp in Arnold’s list of Ak singularities) whose corresponding elementary
tangle singularity was depicted already in Fig. I.6.

However, with increasing number of parameters, the classical machinery of smooth
singularity theory eventually breaks down (namely, for parameter dimensions above 5,
see [PS14, §7.6]): the ‘dimensions of jet spaces outgrow the dimensions of the structure
groups’, which causes the smooth equivalence relation of singularities to become too
fine, leading one to encounter uncountably many equivalence classes of singularities. In
stark contrast, the combinatorial machinery of elementary tangle singularities works in
all dimensions, and this leads to a profound discrepancy between the two approaches
in higher dimensions. We mention one concrete example of the divergence between the
two approaches: among the elementary singularities in Thom’s classification one finds
the so-called ‘elliptic umbilic’ singularity (in Arnold’s classification, it is called the D−4
singularity); in combinatorial terms, this umbilic singularity is no longer ‘elementary’,
in that it may be perturbed into a tangle consisting of less complex tangle singularities.
32Here, the fact that we emphasize tangles in codimension-1 reflects the fact that classical singularity
theory often studies singularities in (r-parameter families of) n-variable functions Rn → R, whose
graphs (resp. families of graphs) yield hypersurfaces in Rn+1 (resp. in Rn+r+1).
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The question of how to classify the combinatorial patterns underlying elementary tangle
singularities appears fundamental, and will be revisited in the next section.

5.3.3 Problems Wrapping up the discussion of the previous sections, we list four areas
of open problems.

5.3.3.1 The classification of elementary singularities In the last section we in-
troduced ‘elementary’, i.e. perturbation-stable, tangle singularities. We saw that for
2-tangles in codimension-1 there are exactly eight such singularities. In higher dimensions,
elementary tangle singularities quickly become more complicated.

Problem 5.3.2 (Classifying elementary singularities). For tangles of a given dimension and
codimension, can we list all elementary tangle singularities?

It is moreover reasonable to expect a finite list of elementary tangle singularities in each
dimension and codimension. As explained, while elementary tangle singularities reproduce
singularities from classical singularity theory in low dimensions, in general, there is a
discrepancy between the two approaches, and a more precise quantification of this discrep-
ancy would be desirable. One can further consider tangles with structure (for instance, by
tangentially framing tangles embedded in Rn), and similarly ask how the classification
of tangle singularities changes in the presence of these additional structure. Via the
generalized tangle and cobordism hypotheses (see [BD95] [Lur09b]), such classification
problems are closely related to understanding ‘(structured) dualizability laws’ of objects
in higher category theory. A better understanding of elementary tangle singularities may
therefore provide insights both for the study of classical singularity theory as well as
higher dualizable structures.

Let us also mention a related problem about the recognition of general (not necessarily
perturbation-stable) tangles.

Problem 5.3.3 (Recognizing tangle trusses). Can we recognize tangle trusses among all
stratified trusses?

Even if we require tangles to be combinatorial manifolds (with piecewise linear structure
induced by their combinatorialization as stratified trusses), it is not immediately clear
how a recognition algorithm could work: such an algorithm would require checking
the sphericality of certain links of strata in the stratified truss, which, as discussed in
Remark 1.3.43, is undecidable in general. However, links in stratified trusses are better
behaved than general simplicial complexes, and thus the unrecognizability of spheres need
not necessarily imply the unrecognizability of tangle trusses; for instance, tangle trusses
would be algorithmically recognizable if it turned out that all links of tangle singularities
were shellable (see Terminology 3.2.3). Other algorithms are also conceivable (which, for
instance, could exploit a finite classification of elementary tangle singularities).

5.3.3.2 The classification of elementary homotopies Given a manifold n-diagram
we may ‘continuously deform’ it: namely, a ‘homotopy’ of manifold n-diagrams is a manifold
(n+ 1)-diagram which itself does not contain any 0-dimensional strata. Examples of such
deformations were given earlier: the ‘braid’ (depicted as the first example in Fig. 5.1)
is a homotopy that continuously deforms a manifold 2-diagram consisting of two point
singularities by rotating them around each other; one dimension up, we have also seen the
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‘Reidemeister III move’ (depicted in Fig. I.6) which continuously deforms an arrangement
of three braids.

Homotopies of manifold diagrams encode coherences laws of higher algebraic structures.
For instance, the ‘braid’ witnesses the commutativity law of elements in 2nd (and higher)
homotopy groups of spaces. In fact, the braid moreover is the simplest homotopy of
manifold 2-diagrams in the following sense: other homotopies, such as the ‘triple braid’,
can be perturbed slightly into a composite of braids; in contrast, the braid itself cannot be
perturbed any further. We call the braid an ‘elementary homotopy’ and, more generally,
we say that a homotopy is ‘elementary’ if it cannot be perturbed into simpler homotopies.
(The formalization of this notion mirrors our earlier discussion of elementary singularities.)
Analogous to the question of classifying elementary tangle singularities, we may now ask
the following.

Problem 5.3.4 (Classification of elementary homotopies). Can we list all the elementary
homotopies of manifold n-diagrams?

It is tempting to conjecture that the list of elementary homotopies is finite in any given
dimension. However, in reality, little is known about elementary homotopies in higher
dimensions (and codimension). In low dimension, such elementary deformations have been
considered in the context of ‘knotting surfaces’ [CRS97] [CS98]. More generally, elementary
homotopies relate to the question of how ‘Gray categories’ (a notion of 3-categories with
natural geometric semantics [GPS95] [Hum12]) can be generalized to higher dimensions
(a discussion of dimension 4 can be found in [Cra00] [BV17]).

5.3.3.3 Higher Morse theory Morse theory is a powerful tool in the study of mani-
folds [Mil63]; more generally but less ubiquitously, stratified Morse theory is a similarly
powerful tool in the study of (sufficiently nice) stratified spaces [GM88]. Both theories
allow for the introduction of invariants associated to manifolds (resp. stratified spaces)
based on the decomposition of space that is encoded by a (stratified) 1-Morse function.
This leads, for instance, to the construction of Morse homology and intersection homology.
Classical (stratified) Morse functions are, however, only the ‘first degree’ in a more general
picture which studies manifolds and stratified spaces via ‘generic’ functions to Rn, that
is, via ‘higher Morse functions’. The idea of 2-Morse functions has been largely realized
in dimension 2 (see [Cer70]) and used, for instance, in the classification of extended field
theories in dimension 2 in terms of generators and relations [SP09]. However, defining
n-Morse functions for n > 2 turns out to be a technically difficult task—at least, when
attempting to do so in traditional differential terms.

Using the notions of flat n-framed stratifications developed here, the idea of stratified
n-Morse function finds a simple instantiation as follows. A flat framed stratifications comes
with an embedding into Rn, and, post-composing this embedding with the projections
Rn → Rm, yields functions to Rm, m < n. We may think of the resulting maps as instances
of ‘m-Morse functions’. Note that increasing m gradually, each m-Morse function contains
more information than its ‘predecessor’ (m− 1)-Morse function. While this discussion
of higher Morse functions relies on ‘embedded framings’ M ↪→ Rn, it may be possible
to leverage our notion of ‘partial framings’ to obtain a more direct description of such
functions (as an illustrative example see the earlier Fig. 1.26).
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Problem 5.3.5 (Formalization and application of n-Morse theory). Can we use the combi-
natorial framework developed here (including the notion of partial framings) to formalize
a combinatorial theory of n-Morse functions? Can we derive stronger manifold invariants
from n-Morse decompositions than from 1-Morse decompositions?

One may expect the answer to the second question to be ‘yes’ for the following heuristic
reason. Classical Morse functions ‘miss’ exotic m-spheres from a singularity-theoretic
point of view, in that exotic spheres may have 1-Morse functions with a single maximum
and a single minimum (just as the standard sphere); instead the information of the smooth
structure is hidden in the exotic diffeomorphism of fiber spheres. However, the same
cannot be true for n-Morse functions, n ≥ m, of exotic m-spheres: since now fibers are
discrete, no ‘exotic’ automorphisms of fibers are possible. Instead, the exotic structure
needs to be recorded purely in terms of (elementary) tangle singularities and homotopies.

5.3.3.4 The relation of framed piecewise linear and smooth topology Our final
question concerns a more precise relation of framed piecewise linear and smooth topology.
We phrase this in two conjectures as follows. (For consistency with earlier definitions,
note that we identify Rn with the open unit cube In by some framed homeomorphism.)

Conjecture 5.3.6 (Framed stratified homeomorphisms implies diffeomorphism). From
any two smooth embeddings e : M ↪→ Rn and e′ : M ↪→ Rn that correspond to the same
normalized tangle truss in Rn, we can produce a diffeomorphism M ∼= M ′.

A proof of this conjecture could possibly use a ‘smooth’ version of our earlier proof of
conservativity of the entrance path truss functors (see Proposition 4.2.22) to produce a
smooth ‘ambient’ isomorphism of the respective coarsest refining meshes of M and M ′,
which would then restrict to a diffeomorphism M ∼= M ′.

Conjecture 5.3.7 (Smooth embedded manifolds are generically tame tangles). Given
a compact smooth k-manifold M , any smooth embedding e : M ↪→ Rn has an arbitrarily
small perturbation such that the image of the perturbed embedding e′ : M ↪→ Rn defines a
tame k-tangle in Rn.

In particular, since any smooth manifold can be embedded in Rn, the two conjectures
together imply that any smooth structure on a compact manifold M can be represented
combinatorially by a tangle truss. Again, heuristically, this claim is not unexpected since,
by arguments similar to those outlined in the previous section, combinatorializable‘n-Morse
embeddings’ should be able to detect smooth structures.

If these conjectures hold, the resulting correspondence of ‘framed combinatorial mani-
folds M ’ (i.e. tame tangles with underlying manifold M) and smooth structures on M
would realize a goal similar to that of MacPherson’s program of ‘combinatorial differential
manifolds’ [Mac91], namely, the faithful combinatorial representation of smooth structures,
and the ability to work ‘smoothly’ without direct reference to the continuum.
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APPENDIX A
Linear and affine frames

We discuss classical notions of frames and trivializations of both linear and affine spaces,
as well as various notions of ‘generalized’ frames and trivializations.

In Appendix A.1 we will start with the following two fundamental observations
about linear frames. Firstly, we will see that orthonormal frames have reformulations
both in terms of sequences of linear subspaces (yielding a notion of ‘indframes’) and in
terms of sequences of linear projections (yielding a notion of ‘proframes’); importantly,
while ‘orthonormality’ requires euclidean structure on the vector spaces, the definitions
of indframes and proframes do not, and will therefore allow us to define a notion of
‘orthoequivalence’ for general linear frames. Secondly, the notion of linear frames itself
generalizes as follows: instead of considering trivializations by isomorphisms V ∼−→ Rm,
we may also consider projections V � Rk (yielding a notion of ‘partial trivialization’) or
subspaces V ↪→ Rn (yielding a notion of ‘embedded trivialization’), or, yet more generally,
general linear maps V → Rn (yielding a notion of ‘embedded partial trivialization’).

In Appendix A.2 we will then see that notions of linear frames on vector spaces, as
well as their generalizations, can be adapted to notions of ‘affine frames’ on affine spaces.
This perspective will allow us to describe our earlier definition of combinatorial frames in
purely linear algebraic terms.

A.1 Linear frames

Linear trivializations, frames, indframes, and proframes We introduce notions of
‘linear indframes’ and ‘linear proframes’. For euclidean vector spaces, both are equivalent
to the ordinary notion of ‘orthonormal frames’. In the case of general vector spaces, they
provide a notion of ‘orthoequivalence’ of linear frames. The idea underlying both notions
(translated appropriately into combinatorial terms) will be pervasive throughout our work,
and in particular will play a crucial role in classifying framed combinatorial structures in
later chapters. For consistency, let us first (re-)introduce linear trivializations and linear
frames.
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Definition A.1.1 (Linear trivializations). A linear trivialization of an m-dimensional
vector space V is a linear isomorphism V ∼−→ Rm.

Preimages of the standard basis vectors ei ∈ Rn under the linear trivialization map define
an ordered list of ‘frame vectors’ vi ∈ V . Every linear trivialization therefore determines
and is determined by a linear frame in the following sense.

Definition A.1.2 (Linear frames). A linear frame of an m-dimensional vector space V
is an ordered list of linearly independent vectors {v1, v2, . . . , vm} ⊂ V .

We now want to compare the structure of linear trivializations (and equivalently of
linear frames) on vector spaces to the following two structures.

Definition A.1.3 (Linear indframes). A linear indframe of a vector space V = Vm is
a sequence of inclusions of vector spaces Vi, with dim(Vi) = i:

0 = V0 ↪→ V1 ↪→ V2 ↪→ · · · ↪→ Vm−1 ↪→ Vm = V.

Definition A.1.4 (Linear proframes). A linear proframe of a vector space V = V m is
a sequence of projections of vector spaces V i, with dim(V i) = i:

V = V m � V m−1 � V m−2 � · · ·� V 1 � V 0 = 0.

