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Abstract

In this expository note, we give a brief overview of some recently developed ideas
in the study of framed combinatorial spaces, and its applications in the definition of
manifold diagrams, tame tangles, and the combinatorial study of higher Morse theory.
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Introduction

This note is an attempt to give a brief introduction to framed combinatorial topology [DD21]
which is a recently started program centered around the study of framed (and thereby
directed) spaces. The program roots in the observation that certain combinatorial-topological
questions have good answers for framed spaces while for unframed spaces they generally
do not (see, for instance, Remark 2.2.4 and Theorem 2.4.2). These features of framed
combinatorial space turn out to be especially useful when trying to relate the topology of
framed spaces to the combinatorics of higher category theory, leading, for instance, to the
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notion of manifold diagrams [DD22] as a framed topological model of higher-categorical
composition (see Section 4.1).

The focus of this note will lie on motivating and sketching some of the main ideas in
framed combinatorial topology, and less on a formal presentation of the technical details.
The note is structured as follows.

1. Section 1 distils and amalgamates some necessary “foundational ingredients” in the
theory of stratified spaces.

2. Section 2 motivates and recalls basic framed combinatorial-topological notions, includ-
ing framed spaces, framed regular cells and their complexes. The section also begins
the study of local (’flat’) framed spaces and the interesting ways in which these can
be cellulated.

3. Section 3 discusses the theory of meshes and trusses, which are two sides (namely,
the topological and the categorical side) of the same idea: the description of flat
framed cellulations by an inductive mechanism (but in a uniform larger theory that
also encompasses dual cells).

4. Section 4 provides a first look at manifold diagrams (which generalize ordinary string
diagrams to higher dimensions), cell diagrams dual to manifold diagrams, and tame
tangles. In the context of the latter notion, we briefly discuss combinatorial ap-
proach to higher Morse theory and singularity theory, recalling conjectures about the
combinatorialization of smooth structure.

5. In the final Section 5 we sketch two directions for future research, towards ‘constructive’
foundations of manifold and singularity theory and geometric higher category theory.

1 A recollection of stratified spaces

The term stratified space usually refers to a topological space equipped with the structure of
a stratification, i.e. a decomposition of the space into subspaces called strata. Often strata
are ‘nice’ in some sense (for instance, one may require strata to be manifolds, while the
stratified space itself need to be a manifold), and the way that strata are linked together is
controlled by additional conditions.

1.1 Stratifications and stratified maps

There are many different definitions of stratifications on spaces: poset-stratifications, strati-
fications from filtrations, Whitney stratifications, Thom-Mather stratifications, stratifolds,
homotopical stratifications, conically smooth stratifications, etc. Most of these definitions
share the same “fundamental” features, which may be captured by the following concepts.

Definition 1.1.1 (Prestratifications). A prestrafication f on a topological space X is
a decomposition of X into disjoint connected subspaces called ‘strata’ (in the following,
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strata are denoted by lower-case letters such as s). The exit path preorder Exit(f) of the
stratification f is the preorder of strata s with generating arrows s→ r whenever the closure
of r intersects s non-trivally. The opposite poset Entr(f)op is also called the entrance path
poset and denoted by Entr(f).

Definition 1.1.2 (Stratification). A stratification f is a prestratification whose exit path
preorder is a poset (in which case one can speak of its ‘exit path poset’).

Given a stratification f on X, there is a map X → Exit(f) mapping points x ∈ s in a
stratum s to the stratum s itself, which is sometimes called the characteristic map of f ,
and (abusing notation) denoted by f : X → Exit(f). The map need not be continuous in
general (unless the stratification is locally finite, see Remark 1.1.6); it is, however, finitely
continuous, i.e. continuous on the preimage of any finite set.

Example 1.1.3 (Poset-stratifications). Let X be a space, P a poset, and f : X → P a con-
tinuous map1: this is usually called a ‘P -stratification of X’. This determines a stratification
c(f) of X whose strata are the connected components of the preimages f−1(x), x ∈ P . The
map f factors uniquely through the characteristic map c(f) : X → Exit(c(f)) by a poset
map Exit(c(f)) → P , and this map is conservative2. (Such (characteristic,conservative)-
factorizations are essentially unique.)