Observation A.1.5 (Equivalence of indframes and proframes). Note that linear indframes
and proframes define the same structure on a vector space. For a linear indframe
{Vi ↪→ Vi+1}0≤i<m on V , the corresponding proframe is determined by the cokernels of
the sequence of inclusions into the total vector space: (V � V m−i) = coker(Vi ↪→ V ).
Conversely, for a linear proframe {V i � V i−1}0<i≤m on V , the corresponding indframe
is determined by the kernels of the sequence of projections from the total vector space:
(Vi ↪→ V ) := ker(V � V m−i).

There are two important standard instances of indframes and proframes.

Terminology A.1.6 (The standard euclidean indframe). The ‘standard euclidean indframe’
of Rn is the sequence of subspace inclusions

0 ↪→ R ↪→ R2 ↪→ · · · ↪→ Rn−1 ↪→ Rn

where Ri−1 ↪→ Ri includes into the last i− 1 coordinates of Ri.
Terminology A.1.7 (The standard euclidean proframe). The ‘standard euclidean proframe’
of Rn is the sequence of projections

Rn � Rn−1 � Rn−2 � · · ·� R1 � R0

where Ri → Ri−1 forgets the last component of vectors in Ri.
Observe that the complement of the image of each standard indframe inclusion Ri−1 ↪→ Ri
has two components Ri \Ri−1 = ε−i tε

+
i , where the ‘negative’ component ε−i resp. ‘positive’

component ε+i consist of points with ith negative resp. positive coordinate. We call the
assignment of positive and negative signs to those components an ‘orientation structure’
on the standard indframe, and more generally introduce the following notions.
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Terminology A.1.8 (Oriented indframe). An ‘oriented indframe’ on a vector space V is an
indframe {Vi ↪→ Vi+1} together with an association of signs to the connected components
of the complement of the image of each inclusion: Vi \ Vi−1 = ν−i t ν

+
i .

An orientation structure on an indframe is equivalent to requiring each Vi to be an oriented
vector space.

Observe similarly that the fiber π−1
i (0) over 0 ∈ Ri−1 of each projection πi : Ri → Ri−1

is R, and thus, π−1
i (0) \ 0 has again a ‘negative’ component εi− = R<0 ⊂ π−1

i (0) and a
‘positive’ component εi+ = R>0 ⊂ π−1

i (0). We call this an ‘orientation structure’ on the
standard proframe, and more generally have the following notion.

Terminology A.1.9 (Oriented proframe). An ‘oriented proframe’ on a vector space V is
a proframe {pi : V i � V i−1} together with an association of signs to the connected
components of the complements p−1

i (0) \ 0 = νi− t νi+.
An orientation structure on a proframe is equivalent to requiring each V i to be an oriented
vector space. Our earlier correspondence of indframes {V i ↪→ V i−1} and proframes
{pi : V i � V i−1} on an m-dimensional vector space V extends to the oriented case:
writing p>i for the composite projection pi+1 ◦ ... ◦ pn−1 ◦ pm : V � V i, an orientation
structure on the indframe determines an orientation structure on the corresponding
proframe, and vice versa, by setting νi± = p>i(ν

±
i ), and conversely ν±i = p−1

>i (ν
i
±).

Any indframe on a vector space V can be obtained by ‘pulling back’ the standard
indframe of Rn along a trivialization V ∼−→ Rm. This similarly applies to the standard
proframe in Rn. With a view towards later generalizations of our discussion here, it will
be useful to formalize this using the following more general constructions.

Terminology A.1.10 (Pullback sequences). Given a sequence of j vector space inclusion
{Wi ↪→ Wi+1} and a map F : V → Wj as shown below, then we obtain a ‘pullback’
sequence of vector space inclusions {Vi ↪→ Vi+1} by iterated pullback as shown:

0 V0 V1 V2 · · · Vj−1 Vj = V

0 W1 W2 · · · Wj−1 Wj

y y y
· · ·

y
F

.

Terminology A.1.11 (Restriction sequences). Given a sequence of vector space projections
{W i � W i−1} and a map F : V → Wj as shown below, then we obtain a ‘restric-
tion sequence’ of vector space projections {V i+1 � V i} constructed by iterated image
factorization as shown

V V j V j−1 V j−2 · · · V 1 V 0 = 0

W j W j−1 W j−2 · · · W 1 0

F · · ·
.

Observation A.1.12 (Trivializations induce oriented indframes and proframes). A trivial-
ization F : V ∼−→ Rn induces both an oriented indframe and a oriented proframe on V as
follows. The indframe on V is defined as the pullback sequence of the standard indframe of
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Rn by F . A proframe on V is defined as the restriction sequence of the standard proframe
of Rn by F . Note that the resulting proframe corresponds to the resulting indframe on V .
Thus, to endow both with orientation it suffices to endow the indframe with an orientation
ν, which is canonically determined by requiring F (ν±i ) = ε±i .

Note well that different linear trivializations (and thus linear frames) on V may induce
the same oriented indframe resp. proframe. This leads to the following equivalence relation
on trivializations (or frames).

Terminology A.1.13 (Orthoequivalence). We say two linear trivializations (or, equivalently,
two linear frames) on V are ‘orthoequivalent’ if they induce the same indframe (and thus
the same proframe).

The name of this equivalence relation is derived from the following observation.

Observation A.1.14 (Orthonormal frames, oriented indframes, and oriented proframes
are equivalent). If V is an m-dimensional euclidean vector space, then an ‘orthonormal
frame’ (v1, v2, ..., vm) is a linear frame consisting of orthonormal vectors. Orthonormal
frames determine exactly those trivializations V ∼−→ Rn which are isometries. Note that
any oriented indframe (and similarly, any oriented proframe) on V is induced by exactly
one isometry F : V ∼−→ Rn, namely the one determined by the property that F (ν±i ) = ε±i .
Thus, orthonomal frames (resp. isometric trivializations) are in correspondence with
oriented indframes and proframes.

In other words, each orthoequivalence classes of trivializations of an euclidean vector
spaces has a unique orthonormal representative. In Fig. A.1 we depict an orthonormal
frame (v1, v2) in an euclidean vector space V , together with its corresponding oriented
indframe (via Observation A.1.14).

Figure A.1: An orthonormal frame and its corresponding indframe.

The preceding discussion suggests the following.

Remark A.1.15 (Orthoequivalence as generalization of orthonormality). The notion of
‘trivializations up to orthoequivalence’ can be regarded as a generalization of the notion
of ‘orthonormal frames’. In the absence of euclidean structure, we may work with the
former structure in place of the latter structure.

Partial and embedded trivializations and frames We now generalize the notions
of linear trivializations and frames. Namely, instead of considering linear isomorphisms
V ∼−→ Rm, we will consider projections V � Rk, subspaces V ↪→ Rn, and general linear
maps V → Rn. This leads to a more subtle interplay of ‘trivializations’ and ‘frames’.
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The ideas discussed here (translated into appropriate combinatorial form), especially the
notion of ‘embedded’ frames, will later be crucial to relate and ‘glue’ frames of objects of
different dimensions.

We start with the case of ‘partial’ trivializations and frames.

Definition A.1.16 (Linear partial trivializations). A linear k-partial trivialization
of a vector space V is a linear projection V � Rk.

Definition A.1.17 (Linear partial frames). A linear k-partial frame of a vector space
V is an ordered list {v1, v2, . . . , vk} of k linearly independent vectors in V .

Remark A.1.18 (Relation of partial frames and trivializations). If V is euclidean then
linear partial trivializations and frames define the same structure on V . Indeed, any linear
projection V � Rk has a canonical splitting Rk ↪→ V (obtained as the inverse of the
restriction of V � Rk to its orthogonal kernel complement), whose images on standard
basis vector ei determine a linear k-partial frame. Conversely, a linear k-partial frame
{v1, v2, . . . , vk} determines an inclusion Rk ↪→ V , mapping vi to ei, which splits to give
a k-partial trivialization V � Rk. However, in the absence of euclidean structure, we
say that a linear k-partial frame {v1, v2, . . . , vk} is ‘compatible’ with a linear k-partial
trivialization V � Rm if the projection is split by the inclusion Rk ↪→ V of the frame. In
general, however, this compatibility relation does not yield a 1-to-1 correspondence.

Next, instead of projections V � Rk, we may consider an ‘embedded trivialization’
given rather by an inclusion V ↪→ Rn.

Definition A.1.19 (Linear embedded trivialization). A linear n-embedded trivial-
ization of an m-dimensional vector space V is an inclusion V ↪→ Rn.

Definition A.1.20 (Linear embedded frame). A linear n-embedded frame of an m-
dimensional vector space V is an ordered list of n vectors, {v1, v2, . . . , vn} ⊂ V , exactly
m of which are nonzero, and such that all nonzero vector are linearly independent.

Remark A.1.21 (Relation of embedded frames and trivializations). As before we can
translate embedded frames into embedded trivializations by mapping frame vectors to
standard basis vectors: that is, every linear n-embedded frame {v1, v2, . . . , vn} ⊂ V
induces a linear n-embedded trivialization V ↪→ Rn, defined to map nonzero vectors vi
to ei. However, the translation is far from bijective (certainly not all linear embedded
trivialization are induced by an embedded frame in this way).

Finally, there is a common generalization of partial trivializations and embedded
trivializations, and an analogous notion of frames, as follows.

Definition A.1.22 (Linear embedded partial trivializations). A linear embedded
partial trivialization of a vector space V is a linear map V → Rn.

Definition A.1.23 (Linear embedded partial frames). A linear n-embedded k-partial
frame of V is an ordered list of n vectors {v1, v2, . . . , vn} ⊂ V , exactly k of which are
nonzero, and such that all nonzero vectors are linearly independent.

Remark A.1.24 (Relation of embedded partial frames and trivializations). As in the
previous two cases, the structures do not correspond ‘one-the-nose’.
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Importantly, the failure of correspondence of trivialization and frame structures that
we observed in the preceding three remarks can be remedied by working with ‘orthonormal’
frames and trivializations up to ‘orthoequivalence’. As in the case of ordinary linear
frames, orthoequivalence will be based on (now generalized) notions of indframes and
proframes. Given a partial trivialization V � Rk, an n-embedded trivialization V ↪→ Rn,
or an n-embedded partial trivialization V → Rn, we may form the pullback sequence of
the standard euclidean indframe along the trivialization. Sequences obtained in this way
respectively describe notions of ‘partial’, ‘embedded’, and ‘partial embedded’ indframes
on V .

Definition A.1.25 (Linear partial, embedded, and embedded partial indframes). A
linear k-partial indframe on V is a sequence of the form (where dim(Vi) = i):

0 ↪→ Vm−k ↪→ Vm−k+1 ↪→ · · · ↪→ Vm−1 ↪→ Vm = V.

A linear n-embedded indframe on V is a sequence of the form (where dim(Vmi) = mi,
and, for each i, either mi+1 = mi + 1 or mi+1 = mi):

0 = V0 = Vm0 ↪→ Vm1 ↪→ Vm2 ↪→ · · · ↪→ Vmn−1 ↪→ Vmn = Vm = V.

A linear n-embedded k-partial indframe is a sequence of the form (where dim(Vki) =
ki, and for each i, either ki+1 = ki + 1 or ki+1 = ki):

0 ↪→ Vm−k = Vk0 ↪→ Vk1 ↪→ Vk2 ↪→ · · · ↪→ Vkn−1 ↪→ Vkn = Vm = V.

One further defines ‘orientations’ ν as before by associating signs Vki \ Vki−1
= ν−ki t ν

+
ki

to
the connected components of complements of images of the above inclusions when these
complements are non-empty (and similarly in the other two cases of indframes).

Similarly, given a partial trivialization V � Rk, an n-embedded trivialization V ↪→ Rn,
or an n-embedded partial trivialization V → Rn, we may form the restriction sequence of
the standard euclidean proframe along the trivialization. Sequences obtained in this way
respectively describe notions of ‘partial’, ‘embedded’ and ‘partial embedded’, proframes
on V .

Definition A.1.26 (Linear partial, embedded, and embedded partial proframes). A
linear k-partial proframe on V is a sequence of the form (where dim(V i) = i)

V = V m � V k � V k−1 � V k−2 � · · ·� V 0 = 0.

An linear n-embedded proframe on V is a sequence of the form (where dim(V mi) = mi,
and, for each i, either mi−1 = mi − 1 or mi−1 = mi)

V = V m = V mn � V mn−1 � V mn−2 � · · ·� V m1 � V m0 = 0.

An linear n-embedded k-partial proframe is a sequence of the form (where dim(V ki) =
ki, and, for each i, either ki−1 = ki − 1 or ki−1 = ki)

V = V m � V k = V kn � V kn−1 � V kn−2 � · · ·� V k1 � V k0 = 0.
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Observation A.1.27 (Correspondence of indframes and proframes). In each of the above
three cases (adding the adjectives ‘partial’, ‘embedded’, or ‘embedded partial’), the notions
of indframes and proframes define identical structures on a vector space V : that is, one can
be constructed from the other as before by taking cokernels and conversely kernels.

Observation A.1.28 (Trivializations induce corresponding indframes and proframes). By
passing to pullback sequences resp. restriction sequences (and adding the adjectives
‘partial’, ‘embedded’, or ‘embedded partial’), trivializations of a vector space V induce
oriented indframes resp. oriented proframes of V . Given a trivialization its induced
oriented indframe corresponds to its induced oriented proframe.