The example shows that any poset-stratification determines a unique stratification in the
sense defined above. The converse does not hold; many poset-stratifications may determine
the same stratification.

Example 1.1.4 (Filtered spaces). Any filtered space X0 ⊂ X1 ⊂ ... ⊂ Xn in which Xi is a
closed subspace of Xi+1 defines a continuous map X → [n] = (0→ 1→ ...→ n) mapping
points in Xi+1 \Xi to i ∈ [n], and thus a stratification by the previous example. For instance,
the filtration by skeleta of any cell complex defines a stratification ‘by cells of the complex’
in this way.

Example 1.1.5 (Trivial stratification). Every topological space U is trivially stratified
by its connected components, and we denote this stratification by U itself. Note that
π0U ∼= Exit(U).

Remark 1.1.6 (Continuity of characteristic map). Let (X, f) be a stratified space. One says
that the stratification f is ‘locally finite’ if each stratum s of f has an open neighborhood
in X which only contains finitely many strata. (If (X, f) satisfies the frontier condition,

1Here, we work with the ‘upward-closure’ topology on posets P , which has subbasic opens that are ‘upper
closures’, i.e. full subposets of the form P≥x = {y ∈ P | y ≥ x}. Note, when working with entrance path
posets, the dual ‘downward-closure’ topology (generated by the ‘lower closures’ P≤x) is more convenient.

2Recall, a conservative functor of categories is a functor that reflects isomorphisms; for functors between
posets, it’s simply a map of posets whose preimages are discrete!
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see next remark, then, equivalently, (X, f) is locally finite iff each point x ∈ X has an
open neighborhood intersecting only finitely many strata.) If f is locally finite, then the
characteristic map f : X → Exit(f) is a continuous map.

Remark 1.1.7 (Openness of characteristic map). Let (X, f) be a stratified space. One says
the stratification f satisfies the ‘frontier condition’ (or, as an adjective, that it is ‘frontier-
constructible’) if, for any two strata s, r, whenever the closure r intersects s non-trivially then
s ⊂ r. The stratification f is frontier-constructible iff the characteristic map f : X → Exit(f)
is an open map.

Local finiteness and frontier-constructibility are fundamental properties of stratified spaces
and it is often very reasonable to assume them.

Definition 1.1.8 (Stratified maps). A map F : (X, f) → (Y, g) of stratified spaces is a
continuous map F : X → Y which factors through the characteristic maps f and g by a
(necessarily unique!) map Exit(F ) : Exit(f)→ Exit(g).

Stratified spaces and their maps form the category Strat of stratification. The construction
of exit path posets yields a functor Exit : Strat→ Pos (aside: under mild conditions, this
can be made an (∞, 2)-functor). The functor has a right inverse, as follows.

Remark 1.1.9 (Classifying stratifications of posets). Every poset P has a classifying
stratification ||P || (also called the ‘stratified realization’ of P ), whose underlying space is
the classifying space |P | of P (i.e. the realization of the nerve of P ), and whose characteristic
map is the map |P | → P that maps points in |P≤x| \ |P<x| to x. Moreover, given a poset
map F : P → Q, the realization of its nerve yields a stratified map ||F || : ||P || → ||Q||. We
thus obtain a functor || − || : Pos→ Strat, and this is a right inverse to Exit.

It makes sense to further terminologically distinguish maps of stratifications as follows.

Definition 1.1.10 (Types of stratified maps). Let F : (X, f)→ (Y, g) be a stratified map.
The stratified map F is called:

• a substratification, if F : X → Y is a subspace and Exit(F ) is conservative; if, more-
over, X = g−1 ◦ Exit(F ) ◦ f(X) then one says the substratification is constructible;

• a coarsening, if F : X → Y is a homeomorphism (to emphasize the opposite process,
one also calls F a refinement);

• a stratified homeomorphism, if F : X → Y is a homeomorphism of spaces and
Exit(F ) is an isomorphism of posets.