Terminology A.1.29 (Orthoequivalence). Two (partial, embedded, or embedded partial)
trivializations are ‘orthoequivalent’ if they induce the same oriented indframe, or equiva-
lently, the same oriented proframe.

Orthoequivalence allows us to relate trivializations and ‘orthonormal’ frames; in the
following, a list of vectors is called ‘orthonormal’ if all its nonzero vectors are orthonormal.

Observation A.1.30 (Orthoequivalence classes of orthonormal embedded frames). Let V be
an m-dimensional euclidean vector space. The following auxiliary notion will be helpful:
a ‘standard isometric’ n-embedded trivialization V ↪→ Rn is an n-embedded trivialization
which is an isometry containing m standard vectors in its image. Note that, orthonormal
n-embedded frames induce (in the sense of Remark A.1.21) exactly standard isometric
n-embedded trivialization, which yields a 1-to-1 correspondence between the two notions.
We will show each orthoequivalence classes of an embedded trivialization contains exactly
one orthonormal embedded frame.

Consider an oriented n-embedded indframe {Vmi ↪→ Vmi+1} of V with orientation ν.
Note there is a unique isometry F : V ∼−→ Rm such that F (ν±mi) = ε±mi . Define an isometric
inclusion Rm ↪→ Rn by mapping basis vectors emj to ej if mj > mj−1. Composing
the two maps yields a standard isometric n-embedded trivialization V ↪→ Rn and thus
determines an orthonormal n-embedded frame. Thus orthonormal embedded frames (resp.
their standard isometric embedded trivializations) are in correspondence with oriented
embedded indframes and thus with orthoequivalence classes of embedded trivializations
as claimed.

In Fig. A.2 we depict a 3-embedded orthonormal frame (v1, v2, v3) on a 2-dimensional
euclidean vector space V , together with its corresponding oriented 3-embedded indframe
(via Observation A.1.30): note that the embedded indframe determines exactly and
orthoequivalence class of embedded trivializations (namely, those embedded trivializations
that pull back the oriented standard indframe of R3 to the depicted oriented embedded
indframe of V ).

We may further generalize the correspondence to the case of partial embedded frames
as follows.

Observation A.1.31 (Orthoequivalence classes of orthonormal embedded partial frames).
Let V be a euclidean vector space. The following auxiliary notion will be helpful: a ‘stan-
dard isometric’ n-embedded k-partial trivializations is a subspace W ↪→ V together with
a standard isometric embedded trivialization W ↪→ Rn in the sense of Observation A.1.30.
Given an orthonormal n-embedded k-partial frame define W ↪→ V to be the subspace
spanned by its nonzero vectors. This canonically splits by a projection V � W , which
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Figure A.2: An 3-embedded orthonormal frame and its corresponding 3-embedded ind-
frame.

maps the orthonormal n-embedded k-partial frame of V to an orthonormal n-embedded
frame of W . Thus, by Observation A.1.30, orthonormal n-embedded k-partial frames are
in correspondence with standard isometric n-embedded k-partial trivializations. Adapting
the arguments of Observation A.1.30, we observe that each orthoequivalence classes of
an embedded partial trivialization contains exactly one orthonormal embedded partial
frame.

In other words, orthonormal embedded (partial) frames provide unique representatives
orthoequivalence classes of embedded (partial) trivializations of an euclidean vector
spaces. Importantly, in the absence of euclidean structure, we do not have access to a
notion of ‘orthonormality’ of frames any more, but we still do have access the notion of
‘orthoequivalence’ of trivializations; this suggests the the following.

Remark A.1.32 (Orthoequivalence as generalization of orthonormality). We may regard
the notion of (embedded partial) ‘trivializations up to orthoequivalence’ as a generalization
of the (embedded partial) ‘orthonormal frames’, and work with the former structure in
place of the latter structure when euclidean structure is absent.

A.2 Affine frames

Affine trivializations, frames, indframes, and proframes In the previous sections
we discussed the correspondence of frames, indframes, and proframes in the setting of
vector spaces. We now discuss how these ideas carry over to the case of affine spaces. This
case is important as a parallel to the affine combinatorics of framed simplices.

An affine space V is a space of ‘points’ freely and transitively acted upon by a vector
space ~V (the ‘associated vector space’); the vectors of ~V are called ‘translations’. A map of
affine spaces F : V →W is a continuous map such that for a necessarily unique linear map
~F : ~V → ~W (the ‘associated vector space map’) we have ~F (v−v′) = F (v)−F (v′). Denote
the category of affine spaces and affine maps by Aff. This comes with an ‘associated vector
space’ functor ~− : Aff → Vect to the category of vector spaces.

Remark A.2.1 (Simplices realize to affine spaces). Given an m-simplex S, its geometric
realization |S| is the subspace of the free vector space R 〈S〉 (on the set of vertices of S)
that consists of affine combinations of the standard basis. Therefore, the realization |S|
is contained in an affine hyperplane V (S) of R 〈S〉, and carries ‘partial’ affine structure
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(‘partial’ in the sense that the action by translations in ~V (S) is partial). Given another
affine space W , an ‘affine map’ |S| →W is a map that is the restriction of an affine map
V (S)→W .33

Notation A.2.2 (Standard geometric simplices). We denote the geometric realizations
of the ‘standard’ m-simplex S with vertices {0, 1, ...,m} by ∆m, and refer to it as the
‘standard geometric m-simplex’.

Notation A.2.3 (Space of affine vectors). Given an affine space V , the space of affine
embeddings e : ∆1 ↪→ V of the realized 1-simplex ∆1 into V is the ‘space of affine vectors’
in V , and is denoted by V̂ . Note that the space of affine vectors is itself an affine space
(it has an action by ~V ⊕ ~V ). A ‘basepoint forgetting’ map that takes an affine vector
e : ∆1 ↪→ V to the translation e(1)− e(0); we denote this map by unbase : V̂ → ~V . Note
that any affine map F : V → W induces (by postcomposition) a map of affine vectors
F̂ : V̂ → Ŵ ; this induces an ‘affine vector’ functor −̂ : Aff → Aff.

Note that the notation similarly applies to vector spaces V (which, by acting on themselves,
are in particular affine spaces with ~V ≡ V ).

The notions of frames, indframes, and proframes carry over to the affine case, as
follows.

Definition A.2.4 (Affine trivializations, frames, indframes, and proframes). An affine
trivialization resp. an affine frame of an affine space V is a linear trivialization resp.
a linear frame of its associated vector space ~V . Similarly an affine indframe resp. an
affine proframe is defined as a linear indframe resp. proframe of ~V .

The definitions of affine trivializations, frames, indframes, and proframes can further
be translated into ‘affine terms’, i.e. expressed in terms of structures on/maps of affine
spaces and not of their associated vector spaces. Importantly, we will encounter that the
definitions of indframes and proframes behave unequally under this translation. We start
with the case of affine trivializations (and, equivalently, frames).

Remark A.2.5 (Affine perspective on affine trivializations and frames). Given an affine
space V and a trivialization ~V ∼−→ Rm, precomposing with unbase : V̂ → ~V yields a map
V̂ → Rm that trivializes ‘vector spaces of affine vectors based at x’ for any x ∈ V . In
particular, preimages of standard vectors ei ∈ Rn under this map provide a set of frame
vectors vxi : ∆1 → V at each point vxi (0) = x of V .

Now, to express affine indframes and proframes in affine terms, the following observation
needs to be taken into account.

Observation A.2.6 (Asymmetry of affine projections and subspaces). Given an affine space
V , and a projection of associated vector spaces ~V � ~W , then this canonically induces
an ‘affine projection’ V �W where W is constructed as the quotient of V by the action
of ker(~V � ~W ) (the associated vector space of W is ~W ). In contrast, given an inclusion
~W ↪→ ~V then there is no canonical corresponding injective affine map W ↪→ V . In
particular, given an affine projection V �W there is no canonical choice of ‘affine kernel’
U ↪→ V corresponding to the linear kernel (~U ↪→ ~V ) = ker(~V � ~W ).
33In the main text, an ‘affine map’ |S| →W is, abusing terminology, referred to as a ‘linear map’.
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The observation leads to the following asymmetry in the translation of affine proframes
and indframes.

Remark A.2.7 (Affine data of affine proframes). Given an affine space V and a proframe
~V = ~V m � ~V m−1 � ...� ~V 0 on ~V , we obtain a sequence of affine surjective maps

V = V m � V m−1 � V m−2 � ...� V 1 � V 0 = 0

where the map V → V m is the quotient of V induced by the projection ~V → ~V m.
Applying the affine vector functor −̂, the above sequence becomes a sequence of affine
spaces of affine vectors, which factors through the original proframe on ~V by the basepoint
forgetting maps unbase : V̂ i → ~V i.

Remark A.2.8 (Affine data of affine indframes). Given an affine space V and an indframe
0 = ~V 0 ↪→ ~V 1 ↪→ ... ↪→ ~V m = ~V on ~V , this sequence of linear subspaces does not
canonically induce a sequence of affine injective maps ending in V . Instead, we may think
‘affinely’ of the indframe by pulling it back along unbase : V̂ → ~V to a filtration of V̂
(which simply ‘bases’ a copy of the indframe at all points of V ).

In other words, affine proframes can be canonically expressed in terms of sequences of affine
projections; however, affine indframes cannot be canonically expressed as sequence of affine
subspaces. This observation has an analog in affine combinatorics of simplices; indeed, in
Section 1.1.1 we saw see that ‘simplicial subspaces’ cannot be expressed canonically as
simplicial maps while ‘simplicial projections’ can (namely, in terms of degeneracies).

Simplicial trivializations and framed realizations Let us now relate the notion of
framed realizations of framed simplices to our discussion of (linear and affine) trivial-
izations here. Recall framed realizations (introduced for (partial) framed simplices in
Definition 1.1.25 and Definition 1.1.25, and generalized to the (partial) embedded case by
Definition 1.1.38 resp. Definition 1.1.44) are affine maps from simplices to Rn such that
simplicial vectors with frame label i are mapped to the ith positive component ε+i of the
standard indframe of Rn. As we now explain, framed realizations can be understood as
orthoequivalence classes of ‘simplicial’ trivializations (which capture trivialization of affine
simplicial space that, up to orthoequivalence, can be obtained from frames of simplicial
vectors).

Terminology A.2.9 (Simplicial embedded trivialization). For an m-simplex S, an injective
affine map r : |S| ↪→ Rn (see Remark A.2.1) is a ‘simplicial embedded trivialization’ if the
linear n-embedded trivialization ~r : ~V (S) ↪→ Rn is orthoequivalent to a trivialization of
~V (S) determined by some n-embedded frame {~vi} of vectors vi in S (see Remark A.1.21).
We call the ordered list of n vectors {vi} an ‘r-compatible frame’. Two such maps
r, r′ : |S| ↪→ Rn are ‘orthoequivalent’ if they are orthoequivalent as linear embedded
trivializations ~r, ~r′ : ~V (S) ↪→ Rn. If further m = n, we speak of ‘simplicial trivializations’
instead.

Observation A.2.10 (Simplicial embedded trivialization determine embedded frames).
Given a simplicial embedded trivialization r : |S| ↪→ Rn and an r-compatible frame {vi},
then exactly m of the vectors vi in S must be nonzero. The choice of nonzero vectors vi
becomes unique if we require them to form a set of spine vectors under some identification
S ∼= [m]. Moreover, if vi is a zero vector then it is exchangeable for any other zero vector,
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and thus choices of zero vectors are redundant: we may replace zero vectors vi simply by
the affine zero 0aff . This results in a unique ordered list {vi} of n vectors in S, containing
m nonzero vectors forming the spine of S ∼= [m], and (n−m) zeros 0aff . This defines a
simplicial n-embedded framed simplex (S ∼= [m],F) with vi = F(j) iff vi is the jth nonzero
vector in the list {vi}.
Observation A.2.11 (Framed realizations are simplicial trivialization classes). Given an n-
embedded framed m-simplex (S ∼= [m],F), note that any framed realization is a simplicial
embedded trivialization. In fact, the set of framed realizations of (S ∼= [m],F) is exactly
the orthoequivalence class of simplicial embedded trivialization of S which determine the
embedded framed simplex (S ∼= [m],F). This observation of course specializes to the
non-embedded case n = m.

Let us next consider the partial case: again, framed realizations of a partial embedded
framed simplex can be understood as describing an orthoequivalence class of partial
embedded trivializations of the underlying simplex, as follows.

Terminology A.2.12 (Simplicial embedded partial trivialization). Given an m-simplex S,
we say that an affine map r : |S| → Rn is ‘simplicial embedded partial trivialization’ if it
factors by affine maps |S|� |T | ↪→ Rn such that the first map realizes a degeneracy and
the second is a simplicial embedded partial trivialization. Two such maps r, r′ : |S| → Rn
are ‘orthoequivalent’ if they are orthoequivalent as linear embedded partial trivializations
~r, ~r′ : ~V (S)→ Rn. If m = n, we speak of a ‘simplicial partial trivialization’ instead.

Observation A.2.13 (Simplicial embedded partial trivializations determined frames). Any
simplicial embedded partial trivialization r : |S| → Rn factors uniquely by maps |S|�
|T | ↪→ Rn; since the map |T | ↪→ Rn determines an n-embedded frame (T ∼= [k],F), it
follows that r determines a n-embedded k-partial framed (S � T ∼= [k],F).