The next definition generalizes the usual topological definition of fiber bundles. We first
need to introduce products of stratifications.

Remark 1.1.11 (Products). Given stratification (X, f) and (Y, g) their product is the
stratification of X × Y with characteristic map f × g.
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Definition 1.1.12 (Stratified fiber bundles). A stratified fiber bundle (or simply a
‘stratified bundle’) is a stratified map p : (X, f)→ (Y, g) such that for each stratum s of the
‘base’ stratification (Y, g), each point x in s has a neighborhood V (inside the stratum s)
over which the map p trivializes to a stratified ‘projection’ map V × (Z, h)→ V (here, V is
trivially stratified).

Remark 1.1.13 (Idea of constructibility). One often imposes additional ‘constructibility’
conditions on stratified bundles in order to control how fibers behave when transitioning
between strata in the base. Roughly speaking, the term ‘constructible’ indicates that
something can be reconstructed, up to equivalence, only from categorical data associated
to the ‘fundamental categories’ of stratifications—we will turn to the construction such
fundamental categories in the next two sections.

1.2 Regularity

For many purposes (for instance, the construction of fundamental categories) the basic
definition of stratified space outlined above is too wildly behaved. One therefore imposes
regularity condition to tame this behaviour. With a view towards defining higher fundamental
categories of stratifications, we mention “conicality" and “regularity".

1.2.1 Conical stratification

Definition 1.2.1 (Cones). The open cone (cone(X), cone(f)) of a stratification (X, f) is
a stratification that stratifies the topological open cone cone(X) = X × [0, 1)/X × {0} by
the product (X, f)× (0, 1) away from the cone point {0} (here, the open interval (0, 1) is
trivially stratified), and by setting the cone point {0} to be its own stratum. To define the
closed cone (cone(X), cone(f)) replace ‘1)’ by ‘1]’.

Definition 1.2.2 (Conical stratification, [Lur12, App. A]). A conical stratification (X, f) is
a stratification in which each point x ∈ X has a neighborhood (i.e. an open substratification)
that is a stratified product U × (cone(Z), cone(l)) with x ∈ U × {0}.

1.2.2 Regular stratifications

Definition 1.2.3 (Regular stratifications). A stratification (X, f) is regular if it admits a
refinement ‖P‖ → (X, f) by the stratified realization of some poset P .

The condition for a stratification to be regular is equivalent to it being triangulable, i.e.
admitting a refinement by a simplicial complex K (however, the distinction between the two
phrasings of the condition matters when considering minimal refinements, i.e. refinements
with a minimal number of strata). As an aside, note a choice of refinement in particular
endows the underlying space X with a triangulation, and thus a PL structure; a variation
of the definition requires X to have a PL structure to begin with, and the refinement to be
compatible with that structure.)
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1.3 Fundamental ∞-posets

Let us make a heuristic observation about the place stratifications in the bigger landscape
of higher category theory: stratifications are spatial models of ‘∞-posets’, and conversely
every stratification should have a fundamental ∞-poset. This is illustrated in Fig. 1.1, and
can be further explained as follows.

sets ≡ (0, 0)-categories ∞-sets ' spaces sets with w.e.

posets ≡ (0, 1)-categories ∞-posets ' stratifications posets with w.e.

categories ≡ (1, 1)-categories ∞-categories categories with w.e.

∞-fication ∞-localization

Figure 1.1: Stratifications in the categorical landscape

Intuitively (and without going into any technically details), an ‘∞-X’ is to be understood
as an (∞,∞)-category which admits a conservative functor to an X, where X can e.g.
stand for ‘set’, ‘poset’, or ‘category’. Yet more generally, X can be an (n, k)-category for
n, k <∞ (note that, if n < k, then for n < m ≤ k it is convention to require that there is
at most one m-arrow between any two (m− 1)-arrows; in particular, posets and preorders
are (0, 1)-categories by this convention). A ‘set with weak equivalences’ means a poset with
weak equivalences in which each arrow is a weak equivalence. The left column is related
to the middle column by an ‘∞-zation functor’ (which simply interprets 1-structures as
∞-structures), and the middle and right columns are related by an ‘∞-localization functor’
(which should be a weak equivalence).

Special cases of the translation between columns can be sketched as follows:
• Given a conical stratification (X, f), then [Lur12, App. A] one finds a construction
of the entrance path ∞-poset Entr(f) as a quasicategory : the k-simplices of the
quasicategory Entr(f) are precisely stratified maps ||[k]|| → (X, f), where [k] = (0→
1→ ...→ k). This translates “stratified spaces” into “∞-posets” in the above table.

• Given a regular stratification (X, f) and a refinement F : ||P || → (X, f), one can
construct a presented entrance path ∞-poset PEntr(f) as a category with weak
equivalences, whose presenting category is the poset P and whose weak equivalence are
Exit(F )−1(id). This translates “stratified spaces” into “posets with weak equivalences”
in the above table.

Remark 1.3.1. One reason for the given construction of PEntr(f) being reasonable is the
observation that, firstly, any stratified realization ||P || of a poset is conical (if the poset is
locally finite at least), and that, secondly, Entr||P || is a 0-truncated ∞-category.
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2 First definitions in framed combinatorial topology

Framed combinatorial topology studies framed spaces; intuitively, the reason for why framed
spaces are an interesting starting point for a theory of higher homotopical structures is
that they are in some ways foundationally much simpler than their classical (unframed)
counterparts—a basic observation that relates to this claim is that the space of topological
automorphisms of standard euclidean space Rn is complicated, but the space of framed
topological automorphisms of standard framed Rn is (in homotopical terms) maximally
simple: it is contractible. This theme of ‘foundational simplicity’ is reflected in many parts of
the theory of framed combinatorial spaces, and allows one to overcome several fundamental
obstructions to classification and computability questions that one usually encounters the
classical study of combinatorial-topological phenomena.

2.1 Framed spaces

The definition of framed spaces in framed combinatorial topology is based on a non-standard
notion of framings: the notion is motivated by the following observation about ‘metric-free
orthonormal’ frames.

Remark 2.1.1 (Motivation: frames from projections). Let V be an n-dimensional vector
space with an inner product g. The following structures on V are equivalent.

1. An orthonormal frame of V , i.e. an ordered sequence of vectors vi, 1 ≤ i ≤ n, such
that vi is normalized and orthogonal to all vj with j 6= i.

2. A sequence of projections Vi → Vi−1, 1 ≤ i ≤ n, where Vi is an oriented i-dimensional
vector space (and Vn = V ).

The two structures are related by setting vi to be the unit vector spanning ker(Vi → Vi−1)
such that Vi−1 ⊕ vi recovers the orientation of Vi (note that all Vi canonically embed in V
as the orthogonal complement of the kernel of the composite projection V → Vi).

In the absence of inner products, one cannot speak of orthonormal frames any longer.
However, sequences of projections can still be defined, and may be regarded as playing the
role of ‘metric-free orthonormal’ frames. (A vaguely analogous line of thinking is that a Morse
function M → R provides useful ‘direction’ information on M , e.g. for the construction of
handlebodies, that is ultimately independent from any chosen metric on M ; see Section 4.4
for a related discussion.) Moreover, this approach offers room for generalization by varying
the length of the projection sequence and the vector space dimensions (leading to notions
such as “partial” or “embedded” frames, see [DD21, App. A] for details).

Example 2.1.2 (Standard orthonormal frame). The standard orthonormal frame of n-
dimensional euclidean space Rn consists for the ordered sequence of vectors e1 = (1, 0, ..., 0),
e2 = (0, 1, 0, ..., 0), ..., en = (0, ..., 0, 1). By the previous remark, this orthonormal frame is
equivalently described by the sequence of projections πi : Ri = Ri−1 × R→ Ri−1 (each Ri
being endowed with standard orientation).
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The idea above is “local”, but can be extended to a “global” one. First note, when forgetting
the base point of an inner product space (i.e. thinking of it as an affine space), then a
sequence of projections in the previous sense endows each point of the affine space with an
orthonormal frame. One may now define framings of spaces globally by modelling them
on affine, standard framed Rn (or rather, on compact contractible patches in Rn, which
interact nicely with projections).