Observation A.2.14 (Framed realizations are simplicial trivialization classes). Given an n-
embedded k-partial framed m-simplex (S � T ∼= [m],F), note that any framed realization
is a simplicial embedded partial trivialization. In fact, the set of framed realizations of
(S � T ∼= [m],F) is exactly the orthoequivalence class of simplicial embedded partial
trivializations of S which determine embedded partial framed simplex (S � T ∼= [m],F).
The observation specializes to the non-embedded case n = k.

In summary, we may understand combinatorial frames in affine algebraic terms as follows.

Remark A.2.15 (Combinatorial frames describe simplicial trivialization classes). Com-
binatorial (embedded partial) frames correspond exactly to orthoequivalence classes of
(embedded partial) trivializations of simplices. In light of the role of orthoequivalence (see
Remark A.1.15 and Remark A.1.32), they thus provide a combinatorial description of
‘generalized orthonormal frames’ of simplices (realized as affine spaces).
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APPENDIX B
Stratified topology

The notion of ‘stratified space’ (or ‘singular space’) refers to a decomposition of a space
into ‘strata’, usually ordered by dimension or ‘depth’. Frequently, such order is enforced
by working with filtrations X0 ⊂ X1 ⊂ ... ⊂ Xk−1 ⊂ Xk of spaces X = Xk where
Xi−1 is required to be closed in Xi. Equivalently, and more concisely, such a filtration
may be expressed by a continuous function f : X → [k]op (where [k]op is the poset
(0← 1← ...← k) topologized such that downward closed subposets are open sets) which
allows us to recover Xi as the preimage f−1[i]op, i ≤ k. This has been generalized by
defining stratifications as continuous maps of spaces to any poset, yielding, for instance,
definitions of ‘S-filtered spaces’ in [GM88, §III.2.2.1] and of ‘P -stratifications’ in [Lur12,
Defn. A.5.1]. Note, however, posets in the domain of such continuous maps may contain
information that is unrelated to the decomposition of the underlying space, even when the
map is surjective. In this appendix, we develop a notion of stratification which is similarly
general, but in which the role of posets faithfully represents topological information about
the stratification. The different definitions coincide in many cases, for instance for locally
finite stratifications. We use the following conventions.

Notation B.0.1 (Convenient spaces). We denote by TOP the category of all topological
spaces, by Top the subcategory of compactly generated spaces, and by kTop the subcategory
of compactly generated weak Hausdorff spaces (see [Str09]). The category Top is cartesian
closed with internal hom denoted by Map(−,−), and this internal hom is inherited by
Top. All our spaces will be assumed to be compactly generated.

Convention B.0.2 (Specialization topology). Given a preorder (P,≤) we regard it as a
topological space with the specialization topology, declaring the open subsets to be those
that are downward closed; a subset U is downward closed if x ≤ y and y ∈ U implies that
x ∈ U .34

Remark B.0.3 (Specialization order). Given a topological space X ∈ kTop, we denote
by SpclX its specialization order : this is the preorder whose objects are the objects of
the underlying set X, and whose morphisms x → y are given whenever y is contained
in the closure of x. Note that for a poset P , SpclP = P . Note that the specialization
34We frequently write the relation x ≤ y as x→ y, interpreting preorders and posets as categories.
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topology provides a functor, which is an adjoint equivalence between finite preorders and
finite topological spaces. The inverse functor is given by the specialization order functor
Spcl.

B.1 Stratified spaces

Entrance paths, stratifications, and characteristic functions In this section we
introduce the basic notions of ‘stratified spaces’, their ‘entrance path posets’ and their
‘characteristic functions’.

A robust definition of stratified spaces is obtained by letting the topological decompo-
sition of a space into strata determine the corresponding poset structure, in terms of the
existence of so-called entrance paths between strata, as follows.

Definition B.1.1 (Entrance path). Given a space X and two subspaces Xr and Xs,
an entrance path from Xr to Xs is a path α : [0, 1] → X with α(x < 1) ⊂ Xr and
α(1) ∈ Xs.

Here, the path is thought of as ‘entering’ from the former subspace Xr into the latter
subspace Xs.

Definition B.1.2 (Formal entrance path). Given a space X and two subspaces Xr and
Xs, we say there exists a formal entrance path from Xr to Xs, denoted r → s, when
the closure of Xr has nonempty intersection with Xs.

In contrast to entrance paths, note that the structure of formal entrance paths is boolean:
either there exists a formal entrance path between subspaces or there doesn’t. If there
is an entrance path from a subspace Xr to a subspace Xs of a space X this implies the
existence of a formal entrance path, but the converse need not hold unless additional
conditions are imposed.

Terminology B.1.3 (Formal entrance path relation of a decomposition). Given a decom-
position X =

⊔
s∈DecXs of a space X into a disjoint collection of subspaces, the ‘formal

entrance path relation’ on the set Dec of subspaces (the ‘decomposition set’) is the relation
that has an arrow r → s exactly when there is a formal entrance path from Xr to Xs.

Note that the formal entrance path relation of a decomposition is reflexive, but need not
be antisymmetric or transitive. Stratifications are exactly those decompositions for which
this relation has no cycles, that is for which it is a directed acyclic graph.

Definition B.1.4 (Prestratifications and stratifications). A prestratification (X, f)
of a topological space X is a disjoint decomposition f = {Xs ⊂ X}s∈Dec(f) of X into
nonempty connected subspaces indexed by a set Dec(f). The subspaces Xs are called
strata of (X, f). A stratification (X, f) is a prestratification such that the formal
entrance path relation on the decomposition set Dec(f) has no cycles.

Notation B.1.5 (Shorthand for (pre)stratifications). We frequently abbreviate a (pre)stratification
(X, f) simply by f , referring to f as a ‘(pre)stratification on X’. We will often abbreviate
a stratum Xs ⊂ X simply by its index s ∈ Dec(f).
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Observe that, given a stratification (X, f), the transitive closure of the formal entrance
path relation on the decomposition set Dec(f) is a partially ordered set, which has an
arrow r → s exactly when there is a chain of formal entrance paths beginning at r and
ending at s. Note that the equivalence classes of the resulting transitive relation remain
exactly the decomposition set Dec(f). This does not hold true if (X, f) is merely a
prestratification, in which case Dec(f) obtains the structure of a preordered set.

Definition B.1.6 (Entrance path preorder and poset). For a prestratification (X, f), the
entrance path preorder Entr(f) is the decomposition set of the stratification together
with the transitive closure of the formal entrance path relation. If (X, f) is a stratification,
then we refer to Entr(f) as the entrance path poset of (X, f).

Remark B.1.7 (Exit paths and the exit path preorder). Given a prestratification (X, f),
the opposite preorder of the entrance path preorder is called the exit path preorder, and
is denoted Exit(f) = Entr(f)op. An exit path from Xs to Xr is a path p : [0, 1]→ X with
p(0) ∈ Xs and p(x > 0) ⊂ Xr; the path is ‘exiting’ from the stratum Xs into the stratum
Xr. Whether to focus on entrance or exit paths is a matter of convention and convenience;
in this book, we find that entrance paths have more natural functoriality dependencies
and so we work entirely with them.

Example B.1.8 (Entrance path poset). Fig. B.1 shows a stratification of the open 2-disk
into five strata, along with its entrance path poset (shown on the right, together with an
indication of which poset elements correspond to which strata).

Figure B.1: A stratification and its entrance path poset.

Example B.1.9 (Entrance path poset requiring transitive closure). Fig. B.2 depicts a
stratification of the open interval, into one open interval and two half-open interval strata,
together with its entrance path poset.

Figure B.2: A stratification with entrance path poset as the transitive closure of the
entrance path relation.

Example B.1.10 (Entrance path preorder). In Fig. B.3 we depict a decomposition of
the circle that is not a stratification but a prestratification, because the formal entrance
path relation has a cycle.

Terminology B.1.11 (Discrete and indiscrete stratifications). Every space X has an ‘in-
discrete stratification’ whose strata are the connected components of X. The entrance
path preorder of the indiscrete stratification is the set of connected components of X.
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Figure B.3: A decomposition that is not a stratification but a prestratification, and its
formal entrance path relation.

Conversely, every space also has a ‘discrete prestratification’, such that each point be-
comes its own stratum. The entrance path poset of the discrete stratification of X is the
specialization order SpclX (in particular, the definition of specialization orders can be
recovered from the definition of entrance path preorders).

Unless indicated otherwise, a bare topological space is implicitly given the indiscrete
stratification.

Terminology B.1.12 (Finite (pre)stratifications). We call a (pre)stratification (X, f) ‘finite’
if its entrance path preorder Entr(f) is finite, and call it ‘infinite’ otherwise.

Definition B.1.13 (Characteristic function). Given a prestratification (X, f), we refer
to the function X → Entr(f) sending each point x ∈ Xr to its corresponding stratum
r ∈ Entr(f), as the characteristic function of the prestratification; we denote the
characteristic function of a prestratification (X, f) by f : X → Entr(f).

A fundamental property of characteristic functions is that they are ‘finitely continuous’,
as follows.

Terminology B.1.14 (Finitely continuous maps). A function of topological spaces F : X →
Y is called ‘finitely continuous’ for each finite subspace Q ⊂ Y the function restricts to a
continuous map F : F−1(Q)→ Q.

Lemma B.1.15 (Finite continuity in prestratifications). Characteristic functions are
finitely continuous.

Proof. Consider a prestratification (X, f) with characteristic function f : X → Entr(f).
Consider a finite subposet Q ⊂ Entr(f), and let U ⊂ Q be a downward closed subposet.
Arguing by contradiction, assume f−1(U) ⊂ f−1(Q) is not open. Then there is a point
p ∈ f−1(U) such that each neighborhood of p intersects a preimage f−1(q) of some
q ∈ Q \U not in U . Since Q is finite, we can pick a q ∈ Q \U such that f−1(q) intersects
all neighborhoods of p. This means p lies in the closure f−1(q) which entails there is an
arrow from q into some object of U , contradicting downward closure of the latter subposet.
Thus, f−1(U) ⊂ f−1(Q) is open, showing finite continuity of f .

In the case of finite prestratifications, this of course implies that their characteristic
functions are continuous in the usual sense.

Definition B.1.16 (Locally finite stratifications). A stratification (X, f) is locally finite
if every stratum s has an open neighborhood s ⊂ N(s) which contains only finitely many
strata.
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Terminology B.1.17 (Locally finite posets). A poset(P,≤) is ‘locally finite’ if all downward
closures P≤x = {y | y ≤ x} are finite.

Remark B.1.18 (Frontier-constructibility and local finiteness of entrance path posets). A
‘frontier-constructible’ stratification (X, f) is a stratification in which the closure s of each
stratum s can be written as a union of strata in f (in Lemma B.2.10 we show this to hold
iff f : X → Entr(f) is an open map). For frontier-constructible (X, f) the following are
equivalent:

1. (X, f) is locally finite,
2. any point x ∈ X has a neighborhood intersecting only finitely many strata,
3. The entrance path poset Entr(f) is locally finite.

The ‘frontier-constructbility’ condition is also sometimes referred to as the ‘frontier’
condition.

Notation B.1.19 (Covering relation). Given a poset (P,≤) its covering relation is usually
defined as follows: we say x ∈ P ‘covers’ y ∈ P , written y <cov x, if y < x is non-refinable
(that is, for any y < z < x we have either y = z or z = x).

Lemma B.1.20 (Locally finite characteristic functions are continuous). If (X, f) is a
locally finite stratification, then its characteristic function f : X → Entr(f) is continuous.

Proof. We need to show that for each s ∈ Entr(f) the downward closure Entr(f)≤s of
s has open preimage in X under f . For r ∈ Entr(f)≤s, let Qr ⊂ Entr(f)≤s be the full
subposet containing only r and the elements r′ <cov r that it covers. The assumption
that (X, f) is locally finite implies that Qr is finite, and that f−1(Qr) contains an open
neighborhood of r. It follows that f−1(Entr(f)≤s) is open as required.

Remark B.1.21 (Characteristic maps). Whenever a characteristic function is continuous
we usually refer to it as a characteristic map. Note, characteristic functions of general
infinite (pre)stratifications need not be continuous, as the next example illustrates.

Example B.1.22 (Infinite characteristic functions can be discontinuous). In Fig. B.4 we
depict a stratification of the closed interval with non-continuous characteristic function.
In particular, the stratification is not locally finite.

Figure B.4: A stratification with non-continuous characteristic function.

As we will see in Lemma B.1.29, there is a precise characterization of those functions
f : X → P from a space to a finite poset which are characteristic maps of stratifications.

From now on, we will focus most of our attention on stratifications instead of working
in the more general context of prestratifications. In particular, most definitions will be
given for stratifications only—however, the reader will notice that many immediately
generalize if one replaces ‘stratifications’ by ‘prestratifications’, and ‘posets’ by ‘preorders’.

Poset structures and quotient maps In this section we relate our definitions of
stratifications with general ‘poset structures’ on spaces.