Definition 2.1.3 (Framed patches). Inductively in n ∈ N, an n-framed patch U ⊂ Rn is
a non-empty subspace of Rn with the property that its projection πn(U) is an (n−1)-framed
patch, and such that πn : U → πn(U) has fibers of the form [γ−(u), γ+(u)] for two continuous
sections γ± : πn(U)→ πn(U)× R.

Note that n-framed patches are indeed contractible spaces. Maps of framed patches are
‘framed maps’ in that they interact nicely with the standard projections of euclidean space
as spelled out in the next definition. (Note, in the following definition includes the case of
‘partial’ maps, i.e. maps defined only on a subspace of their domain; we generally assume all
such subspaces to be closed.)

Definition 2.1.4 (Framed and locally framed maps). Given two n-framed patches U and
V , an framed map F : U → V is a (potentially partial) continuous map that descends
along πn to a map πn(U) → πn(V ) of (n − 1)-framed patches. A locally framed map
F : U → V is a (potentially partial) continuous map, such that each x ∈ U has a compact
neighborhood K on which F is framed.

Example 2.1.5 (The closed cube). The standard example of an n-framed patch is the
closed n-cube In = [−1, 1]n ⊂ Rn. In general, n-framed patches need not be ‘n-dimensional’:
for instance, the 0th slice {0} × [−1, 1]n−1 of the n-cube is itself an n-framed patch.

Globally, framed spaces may now be introduced as follows.

Definition 2.1.6 (Framed spaces). Let X be a topological space. Fix n ∈ N.
1. An n-framed chart (U, γ) in X is an embedding γ : U ↪→ Rn of a subspace U ⊂ X

whose image m(γ) is an n-framed patch.
2. Two n-framed charts (U, γ), (V, ρ) in X are compatible if ρ ◦ γ−1 is a locally framed

(partial) map U → V .
An n-framed space is a space X together with an ‘atlas’ A of compatible n-framed charts
{(Ui, γi)} such that {Ui} are a locally finite cover of X.

Note that asking for ‘locally finite’ covers is convenient as it mirrors the situation of locally
finite cell complexes. The definition has several variations and generalizations3: really the
above should be considered a first approximation to how one may define framed spaces!
This remark extends to the next definition as well.

3Most drastically, one can allow the framing to have singularities (where ‘integral curves collide’), as
long as these can resolved by an appropriate mechanism of blown-ups.
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Definition 2.1.7 (Maps of framed spaces). Given spaces with n-framing structure (X,A)→
(Y,B), a map F : X → Y is said to be a framed map if for any charts (U, γ) ∈ A and
(V, ρ) ∈ B, F yields a locally framed (partial) map ρ ◦ F ◦ γ−1 : U → V .

Example 2.1.8 (Open standard framed space). Standard Rn has a standard framing with
charts [−l, l]n ⊂ Rn, l ∈ N. Similarly, the open n-cube In = (−1, 1)n has a standard framing
with charts [−1+ 1

l , 1−
1
l ]
n ⊂ In ⊂ Rn. Framed maps Rn → Rn (resp. In → In) are precisely

maps that factor through the standard projections Rn = Ri × Rn−i → Ri. Note that Rn
and In are framed homeomorphic.

Example 2.1.9 (Circle with framing poles). Take two intervals I1, I2 ∼= [0, 1] and glue them
together at their endpoints to get the space S1 (homeomorphic to the circle). Denote the
inclusion [0, 1] ⊂ R by φ. Then S1 has a 1-framing structure A given by the charts (I1, φ)
and (I2, φ). (How to think about this: think of R as having its standard framing, i.e. frames
at each point pointing in positive direction; via φ these restrict to [0, 1]; as a result, one
may think of (S1,A) as a version of the vector flow of the standard Morse function S1 → R
with two critical points.)

2.2 Framed combinatorial spaces

Framed spaces as defined above may still, to some extent, contain ‘wild’ behaviour. To
‘tame’ this behaviour, one can control it by framed combinatorial structures (analogous
to passing from topological spaces to piecewise linear spaces). The appropriate classical
combinatorial-topological analogs for this purpose turn out to be regular cell complexes: a
regular cell complex is a cell complex in which the closure of each open cell is a closed ball
(also referred to as a ‘face’ of the complex). Of particular importance for the definition of
framings on regular cells is the following generalization of the notion of simplicial degeneracy
maps.

Definition 2.2.1 (Cell projections). Given regular cellsX and Y of dimension k respectively
k− 1, a cell projection X � Y is a map which on the open interior Y ◦ of Y restricts to a
closed interval bundle Y ◦ × I→ Y ◦ and which, inductively in cell dimension k, restricts on
each proper face X ′ ↪→ X of X either to a cell homeomorphism X ′ ∼= Y ′ or to another cell
projection X ′ � Y ′ (where Y ′ ↪→ Y is a face of Y ).

Example 2.2.2 (Simplicial projections). Cell projections of cellular simplices are precisely
the (geometric realizations of) degeneracy maps.

Definition 2.2.3 (Framed regular cells). A framed regular cell X is a regular cell
X ≡ Xn together with a sequence of maps pi : Xi → Xi−1 such that pi is either a cell
homeomorphism or a cell projection together with a choice an orientation of the R-fiber in
each such cell projection. (These choices of orientations play a role exactly analogous to the
orientation choices in Remark 2.1.1).
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The underlying spaces of an n-framed regular cell has a natural n-framed structure. This
structure can be represented by an atlas with a single chart: namely, by any embedding of the
cell into Rn with the property that, when post-composed with the projections π>i : Rn → Ri,
the embedding factors through the cell maps pi+1 ◦ ... ◦ pn : X → Xi by an embedding
Xi ↪→ Ri (with the condition that, if Xi → Xi−1 happens to be a cell projection, then the
chosen orientations of fibers of this projection are preserved by the resulting embedding into
standard oriented R-fibers of the projection πi : Ri → Ri−1).
Remark 2.2.4 (Framed regular cells are combinatorial). Classical regular cells are really
‘semi-combinatorial’ structures, as their definition must refer to the topological sphere (or
the topological ball). In fact, classical regular cells are not classifiable in any constructive
way (while for any n, k ∈ N, there are only finitely many regular n-cells with k faces, there
can be no algorithm that lists all such cells for general n, k!). In contrast, framed regular
cells are constructively classifiable in combinatorial terms. Their classification is based on
the combinatorial theory of trusses (see Section 3).

Framed regular cells organize into a category, generated by non-degenerate framed cell
projections and face inclusions of framed regular cells (here, ‘framed’ is to be understood as
in Definition 2.1.7, and ‘non-degenerate’ means that whenever pi is a cell homeomorphism
then its image im(pi) too is a cell homeomorphism). Via the previous remark, this category
can be described in purely combinatorial terms (see Definition 3.3.5). Framed combinatorial
spaces are, in essence, presheafs on this category, though one may want to impose additional
properties, such as ‘regularity’ (meaning non-degenerate cells include by monomorphisms,
see e.g. [DD21, Sec. 2.3.3]) or ‘sheafiness’ (meaning presheafs preserve certain pullbacks).
Without going into details of these properties, let us record the following ‘polymorphic’
phrasing for their definition.

Definition 2.2.5 (Framed combinatorial spaces). A framed combinatorial space is a
presheaf, potentially ‘with properties’, on the category of framed regular cells. A combinato-
rial map of two framed combinatorial spaces is a presheaf map.

One concrete instantiation of this polymorphic definition is obtained by imposing regularity:
the notion of ‘framed regular combinatorial spaces’, also called ‘framed regular cell complexes’,
is simply that of a regular cell complex in which all cells are framed, and these framings are
mutually compatible.