Definition B.1.23 (Poset structures). Given a poset P , a P -structured space (X, f)
is a space X together with a continuous map f : X → P .
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We will first show that characteristic maps of finite stratifications can be understood as a
certain class of poset structures. Later we will show that, conversely, every poset structure
can be universally ‘split’ into a stratification.

Recall, a surjective continuous map f : X → Y of spaces is a quotient map if for
each subset U ⊂ Y we have that U is open if and only if f−1(U) is open. If Y is the
specialization topology of a poset, we call f a ‘poset quotient’. Poset quotients (to finite
posets) admit the following useful characterization.

Lemma B.1.24 (Quotient maps to finite posets). For a space X, a finite poset P , and a
surjective continuous map f : X → P , the following are equivalent:

1. f is a quotient map,
2. for all covers p <cov p′ in P there is a formal entrance path from f−1(p) to f−1(p′).

Remark B.1.25 (A quotient of posets is a map that is surjective on objects and on covers).
In the lemma, if X is itself the specialization topology on a poset Q, then the lemma
simplifies to saying that f : Q → P is a quotient map if and only if f is surjective on
objects and on covers.

Proof of Lemma B.1.24. For p ∈ P , define Kp
0 to be the preimage f−1(p). Set Ip0 = {p}.

Let Ip1 be the set of q ∈ P such that f−1(q) intersects the closure Kp
0 of Kp

0 , and define
Kp

1 to be the union of preimages f−1(q) of q ∈ Ip1 . Set I
p
2 to be the set of q ∈ P such that

f−1(q) intersects the closure Kp
1 of Kp

1 , and define Kp
2 to be the union of preimages f−1(q)

of q ∈ Ip2 . Repeating this process, since P is finite, we find an index j with Ipj = Ipj+1 and
Kp
j = Kp

j+1 = K
p
j . Denote these sets by Ip and Kp respectively.

First, assume f is a quotient map. Consider a cover p < p′. We claim it is impossible
that p′ /∈ Ip: indeed, the complement X\Kp is the preimage of P \Ip. Since X\Kp is open
and since f is a quotient map, it follows that P \Ip is open which contradicts the assumption
that p < p′ and p′ /∈ Ip. Thus assume p′ ∈ Ip. This implies f−1(p′) intersects Kp (and
thus f−1(p′) ⊂ Kp). Then there is a sequence of arrows p = p0 < p1 < ... < pk = p′ with
pi ∈ Kp

i . Since p < p′ is a cover we must have k = 1. Thus f−1(p′) intersects the closure
of f−1(p).

Next, assume f satisfies that for any cover p < p′ in P , the preimage f−1(p′) intersects
the closure of the preimage f−1(p′). Let Q ⊂ P be a subposet. Let IP\Q and KP\Q be the
respective unions of all Ip and Kp for each p ∈ P \Q. If Q is open then f−1(Q) is open by
continuity of f . If f−1(Q) is open, then must be disjoint from KP\Q (by construction of
KP\Q). Thus IP\Q = P \Q. Since IP\Q is upward closed, it follows that Q is downward
closed, i.e. open as required.

A central role will be played by poset quotients whose ‘equivalence classes are connected’
in the following sense.

Definition B.1.26 (Connected-quotient maps). For a space X and a finite poset P , a
continuous map f : X → P is called a connected-quotient map if it is a poset quotient
map whose preimages of points p ∈ P are connected. (Note, we take ‘connected’ to also
entail ‘non-empty’.)
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Remark B.1.27 (Connected-quotient maps between posets). A connected-quotient map
f : Q→ P where Q is a poset (endowed with specialization topology) is a poset quotient
whose preimages are connected subposets of Q.

Example B.1.28 (Connected-quotient map). In Fig. B.5 we depict three maps from the
circle to three different posets (color-coding images and preimages in the same color). The
first map is a connected quotient map; the second maps fails to be a quotient map despite
have connected preimages, the third map is a quotient map but fails to have connected
preimages.

Figure B.5: A connected-quotient map and non-examples.

We now characterize stratifications among P -structures.

Lemma B.1.29 (Characteristic maps are connected-quotient maps). For a space X, a
finite poset P , and a P -structure f : X → P , the following are equivalent:

1. f is the characteristic map of a stratification (that is, the decomposition of X into
preimages of f is a stratification with characteristic map f and entrance path poset
Entr(f) = P ),

2. f is a connected-quotient map.

Proof. If f is a characteristic map then, by definition, it has connected preimages and
satisfies the second condition in Lemma B.1.24. Thus f is a connected-quotient map.

Conversely, if f is a connected-quotient map, then f defines a stratification by de-
composing X into the preimages of f (which are connected by Definition B.1.26). By
Lemma B.1.24 the map f : X → P is exactly the characteristic map of this stratifica-
tion.

The correspondence of characteristic maps and connected-quotient maps may further be
generalized to the context of infinite stratifications, characterizing characteristic functions
as ‘finitely connected-quotient’ maps (analogous to the notion of ‘finite continuity’ in
Lemma B.1.15), but we forego a discussion of the infinite case here. We end with the
following observation.

Observation B.1.30 (Connected-quotient maps compose). Using the definition of connected-
quotient maps one verifies that, given a connected-quotient map X → P (of some
stratification on X) and a connected-quotient map P → Q (of some stratification of P ),
their composite X → Q yields another connected-quotient map.

In particular, in the case of finite stratifications (and, under appropriate conditions, in
the infinite case as well), we find that compositions of characteristic functions are again
characteristic functions. As we will see, compositions of characteristic functions describe
coarsenings (see Lemma B.2.12).
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Factoring poset structures into stratifications and labelings In this section we
show that any poset structure factors into a stratification followed by a ‘labeling’. A
labeling of a stratification in a category C functorially associates data in C to formal
entrance paths in that stratification. We have seen conceptually similar notions of labelings
in our discussions of labeled trusses (see Definition 2.3.44), and in their relation to stratified
meshes (see Definition 5.2.7).

Terminology B.1.31 (Labelings). Let C be a category, and (X, f) a (pre)stratification. A
‘C-labeling’ (or simply a ‘labeling’) of (X, f) in C is a functor L : Entr(f)→ C. If C is a
poset, we also call L a ‘poset labeling’.

There are other notions of entrance path categories (such as entrance path ∞-categories,
which we will meet later in Definition B.3.9) that can be considered in place of entrance
path preorders. Working only with preorders provides the ‘0-categorical’ base case of such
fundamental category structures.

Example B.1.32 (Specialization labelings). Let (X, f) be a finite (pre)stratification. The
‘specialization labeling’ of X associated to f is the labeling of the discrete prestratification
of X → SpclX given by the functor Spcl f : SpclX → Entr(f) (obtained by applying the
specialization topology functor to the continuous map f : X → Entr(f)).

We now show that any P -structure canonically factors as a stratification with a
discrete labeling on that stratification. This factorization is referred to as the P -structure’s
‘connected component splitting’. Discreteness of the labeling will mean the following.

Terminology B.1.33 (Discrete map). A map of posets F : Q → P is called a ‘discrete
map’ if its preimages are discrete, that is, for each q ∈ Q the preimage F−1(q) contains
no non-identity arrows. Note that the condition is equivalent to requiring F to be a
conservative functor of categories Q→ P .

Construction B.1.34 (Connected component splittings). For a P -structure f : X → P ,
the connected component splitting of f is the factorization

f = (X
char(f)−−−−→ cmpnt(f)

discr(f)−−−−→ P )

defined as follows. The map char(f) is the characteristic function of the stratification
decomposing X into the connected components of preimages of f ; note that the formal
entrance path graph cannot have cycles since P is assumed to be a poset and f to be
continuous. The map discr(f) : cmpnt(f)→ P maps a given connected component X of a
preimage f−1(p) back to p.

Note that even if f : X → P is continuous, the characteristic function char(f) need not
be continuous (see Example B.1.36). We point out three universal properties of connected
component splittings: universality among connected-quotient factorizations, universality
among discrete map factorizations, and uniqueness among connected-quotient and discrete
map factorizations.

Lemma B.1.35 (Universality of connected component splitting). Let f : X → P be
a P -structure. Assume f factors into maps g : X → Q and b : Q → P , where g is
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continuous and b a map of posets. Consider the following diagram:

Q

X P

cmpnt(f)

b
f

g

char(f) discr(f)
.

1. Characteristic map universality: If g is characteristic, then there is a unique poset
map Q→ cmpnt(f) making the above diagram commute,

2. Discrete map universality: If b is a discrete map, then there is a unique poset map
cmpnt(f)→ Q making the above diagram commute

3. Combined universality: If g is characteristic and b is a discrete map, then there is a
unique poset isomorphism Q ∼= cmpnt(f) making the above diagram commute.

Proof. We first prove statement (1). Since g is characteristic it has connected preimages.
Thus its preimages must lie in the connected components of preimages of f . The map
cmpnt(f)→ Q is the inclusion of strata of g into strata of char(f).

We next prove statement (2). We first show that preimages of g are unions of strata of
char(f) (i.e. connected components of preimages of f). Let Z be a connected component
of a preimage of f . Let {qZi }i∈I be the set of objects in Q whose preimages rZi = g−1(qZi )
intersect Z. Note that, since b is assumed to be a discrete map, there are no arrows
between any qZi in Q. Let QZi be the downward closure of qZi in Q. Since g is assumed
continuous, we have a disjoint open cover tig−1(QZi ) ∩ Z of Z. Since Z is connected,
the indexing set I must be of cardinality 1. This shows that preimages g−1(q) of g are
unions of connected components Z of preimages of f . The map cmpnt(f)→ Q can then
be defined by mapping the strata Z ⊂ g−1(q) back to q.

The final statement (3) follows from combining statements (1) and (2).

Example B.1.36 (Translating P -structures into stratifications). In Fig. B.6 we depict
a stratification of the circle on the left. To its right, we depict two P -structures (by
color-coding images and preimages in the same color). Both P -structures recover the
stratification on the left after connected component splitting. In particular, there are
many P -structures with the same ‘underlying stratification’. In Fig. B.7 we depict another
P -structure; it’s connected component splitting recovers the stratification from Fig. B.4
with non-continuous characteristic function.

Figure B.6: Poset structures with the same underlying stratification.

Using the above constructions, we describe relations of our notion of stratifications
with two other frequently used definitions of stratifications, namely to ‘P -stratifications’
and ‘S-filtered spaces’.
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Figure B.7: A non-continuously splitting poset structure.

Remark B.1.37 (Relation of stratifications and ‘P -stratifications’). Our notion of a ‘P -
structure’, given by a continuous maps from X to P , is also known as a ‘P -stratification’
(see [Lur12, Def. A.5.1]). Indeed, by the above results, given a P -stratification f : X → P
we can think of it as the stratification with characteristic map char(f) obtained by
connected component splitting (note that there may be many different P -stratifications
f : X → P that lead to the same stratification in this way). Conversely, every locally
finite stratification (X, f) arises as the connected component splitting of a P -stratification;
indeed, by Lemma B.1.20, we can simply set P = Entr(f) and the characteristic map
f : X → P will be continuous.

Remark B.1.38 (Relation of stratifications and ‘S-filtered spaces’). Given a poset S
with unique maximal element >, a ‘S-filtration’ of a space X is a collection of closed
subset Xs, s ∈ S, such that X> = X and Xs ⊂ Xt whenever t ≤ s in S (see [GM88,
§III.2.2.1]). This defines a continuous map fS : X → S, mapping points in the subspace
Xt \

⋃
s>tXs to t ∈ S. The characteristic function char(fS) of the connected component

splitting of fS yields a stratification in our sense. Conversely, every stratification (X, f)
with continuous characteristic map f : X → Entr(f) yields an Entr(f).-filtration of X
by setting Xs = f−1(Entr(f)≥s) (here, Entr(f). is the poset obtained by adjoining a
new top element > to Entr(f), and Entr(f)≥s is the upper closure of an element s in
Entr(f)).35

Classifying stratifications of posets In this section we discuss that the classifying
space of any poset P itself carries canonically the structures of a stratification, called the
‘classifying stratification’ of P . While we introduced the concept already in Terminol-
ogy 1.3.11, here we will revisit its construction in more concrete terms.

Remark B.1.39 (Nerves of posets). Recall the nerve NP of a poset (P,≤) is the simplicial
set whose m-simplices S are the length-m strings of composable arrows in P ; in other
words, an m-simplex is a map of posets S : [m]→ P . The simplex S : [m]→ P is called
nondegenerate if it is injective.

Remark B.1.40 (Classifying space of posets). Recall the ‘classifying space’ |P | of a poset P
is the geometric realization of the nerve of P . (Abusing terminology, we sometimes refer to
the classifying space of a poset itself as the ‘geometric realization’ of the poset.) Explicitly,
|P | is the space of functions w : obj(P ) → R≥0 whose support supp(w) ⊂ obj(P ) is
the object set of a nondegenerate simplex in P , and whose total weight is fixed, i.e.∑

p∈obj(P )w(p) = 1. We think of such a function w as an ‘affine combination’ of objects
of the poset.
35In fact, in the case of finite stratifications, we can always recover (X, f) from an N-filtration of
X. Define a ‘depth map’ depth : Entr(f) → Nop, mapping s ∈ Entr(f) to k if chains in Entr(f)
starting at s have maximal length (k + 1) (e.g. greatest elements have depth 0). Define the filtration
X0 ⊂ X1 ⊂ ... ⊂ Xkmax = X (where kmax is the maximal depth of elements in Entr(f)) by setting Xi
to be the preimage of [0, i] under the composite depth ◦ f .
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Construction B.1.41 (Classifying stratifications of posets). The classifying space |P | of
a poset P has a stratification CStrP , called the classifying stratification, with entrance
path poset P itself, constructed as follows. The characteristic function of this stratification
sends an affine combination w of objects of the poset to the minimal object min(supp(w))
(in P ) of the support of that affine combination:

CStrP : |P | → P , w 7→ min(supp(w)) ∈ P.