Depending on details in the definitions, framed combinatorial spaces should be, in
particular, framed spaces. The next observation is an instance of this claim for the case
of framed regular combinatorial spaces. Recall from Example 1.1.4 that cell complexes
are stratifications, and that stratifications can be locally finite (see Remark 1.1.6): taken
together, a locally finite cell regular complex is a regular cell complex in which each cell is
the face of finitely many other cells.
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Observation 2.2.6 (Framed regular combinatorial spaces are framed spaces). Every locally
finite framed regular cell complex is in particular a framed space: a locally finite compact
cover by charts can be obtained from the closed cells of the framed combinatorial space.

Without imposing regularity, the types of ‘framing singularities’ that may appear in framed
combinatorial spaces are more general than those described by Definition 2.1.6—however,
one may weaken the definition (e.g. by weakening the condition of covers being ‘locally finite
compact’) to accommodate these more general framing singularities.

2.3 Stratifying patches

Similarly, a ‘flat n-framed regular cell’ complex is an n-framed regular cell complex that
framed embeds into Rn as an n-framed patch. One may consider this as a ‘cellulation’ of
the image n-framed patch. Such cellutations play a central role deserving of their own
terminology as follows.

Terminology 2.3.1 (Closed meshes). A closed n-mesh M is a n-framed regular cell complex
that admits a framed embedding into Rn whose image is an n-framed patch.

Note, if a n-framed regular cell complex is a closed n-mesh, then, in fact, any framed
embedding of it into Rn will be an n-framed patch, and the space of all such embeddings
is contractible—so, homotopically, being a closed n-mesh is a property even if you tried
to think of embeddings as a structure. For convenience, we usually fix a choice of framed
embedding for any given mesh, and refer to the image of that embedding as the ‘support’ of
the mesh in Rn.

The adjective ‘closed’ in the previous definition indicates that there are further types
of meshes. Indeed, closed meshes have a dual version (in the sense of Poincaré duality),
referred to as ‘open’ meshes. Closed and open meshes can be defined uniformly as part of a
yet more general theory of meshes, and we will do so in Section 3. To avoid this lengthier,
more general approach for the moment, one can instead define open meshes in the following
way, which emphasizes the duality of open and closed meshes.

Definition 2.3.2 (Open meshes). An open n-mesh M is a stratification of the open
n-cube In ↪→ Rn, obtained by first taking a closed n-mesh supported on the closed n-cube
In ↪→ Rn and then removing all cells lying in the boundary ∂In of the cube, subject to
the additional condition that there must exist dual closed mesh M †, together with an
identification of entrance path posets † : Exit(M †) ∼= Exit(M)op, and a ‘dualizing’ framed
embedding M † ↪→M such that images of strata s of M † intersect their dual strata s† in M
in a single point.

Meshes, whether open or closed, should be thought of as providing a sort of triangulation
(or rather, a ‘cellulation’) for the certain types of stratifications as follows.

11



Definition 2.3.3 (Tame stratifications). An (open resp. closed) tame stratification is a
stratification of a flat framed space U ↪→ Rn that has a framed refinement by an (open resp.
closed) n-mesh M—that is, there is a stratified refinement M → U whose underlying map
is a framed map.

(Note, in particular, that tame stratifications have support on an n-framed patch.)

Remark 2.3.4 (Tame maps). One similarly defines “tame maps” of tame stratifications to
be framed stratified maps which, after passing to framed refinements of their domain and
codomain by meshes, descend to framed stratified maps of these meshes.

The reason why framed regular cells (as opposed to, say, framed simplices) are a natural
choice of combinatorial structure for the purposes of framed combinatorial topology, and
why they are in particular the “right” choice for defining meshes, roots in the following
theorem.

Theorem 2.3.5 (Canonical meshes). Every tame stratification is refined by an (up to framed
stratified homeomorphism) unique coarsest mesh, which is coarser than all other refining
meshes.

Proof. Proven in detail in [DD21, Ch. 5], and recalled in some detail in [DD22, Sec. 1].

Since meshes are framed regular cell complexes, and since framed regular cells are combina-
torial (see Remark 2.2.4), this theorem is really the bedrock connecting the topology and
combinatorics of tame stratifications. It thus takes a central role in framed combinatorial
constructions (e.g. in the theory of manifold diagrams in [DD22]).