The stratum corresponding to the object p ∈ P is denoted str(p) ⊂ CStrP ; it consists of all
affine combinations w of objects weakly greater than p, whose value at p is nonzero.

In fact, the classifying stratification construction is functorial (as we will see in Construc-
tion B.2.14).

B.2 Stratified maps

Maps, coarsenings, and substratifications

Definition B.2.1 (Map of stratifications). A map of stratifications F : (X, f : X →
Entr(f)) → (Y, g : Y → Entr(g)), also called a ‘stratified map’, is a continuous map
F : X → Y for which there exists a (necessarily unique) map of posets Entr(F ) :
Entr(f)→ Entr(g) such that Entr(F ) ◦ f = g ◦ F .

Notation B.2.2 (Shorthand for stratified maps). In analogy to Notation B.1.5, we often
abbreviate stratified maps F : (X, f)→ (Y, g) by F : f → g.

Example B.2.3 (Map of stratifications). In Fig. B.8 we depict a stratified map on the
left and a non-stratified map on the right. In both case, the underlying map of topological
spaces is given by vertical projection.

Figure B.8: A stratified map and a non-stratified map.

Definition B.2.4 (Coarsenings and refinements of stratifications). Amap of stratifications
F : (X, f)→ (Y, g) is a coarsening of (X, f) to (Y, g), or, synonymously, a refinement
of (Y, f) by (X, f), if the underlying map of spaces F : X → Y is a homeomorphism.

Note that we use coarsening and refinement as synonyms of ‘dual flavor’, i.e. describing
dual processes: a coarsenings ‘coarsens’ the domain, while a refinement, in opposite
direction, ‘refines’ the codomain.

Example B.2.5 (Coarsening and refinement). In Fig. B.9 we illustrate a coarsening of
stratifications on the circle, along with the corresponding the refinement indicated by a
dashed arrow in opposite direction.
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Figure B.9: A coarsening and its corresponding refinement of stratifications.

Definition B.2.6 (Substratification). A stratified map (X, f)→ (Y, g) is a substrati-
fication if the underlying map X ⊂ Y is an inclusion and if every stratum s of f is a
connected component of X ∩ t for some stratum t of g.

By extension we refer to stratified maps that are not literally inclusions, but whose
underlying map is injective and a stratified homeomorphism onto a substratification, also
as ‘substratifications’.

Example B.2.7 (Substratification). In Fig. B.10 we depict two stratified maps: the first
is a substratification, which though is not injective on entrance path posets; the second is
a stratified map whose underlying map is injective, but which is not a substratification.

Figure B.10: Two stratified maps one of which is a substratification.

Terminology B.2.8 (Restricting stratifications). Given a stratification (Y, g) and a subspace
X ⊂ Y , the ‘restriction’ (X, g|X) is the substratification of (Y, g) whose strata are the
connected components of intersections X ∩ t for all strata t of g.

Definition B.2.9 (Constructible substratifications). A substratification (X, f)→ (Y, g)
is constructible if every stratum of (X, f) is exactly a stratum of (Y, g).

Recall from Remark B.1.18, a ‘frontier-constructible’ stratification is a stratification (Y, g)
in which the topological closure s of each stratum s yields a constructible substratification
(s, g|s) of g (by restricting g to s). Frontier-constructibility has an alternative description
purely in terms of characteristic functions as follows.

Lemma B.2.10 (Frontier-constructible stratifications are those with open characteristic
function). A stratification (X, f) is frontier-constructible if and only if the characteristic
function f : X → Entr(X) is an open map.

Proof. Assume f is frontier-constructible. Let U ⊂ X be an open subset. We need to
show that f(U) ⊂ Entr(X) is open, which in the specialization topology means that
f(U) is downward closed. It suffices (because the entrance path poset is generated by
formal entrance paths) to check that given an element s ∈ f(U) and a formal entrance
path r → s, we have r ∈ f(U). The existence of the formal entrance path r → s means
s ∩ ∂r 6= ∅; frontier-constructibility then implies that s ⊂ ∂r. As s ∈ f(U), there is some
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point of the stratum s that is in U , and because U is open, there must be a point of the
stratum r that is in U . Thus r ∈ f(U) as required.

Conversely, assume f : X → Entr(f) is open. It suffices to show that if there is a
formal entrance path r → s, i.e. s ∩ ∂r 6= ∅, then s ⊂ ∂r. Suppose there is such an
entrance path but by contrast there is a point p ∈ s \ ∂r = s \ r. Then we can chose
an open neighborhood p ∈ U ⊂ X disjoint from the closure r. By assumption it follows
that the image f(U) is open, which is to say downward closed; thus s ∈ f(U) and r → s
implies that r ∈ f(U), contradicting the fact that the neighborhood U does not intersect
even the closure of r.

We can characterize substratifications and coarsenings in terms of entrance path poset
maps, as follows.

Lemma B.2.11 (Substratification from discrete maps). A map of finite stratified spaces
F : (X, g)→ (Y, f) is a substratification if and only if F : X → Y is a subspace inclusion
and Entr(F ) : Entr(g)→ Entr(f) is a discrete map.

Proof. By definition every substratification is a subspace inclusion of underlying spaces.
The fact that Entr(F ) is a discrete map follows since strata of substratifications are defined
as connected components of the intersection of the subspace X with strata of f , and since
Entr(f) is a poset.

Conversely, assume the stratified map F is a subspace inclusion and that Entr(F )
is a discrete map. Note that the substratification (X, f |X) of f can be obtained by
connected component splitting of the restriction of f : Y → Entr(f) to X ⊂ Y . Since g
is a continuous characteristic map, and since Entr(F ) is a discrete map, statement (3)
of Lemma B.1.35 (applied to f : Y → Entr(f) restricted to X ⊂ Y ) shows that g is a
substratification of f as claimed.

Lemma B.2.12 (Coarsenings from connected-quotient maps). Let (X, f) be a finite
stratification. Coarsenings of f (up to isomorphism) are canonically in bijection with
connected-quotients of Entr(f): namely, the bijection takes coarsenings F to their entrance
path poset maps Entr(F ).

Proof. Let F : (X, f) → (X, g) be a coarsening. Then Entr(F ) is a connected-quotient
map since its preimages are connected and it satisfies condition (2) in Lemma B.1.24.

Conversely, let H : Entr(f)→ P be a connected-quotient map. Define a stratification
(X, g) whose strata are unions of those strata in f that are mapped to the same object in
P under H. Since preimages of H are connected, these unions are connected subspaces of
X and thus define a prestratification. Since H is a connected-quotient map to a poset P ,
this prestratification is in fact a stratification with entrance path poset Entr(g) = P . The
resulting coarsening (X, f)→ (X, g) is the identity on the underlying space X, and maps
entrance path posets by H.

The category of stratifications Having defined stratified spaces and maps, we now
obtain the category of stratifications.

Terminology B.2.13 (The ordinary category of stratifications). Denote by Strat the category
of stratifications and their stratified maps.
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Posets faithfully embed into stratifications by the classifying stratification functor as
follows (recall the construction of classifying stratification from Construction B.1.41).

Construction B.2.14 (Classifying stratification functor). Given a map of posets F :
P → Q, the induced map on classifying spaces, namely the map CStrF : CStrP → CStrQ
mapping CStrF (w)(q) =

∑
p∈F−1(q)w(p), is a stratified map. This yields the ‘classifying

stratification’ functor
CStr− : Pos→ Strat

from the category of posets to the category of stratifications.

Conversely, the entrance path poset construction previously described yields a functor
from the category of stratifications to the category of posets.

Construction B.2.15 (Entrance path poset functor). The association of the entrance
path poset Entr(f) to the stratification (X, f), and of the map of posets Entr(F ) to the
map of stratifications F : (X, f)→ (Y, g) provides the ‘entrance path poset’ functor

Entr : Strat→ Pos

from the category of stratifications to the category of posets.

Observation B.2.16 (Entrance paths invert classifying stratifications). The preceding
functors form a section-retraction pair: namely, Entr ◦CStr = id.

We can further promote the entrance path poset functor to a functor of ∞-categories.
(Here we use the term ‘∞-category’ to refer to a category enriched in the category kTop
of compactly generated spaces topological spaces, see Convention B.0.2.) We first define
the ∞-category of stratifications.

Notation B.2.17 (The ∞-category of stratifications). Denote by Strat the ∞-category of
stratified spaces and their stratified maps: hom spaces Strat((X, f), (Y, g)) are topologized
as subspaces of the internal hom Map(X,Y ) in kTop.

We next define the ∞-category of posets. It will be convenient to assume local finiteness
at this point (though it is possible to generalize the discussion below to other cases as
well). We first record the following useful observations.

Observation B.2.18 (Properties of locally finite posets). Let P and Q be locally finite
posets.

1. Local finiteness of P implies that P is core compact, and thus exponentiable (see
[ELS04, Def. 2.8 & Thm. 2.9]).

2. By probing P with compact Hausdorff probes
∣∣P≤x∣∣→ P≤x ↪→ P one verifies that

P is compactly generated (see [ELS04, Def. 3.1]).
3. The internal hom Map(P,Q) in kTop is the k-ification of the space C0(P,Q), defined

as the set Pos(P,Q) with subbasic opens M(U, V ) = {F | F (U) ⊂ V } for finite
open U ⊂ P and open V ⊂ Q (see [ELS04, Prop. 5.11 & Thm. 5.15]).

Notation B.2.19 (The ∞-category of locally finite posets). The ∞-category Pos of locally
finite posets is the ∞-category obtained by topologizing hom sets Pos(P,Q) using the
internal homs Map(P,Q) in kTop.
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Remark B.2.20 (The case of finite posets). For finite posets P and Q, the space Map(P,Q)
is exactly the hom poset Pos(P,Q) of posets functors and natural transformations endowed
with specialization topology.

Construction B.2.21 (Entrance path poset ∞-functor). Let Stratelf denote the full
subcategory of Strat consisting of stratifications with locally finite entrance path poset.
The entrance path poset functor Strat→ Pos induces a functor of ∞-categories

Entr : Stratelf → Pos .

The continuity of the functor Entr on hom spaces follows from standard arguments. We
need to check that Entr : Stratelf((X, f), (Y, g)) ↪→ Map(X,Y ) → Pos(Entr f,Entr g) is
continuous. Recall Pos(Entr f,Entr g) = kC0(Entr f,Entr g) (see Observation B.2.18).
Since k-ification is a right adjoint, it suffices to check continuity of Entr when mapping into
C0(Entr f,Entr g). Pick a subbasic M(U, V ) for the latter space. Since U is finite, we can
pick a finite compact set K = {ps ∈ f−1(s) | s ∈ U}. Since Entr g is assumed locally finite,
the stratification g is locally finite, and the characteristic map g : Y → Entr g is continuous.
Thus W = g−1(V ) is open in Y . Then M(K,W ) = {F : X → Y | F (K) ⊂ W} is
an open subset of Map(X,Y ), and its intersection with Stratelf((X, f), (Y, g)) equals
Entr−1M(U, V ), showing the latter is open as required.

We finally also mention a ‘tensoredness’ property of stratifications.

Terminology B.2.22 (Products of stratifications). Given two stratifications (X, f) and
(Y, g), the product stratification is simply (X × Y, f × g) where f × g is the characteristic
function X × Y → Entr(f) → Entr(g) obtained by taking the product of characteristic
functions f : X → Entr(f) and g : Y → Entr(g). One further defines products of stratified
maps by taking products of their underlying continuous maps. This yields a topological
‘product’ functor

(−×−) : Strat × Strat → Strat .

Observation B.2.23 (Fiberwise kTop-tensoredness of Strat). Taking products with topo-
logical spaces provides a ‘fiberwise kTop-tensor’ on the category of stratified spaces as
follows. Let (X, f) and (Y, g) be finite locally compact Hausdorff stratifications and
F : Entr(f) → Entr(g) a map of their entrance path posets. Denote by Strat(f, g)F the
preimage of F of the map Entr : Strat(f, g) → Pos(Entr(f),Entr(g)). Using cartesian
closedness of kTop, identify Map(Z,Map(X,Y )) ∼= Map(Z × X,Y ) (for Z ∈ kTop); in
particular, we obtain a homeomorphism

Map(Z, Strat(f, g)F ) ∼= Strat(Z × f, g)F

where the right hand side denotes the space of stratified maps Z × (X, f)→ (Y, g) whose
underlying map of entrance path posets is F (noting Entr(Z × (X, f)) ∼= Entr(f))).

Stratified bundles A ‘stratified bundle’ is a stratified map that is locally trivial along
each stratum of the base. The notion generalizes the ordinary notion of ‘fiber bundles’ of
topological spaces.
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Definition B.2.24 (Stratified bundles). A stratified map p : (Y, g)→ (X, f) is a strat-
ified bundle if for each stratum s of f and each point x ∈ s, there is a neighborhood
Ux ⊂ s inside the stratum s, such that there is a stratification (Z, h) together with an
isomorphism of stratifications T : Ux × h ∼= (p−1(Ux), f) for which p ◦ T : Ux × h→ Ux is
the projection. The stratification (Z, h) is called the fiber of F over the stratum s.

Note that every fiber bundle is naturally a stratified bundle with indiscrete stratifications
on both base and total space. We will usually further assume that all the fibers of a
stratified bundle are non-empty, in other words that the underlying map of spaces is
surjective. In this case the stratification of the total space determines the stratification of
the base space.
Observation B.2.25 (The base stratification is determined by the total stratification).
Suppose (Y, f) → (X, g) and (Y, f) → (X, g′) are stratified bundles with the same
underlying surjective map F : Y → X. Then the stratifications g and g′ are equal.

Just as fiber bundles can be pulled back along continuous map, stratified bundles can
be pulled back along stratified maps. Here, a ‘pullback’ of stratified maps means the
following.
Terminology B.2.26 (Pullbacks of stratifications). Given stratifications (X, f), (Y, g), and
(Z, h) and maps F : f → h and G : g → h, the ‘pullback stratification’ (X, f)×(Z,h) (Y, g)
is the stratification (X ×Z Y, f ×h g), where X ×Z Y is the pullback of spaces and f ×h g
is the restriction f × g|X×ZY of the product stratification f × g to the pullback space
X ×Z Y ⊂ X × Y .

Example B.2.27 (Pullback stratification need not be finite or have continuous charac-
teristic function). In Fig. B.11 we depict a pullback of finite stratifications that is not
finite and does not have continuous characteristic function.

Figure B.11: Pullbacks of stratifications need not preserve finiteness.

Observation B.2.28 (Pullbacks of stratified bundles). Given a stratified bundle p : (X, f)→
(Y, g) and a stratified map F : (Y ′, g′)→ (Y, g), then the pullback map (X×Y Y ′, f×gg′)→
(Y ′, g′) is a stratified bundle itself, usually denoted by F ∗p : F ∗f → g′. This follows since
stratified maps map strata into strata, which allows us to ‘pull back’ trivializations of p
over neighborhoods in strata of g to trivialization of F ∗p over neighborhoods in strata of
g′.
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Remark B.2.29 (Constructible bundles). There is a natural strengthening of the notion of
stratified bundles, namely to so-called ‘constructible bundles’. As discussed in Chapter 4,
‘constructibility’ requires that bundles can be reconstructed up to isomorphism from
functorial data associated to fundamental categories of their base stratifications, such as
entrance path posets, or entrance path (∞-)categories (see also Remark 4.1.33). There
are several approaches to making this precise (see [AFR15, §6] [CP20]).

B.3 Conical and cellulable stratifications

We recall notions of conical and cellulable stratifications. Both are ‘niceness’ conditions on
stratifications. Lurie shows in [Lur12, App. A] that conical stratifications have ‘entrance
path ∞-categories’, providing a natural generalization of ‘fundamental ∞-groupoids’ of
spaces. We will provide a similar (but simpler) construction in the case of cellulable
stratifications.

Conical stratifications Many of the stratifications in this book satisfy an additional
regularity condition called ‘conicality’. This condition requires neighborhoods of strata
to locally look like a cone ‘normal’ to the stratum and an open set ‘tangential’ to the
stratum. Let us first formalize the operation of taking cones on stratifications.
Terminology B.3.1 (Cones of stratifications). Given a stratification (X, f), we can define
its ‘open cone’ f. to be the stratification (X., f. : X. → Entr(f).) as follows. The space
X. is the usual open cone X × (0, 1] ∪X×{1} >, where > is the space with the single
point >. The poset Entr(f). is obtained from Entr(f) by adding a new top element
>. The map f. sends the cone point > to > ∈ Entr(f). and is otherwise given by
X × (0, 1)

πX−−→ X
f−→ Entr(f).

Definition B.3.2 (Conical stratification). A tubular neighborhood of a point x of a
stratification (X, f) is a neighborhood Ux of x, together with a stratified space (Yx, lx),
called a link at x, a connected topological space Zx, called the tangential neighborhood,
and a stratified homeomorphism

Zx × l.x ∼= (Ux, f |Ux)

sending z × > to x, for some z ∈ Zx. (Here > is the cone point in the cone l.x.) A
stratification is conical if it has a tubular neighborhood at every point.

Example B.3.3 (Conical and non-conical stratifications). In Fig. B.12 we illustrate an
example of a conical stratification, together with an illustration of a tubular neighborhood
as a product of a cone and a space. By contrast, in Fig. B.13 we depict a stratification
(of the same space, but now decomposed into only two strata) which is not a conical
stratification.

Remark B.3.4 (Topological stratification). A conical stratification in which every stratum
is a topological manifold is usually called a ‘topological stratification’. Note that in that
situation, the tangential spaces Zx can always be chosen to be euclidean spaces. The
conical stratification shown in Fig. B.12 is a topological stratification. An instance of a
conical stratification (with two strata) that is not a topological stratification is depicted
in Fig. B.14.
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Figure B.12: A conical stratification with a tubular neighborhood.

Figure B.13: A non-conical stratification.

Figure B.14: A conical stratification that is not topological.

Observation B.3.5 (Constructible substratifications inherit conicality). If the stratification
(X, f) is conical and (Y, g) ↪→ (X, f) is a constructible substratification (Definition B.2.9),
then the stratification (Y, g) is also conical.

Observation B.3.6 (Coarsening need not preserve conicality). If the stratification (X, f)
is conical and (X, f)→ (Y, g) is a coarsening, then the stratification (Y, g) need not be
conical.

Remark B.3.7 (Conical implies frontier-constructible). Every conical stratification is
frontier-constructible (see Remark B.1.18). In particular, a conical stratification is locally
finite if and only if its entrance path poset is.

Proposition B.3.8 (Locally finite classifying stratifications are conical). The classifying
stratification CStrP (see Construction B.1.41) of any locally finite poset P is conical.

Proof. For any poset element p ∈ P , and any point x ∈ str(p) of the corresponding
stratum, we construct a tubular neighborhood, which is in fact independent of the point x.
The points of the classifying stratification CStrP , the stratum str(p) and the link link(p)
are given by certain affine combinations w, wstr(p) and wlink(p) of objects in P , P≥p and
P<p respectively. Since P≥p ↪→ P (respectively P<p ↪→ P ) we may trivially extend wstr(p)

(respectively wlink(p)) to affine combination of objects in P . The inclusion str(p) ↪→ CStrP
now extends to a tubular neighborhood str(p) × cone(link(p)) ↪→ CStrP by setting (cf.
[Lur12, Prop. A.6.8])

str(p)× link(p)× (0, 1)→ CStrP

(wstr(p), wlink(p), t) 7→
(
w(q) := t · wstr(p)(q) + (1− t) · wlinkPp

(q)
)

away from the conepoint link(p)× (0, 1) ↪→ cone(link(p)). This verifies conicality of CStrP
as claimed.
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A central reason for considering conical stratifications is the availability of a good
notion of ‘(higher) entrance path homotopies’ between entrance paths. This leads to
a definition of entrance path ∞-category (‘∞-category’ abbreviating ‘(∞, 1)-category’).
Modeled in quasicategories, this can be defined as follows.

Definition B.3.9 (Entrance path ∞-category, [Lur12, Rmk. A.6.5]). The entrance
path ∞-category Entr(f) of a conical stratification (X, f) is the ∞-category with
underlying simplicial set having as m-simplices the maps from the stratified m-simplex
CStr [m] to f ; that is Entr(f)m := Strat(CStr [m], f).

Remark B.3.10 (The class of entrance path ∞-categories). The class of ∞-categories
that are (up to equivalence) the entrance path ∞-categories of a conical stratifications
have been described as ∞-categories with a conservative functor to a poset (see [BGH18,
§2.1]).

Lemma B.3.11 (Entrance paths in classifying stratifications). Given a locally poset P ,
the entrance path ∞-category of its classifying stratification CStrP is equivalent to P , that
is,

Entr CStrP ' NP.

In particular, Entr CStrP is 0-truncated (see [CL18]).

Proof. Recall that an ∞-category is called 0-truncated if its hom spaces are (−1)-types,
meaning they are either empty or contractible. We first check that C ≡ Entr CStrP is
0-truncated. It suffices [CL18, Prop. 3.12] to show that any sphere ∂∆[m]→ C, for m > 1,
has a filler. Given such a map φ : ∂∆[m]→ C, by the definition of Entr , φ is represented
by a continuous map |φ| : |∂∆[m]| → |P |. Pick x ∈ P such that |φ| (0) ∈ str(x). Then
im |φ| lies in the closure of str(x), i.e. in

∣∣P≥x∣∣ ⊂ |P |. Note that
∣∣P≥x∣∣ = cone |P>x|.

Similarly, identify ∆[m] ∼= cone(∂∆[m]) =
(
∂∆[m]× [0, 1]

)/
∂∆[m]×{0}. Then define the

filler ψ : ∆[m] →
∣∣P≥x∣∣ by mapping (q, t) 7→ t · |φ| (q). By construction, ψ sends the

interior of ∆[m] to the stratum str(x) and thus is a stratified map as needed.
Since C is 0-truncated, it is equivalent to N(ho(C)) [CL18, Prop. 3.8]. Furthermore,

the homotopy category of any 0-truncated ∞-category has a skeleton that is a poset
[CL18, Prop. 3.10]. Let Q denote a posetal skeleton of ho(C). Observe that Q must be
isomorphic to P : we have bijections Q� P identifying q to x iff q ∈ str(x). We arrive at
the desired equivalence:

Entr CStrP ≡ C ' N(ho(C))) ' NQ ∼= NP.

Note that the composed equivalence is the ‘canonical’ one: it takes 0-simplices q of
Entr CStrP to 0-simplices x in NP iff q ∈ str(x).

Definition B.3.12 (0-truncated stratifications). A conical stratification (X, f) is called
0-truncated if

In particular, the preceding lemma shows that classifying stratifications of posets are
0-truncated. Let us end with the following heuristic at play.
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Remark B.3.13 (Analogy to sets and spaces). Posets are to (sufficiently nice) stratifications
what sets are to spaces. Classifying spaces of sets (thought of as 0-categories) are discrete
spaces; their fundamental ∞-groupoid are 0-truncated. Similarly, the above shows that
entrance path ∞-categories of classifying stratifications of posets are 0-truncated.

Cellulable stratifications In this final section we discuss cellulable stratifications. Re-
call, a regular cell complex is a stratification in which strata are open disks (‘open cells’)
whose closures are closed disks (‘closed cells’).

Definition B.3.14 (Cellulable stratifications). The class of cellulable stratifications
is the smallest class of stratifications containing regular cell complexes which is closed
under the following:

1. If (X, f)→ (Y, g) is a coarsening and (X, f) is cellulable then (Y, g) is cellulable.
2. If (Y, g) ⊂ (X, f) is a constructible substratification and (X, f) is cellulable then

(Y, g) is cellulable.

Remark B.3.15 (Local finiteness assumption). Sometimes we may want to also assume
that our cellulable stratifications have locally finite entrance path posets. One way to
ensure this is, is to require in the above definition that regular cell complexes are locally
finite and coarsenings F : (X, f)→ (Y, g) are ‘open finite’ (i.e. Entr(F ) is open with finite
preimages).

Since constructible substratifications and coarsenings commute (i.e. any constructible
substratification of a coarsening is a coarsening of a constructible substratification), the
definition of cellulable stratifications can be simplified as follows. Recall the notion of
regular cell complex from Definition 1.3.1.

Definition B.3.16 (Regular cell stratifications). A stratification (X, f) is called an
(open) regular cell stratification if there exists a regular cell complex (X, f) and a
stratified inclusion (X, f) ↪→ (X, f) making (X, f) an (open) constructible substratification
of (X, f).

Terminology B.3.17 (Cellulations). A refinement of a stratification by an regular cell
stratification is called a ‘cellulation’.

Observation B.3.18 (Cellulable stratifications). A cellulable stratification is precisely a
stratification that can be obtained by coarsening a locally finite regular cell stratification.

The following terminology will also be useful.

Terminology B.3.19 (Open cellulable stratification). A cellulable stratification will be
called ‘open cellulable’ if it can be refined by an open regular cell stratification.

To better understand the definition of cellulable stratifications better let us discuss
two properties of locally finite regular cell complexes. We begin with the property of
conicality. Note that the stratification of general (non-regular) cell complexes need not be
conical in general, even when the complex is finite (i.e. has only finitely many cells). In
contrast, in the regular case, we have the following.

Proposition B.3.20 (Regularity implies conicality). Locally finite regular cell complexes
are conically stratified.
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Proof. In Proposition 1.3.16 we have seen that there is a stratified homeomorphism
X ∼= CStr EntrX of X with the classifying stratification of its entrance path poset. From
Proposition B.3.8 it then follows that locally finite regular cell complexes are conically
stratified.

Observation B.3.21 (Regular cell stratifications are conical). Combining Proposition B.3.20
with Observation B.3.5 it follows that locally finite regular cell stratifications are conical.

Note, by Observation B.3.6, cellulable stratifications themselves need not be conical.
Let us next discuss the entrance path structure of locally finite regular cell complexes.

Observation B.3.22 (Regular cell complexes are 0-truncated). Given a locally finite regular
cell complex (X, f), we have a canonical equivalence Entr(f) ' N Entr(f) that takes
points x to the stratum s that they live in. This follows from Lemma B.3.11 since locally
finite regular cell complexes are classifying stratifications of locally finite posets.

Observation B.3.23 (Regular cell stratifications are 0-truncated). Given a regular cell
stratification (X, f), we have a canonical equivalence Entr(f) ' N Entr(f) that takes points
x to the stratum s that they live in. This follows by appropriately restricting the equivalence
to subcategories resp. subposets determined by constructible substratifications

An advantage of working with cellulable stratifications (in comparison to, say, conical
stratifications) is that constructions can exploit the 0-truncatedness of regular cell com-
plexes. For instance, entrance path ∞-categories of cellulable stratifications are easy to
define, by presenting them as ‘posets with weak equivalences’.

Construction B.3.24 (Entr for cellulable stratifications). Let (X, f) be a cellulable
stratification. We can find a locally finite regular cell stratification (Y, g) which refines
(X, f). Denote by F : Entr(g)→ Entr(f) the characteristic map of the refinement. Denote
by WF = {α | F (α) = id} the ‘weak equivalences’ given by those entrance paths in
g that become invertible paths in f . The entrance path ∞-category Entr(f) of f is
the ∞-category presented by the tuple (Entr(g),WF ), i.e. by a category with weak
equivalences.

Note that an explicit ∞-category Entr(f) can be obtained by localizing Entr(g)[W−1
F ]

(here, we use the idea of ‘localization’ without reference to a concrete model; but concrete
models could be given [DK80b] [DK80a]). Note that localizing in the traditional setting
of 1-categories, yields the homotopy category ho(Entr(f)).

Example B.3.25 (Cellulating the circle). Let (X, f) ≡ S1 be the trivially stratfied
circle. Choose the minimal regular cell refinement (Y, g)→ S1 (this has two 1-cells, glued
together at their boundaries). The 1-category ho(Entr(f)) is equivalent to the category
with a single object and a single generating non-identity automorphism (without further
relations); this in turn is equivalent to the fundamental 1-groupoid π≤1S

1.

Remark B.3.26 (Well-definedness of Entr). Given a cellulable stratification f , our construc-
tion of Entr(f) above depends on a choice of cellulation of f . Showing that the resulting
∞-category Entr(f) is independent of this choice is non-trivial in general. However, in the
case of conical cellulable stratifications one can compare Entr(f) with the construction in
Definition B.3.9, and show that the two constructions are equivalent.
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APPENDIX C
Framed space, globally

We end this chapter by giving a first short sketch of how framed regular cells can be
‘geometrically realized’. This will sketch a geometric model for the combinatorial structures
discussed in this chapter.

C.1 Framed spaces

Geometric realization, firstly, requires the definition of a target of ‘framed spaces’ in which
the realization can take place. This definition of framed spaces will use a non-standard
notion of framings: it inspired by the relation of ‘frames’ and ‘proframes’ in linear algebra,
which is the classical analog to the relation of framed and proframed combinatorial
structures which we studied in this chapter. The rough idea to keep in mind is that
‘proframes’ provide a sort of ‘metric-free generalization of orthonormal frames’, as outlined
in the following remark. A more in-depth discussion can be found in Appendix A.

Remark C.1.1 (Frames from projections). Let V be an euclidean vector space (i.e. finite
dimensional real vector space with an inner product). The following structures on V are
equivalent.

1. An orthonormal frame of V , i.e. an ordered sequence of vectors vi, 1 ≤ i ≤ n, such
that vi is normalized and orthogonal to all vj with j 6= i.

2. A sequence of projections Vi → Vi−1, 1 ≤ i ≤ n, where Vi is an oriented i-dimensional
vector space (and Vn = V ).

The two structures are related by setting vi to be the unit vector spanning ker(Vi → Vi−1)
such that Vi−1 ⊕ vi recovers the orientation of Vi (note that all Vi canonically embed in V
as the orthogonal complement of the kernel of the composite projection V → Vi).

In the absence of inner products, we cannot speak of orthonormal frames any longer.
However, sequences of projections, also called ‘linear proframes’, can still be defined, and
may be regarded as playing the role of ‘metric-free orthonormal’ frames. Moreover, this
approach offers room for generalization by varying the length of the projection sequence
and the vector space dimensions (see Appendix A for details).
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Example C.1.2 (Standard orthornomal framing of euclidean space). The standard
orthonormal frame of the n-dimensional euclidean vector space Rn consists for the ordered
sequence of vectors e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), ..., en = (0, ..., 0, 1). By the
previous remark, this orthonormal frame is equivalently described by the sequence of
projections πi : Ri = Ri−1×R→ Ri−1 (each Ri being endowed with standard orientation).

When forgetting the base point of an inner product space, i.e. thinking of it as an affine
space, then a proframe in the previous sense endows each point of the affine space with
an orthonormal frame, by considered the associated vector space at that point. One may
use this observation to define framings of spaces (i.e. choices of frames at every point), by
using ‘framed bounded patches’ of affine, standard framed Rn as a local model as follows.

Terminology C.1.3 (Patches and their maps). An ‘n-framed patch’ U ⊂ Rn is a framed
bounded subspace of Rn (in the sense of Definition 1.2.44). Framed and locally framed
maps] Given two n-framed patches U and V , an‘framed map’ F : U → V is a (potentially
partial36) continuous map that descends along πn to a map πn(U)→ πn(V ) of (n− 1)-
framed patches. A ‘locally framed map’ F : U → V is a (potentially partial) continuous
map, such that each x ∈ U has a compact neighborhood K on which F is framed.

Note that n-framed patches are contractible spaces.

Example C.1.4 (The closed cube). The standard example of an n-framed patch is the
closed n-cube In = [−1, 1]n ⊂ Rn. In general, however, n-framed patches need not be
‘n-dimensional’: for instance, the 0th slice {0} × [−1, 1]n−1 of the n-cube is itself an
n-framed patch.

Globally, framings of spaces can be defines by giving an ‘atlas of charts’ of framed patches
of that space.

Definition C.1.5 (Framed spaces). Let X be a topological space. Fix n ∈ N.
1. An n-framed chart (U, γ) in X is an embedding γ : U ↪→ Rn of a subspace U ⊂ X

whose image im(γ) is an n-framed patch.
2. Two n-framed charts (U, γ), (V, ρ) in X are compatible if ρ◦γ−1 : U → V is a locally

framed (partial) map.
An n-framed space is a space X together with an ‘atlas’ A of compatible n-framed
charts {(Ui, γi)} such that {Ui} are a locally finite cover of X.

Definition C.1.6 (Maps of framed spaces). Given spaces with n-framing structure
(X,A) → (Y,B), a framed map F : X → Y is a map such that, for charts (U, γ) ∈ A

and (V, ρ) ∈ B, F yields a locally framed (partial) map ρ ◦ F ◦ γ−1 : U → V .

Note that asking for ‘locally finite’ covers is convenient as it mirrors the situation of locally
finite cell complexes. The definition has several variations and generalization.

Example C.1.7 (Standard framings of compact subspaces). Any n-framed patch U ↪→ Rn
is a canonically n-framed space with a single chart (U,U ↪→ Rn).
36When working with partial maps, i.e. maps defined on a ‘supporting’ subspace of the domain, we always
assume the support to be a closed subspace.
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Example C.1.8 (Open standard framed space). Standard Rn has a standard framing
with charts [−l, l]n ⊂ Rn, l ∈ N. Similarly, the open n-cube In = (−1, 1)n has a standard
framing with charts [−1 + 1

l , 1−
1
l ]
n ⊂ In ⊂ Rn. Framed maps Rn → Rn (resp. In → In)

are precisely maps that factor through the standard projections Rn = Ri × Rn−i → Ri.
Note that Rn and In are framed homeomorphic.

Example C.1.9 (Circle with framing poles). Take two intervals I1, I2
∼= [0, 1] and glue

them together at their endpoints to get the space X (homeomorphic to the circle). Denote
the inclusion [0, 1] ⊂ R by φ. Then X has a 1-framing structure given by the charts (I1, φ)
and (I2, φ).

C.2 Framed combinatorial spaces

Analogous to passing from topological spaces to combinatorial (i.e. piecewise linear)
topological spaces, we now sketch how one may think about framed combinatorial spaces.
Importantly, instead of simplicial complexes, we will be working with framed regular
cell complexes (and this choice does affect the behaviour of framed combinatorial maps
introduced below, due to Remark 1.3.51). It is convenient to focus on the case of locally
finite complexes.

Terminology C.2.1 (Local finiteness). A poset P is called ‘locally finite’ if any point
x ≤ P has finite lower closure P≤x = y ≤ x ⊂ P . Geometrically, this is equivalent to the
statement that any point in the classifying stratification CStrP has a neighborhood that
intersects only finitely many strata (see Remark B.3.7).

Definition C.2.2 (Framed geometric realization). Given a locally finite n-framed regular
cell complex (X,F), its framed realization |X,F| is the framed space (|X| ,A(X,F))
where |X| is the geometric realization of the poset X and A(X,F) is the atlas containing a
chart (

∣∣X≥x∣∣ , rx) for each cell X≥x ↪→ X with chosen framed realization rx : |X,F| ↪→ Rn
of that cell (see Definition 1.2.41; in particular, note that such framed realizations exists
since framings on cells are flat). The fact that this defines a n-framed atlas will follow
from the equivalence of framed and proframed regular cells, discussed in Chapter 3.

Similarly, given a framed cellular map F : (X,F) → (Y,G) of framed regular cell
complexes, its framed realization |F | : |X,F| → |Y,G| ist the framed map which on
underlying spaces is given by the geometric realization |F | : |X| → |Y |.

Note that framed realizations of framed regular cells automatically endow the underlying
space of the cell with PL structure (in fact, this is always the standard PL ball). It
is useful to consider such framed realizations ‘up to framed PL homeomorphism’ (i.e.
framed maps which are PL as maps of underlying PL spaces). In essence, this means that
underlying combinatorial topological spaces will be treated in the usual piecewise-linear
manner, while the framing structure will be governed by the combinatorics of framed
regular cell complexes and their maps.

Definition C.2.3 (Framed re-cellulation). A ‘framed subdivision’ |X,F| → |X ′,F′| is a
framed PL homeomorphism which is stratified refinement of cell stratifications. A framed
re-cellulation |X,F|� |Y,G| is a zig-zag of framed subdivisions.
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For the next definition, recall that cellular maps of ‘geometrically realized’ (as opposed to
‘combinatorial’) regular cell complexes are continuous maps that preserve cell closures, see
Definition 1.3.18.

Definition C.2.4 (Framed combinatorial maps). A framed combinatorial map F :
|X,F| → |Y,G| is a framed map which, after framed re-cellulation and framed cellular
PL homeomorphism of its domain and codomain, is the framed realization of a framed
cellular map.

We remark that it may also be useful to think of framed realizations as defined up to ‘cellular
framed homotopy’, i.e. up to homotopy through cell-preserving framed homemorphisms
(instead of framed PL homeomorphism). Indeed, locally, i.e. in standard framed Rn,
framed homeomorphism and framed PL homeomorphism are equivalent as both Autfr(Rn)
and Autfr

PL(Rn) are contractible.37 Thus, generalizing the definition given above, one may
want to call a framed map ‘combinatorial’ if, after re-cellulation, it is framed cellular
homeomorphic to the framed realization of a framed cellular map.

Definition C.2.5 (Framed combinatorial spaces). Given a framed space (Z,A), a framed
cellulation is a framed homeomorphism α : (Z,A) ∼= |X,F| for (X,F) a framed regular
cell complex. Two such cellulation α and β of (Z,A) are said to be ‘framed equivalent’
if there is a framed combinatorial homeomorphism ρ such that ρ ◦ α = β. A ‘framed
combinatorial structure’ on (Z,A) is a framed equivalence class of framed cellulations, and,
equipped with such a structure, (Z,A) becomes a framed combinatorial space.

There are many conceivable variations of the above definitions. Most radically, noting
that framed regular cell complexes can be regarded as specific presheaves on the category
of framed regular cells, one could replace framed regular cell complexes themselves by
more general kinds of presheaves. The topological models that realize such presheafs yield
notions of framed combinatorial spaces that, in turn, may contain more general singularities
in the framing structure than those considered here. While these generalizations are
natural extensions to the basic theory of framed combinatorial structures, we shall forego
a further discussion—our goal here is to merely give a first sketch of how one could
interpret framed combinatorial structures in topological models. In fact, we shall only
make minimal use of such models going ahead: all subsequent chapters will focus on the
‘local’ case of framed combinatorial spaces (i.e. those embedded in Rn) as these turn out
to have a rich theory theory already!

37We will see an extension of this observation later in Chapter 5, in the form of the proof of the ‘flat
framed stratified Hauptvermutung’.
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