A central source of tame stratification are piecewise linear (PL) stratifications.

Terminology 2.3.6 (PL stratification). A ‘PL stratification’ (V, f) of a subspace V ↪→ Rn is
a stratification that can be “chopped up” into linear pieces; formally, take this to mean that
there is a closed subspace Ṽ ↪→ Rn with V ⊂ Ṽ , and a simplicial complex (Ṽ , g) supported
on Ṽ (with each simplex linearly embedded in Rn), such that each simplex s of g is either
fully contained in a stratum of f or lies in the complement Ṽ \ V .

Example 2.3.7 (PL stratifications are tame). All piecewise linear (PL) stratifications of
the closed cube In, or any other n-framed patch, in Rn are tame (a proof can be found in
[DD21, Ch. 5]).

Example 2.3.8 (Other familiar examples). Further examples of classes of tame stratifica-
tions with (maybe) familiar names are the following.

• String diagrams, in the sense of Joyal-Street, are tame stratifications.
• Manifold diagrams are tame stratifications: they generalize string diagrams to higher

dimension, and we will meet them in Section 4.1.
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• Tame tangles are tame stratifications: in essense, tame tangles are tangles which admit
a finite stratification by the ‘types of their critical values’. We will discuss them in
more detail in Section 4.3.

Non-Example 2.3.9 (‘Wild’ stratifications are not tame). Consider the E8 manifold, and
embed it in the closed n-cube E8 ↪→ In (for sufficiently large n). This defines a stratification
of the closed cube, whose strata are the image of the embedding and its complement. No
such stratification can be tame, as the E8 manifold is not triangulable, but every tame
stratification is triangulable—in fact, all tame stratification have canonical PL structures,
as we will learn in the next section.

Remark 2.3.10 (Framed homeomorphism preserves tameness). Given two stratifications
(U1, f1), (U2, f2) of flat framed spaces Ui ↪→ Rn, if (U1, f1) is tame and (U2, f1) is framed
stratified homeomorphic to (U1, f1), then (U2, f2) is tame.

2.4 Framed TOP vs PL structures on stratified patches

In the local case (i.e. the case of flat framings), one finds that the “framed topology” and
“framed PL topology” of tame stratifications are closely related.

Definition 2.4.1 (Framed PL structures). Given a stratification (U, f) of a framed subspace
U ↪→ Rn, a ‘framed triangulation’ of (U, f) is a framed stratified homeomorphism α :
(U, f) ∼= (V, g) to a PL stratification (V, g). Two framed triangulations α : (U, f) ∼= (V, g),
β : (U, f) ∼= (W,h) are ‘framed equivalent’ if there is a framed stratified PL homeomorphism
ρ : (V, g) ∼= (W,h) such that ρ ◦ α = β. A framed PL structure is a framed equivalence
class of framed triangulations.

One easily shows that every tame stratification has some framed PL structure. Moreover,
we have the following.

Theorem 2.4.2 (Flat framed stratified Hauptvermutung). If two tame PL stratifications
are framed homeomorphic as stratifications then they are framed PL homeomorphic as
stratifications.

Proof. Proven in detail in [DD21, Ch. 5], and recalled in some detail in [DD22, Sec. 2].

Remark 2.4.3 (Failure of non-framed stratified Hauptvermutung). In contrast, non-framed
topological stratifications and PL stratifications (even if the stratifications are nice, say,
a torus embedded in a closed n-cube) aren’t compatible in this way: given a topological
stratification, one may find several inequivalent PL structures for it or none at all.

Corollary 2.4.4 (Uniqueness of framed PL structures). Every tame stratification has a
unique framed PL structure.
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When working with stratifications whose strata are smooth manifolds, one may further ask
about the relation of smooth structures and framed topological structures: an interesting
relation with smooth structures can be conjectured, and will be recalled later in Section 4.4

3 The theory of meshes and trusses

In the last section we touched upon the duality of closed and open meshes; since individual
framed regular cells are in particular closed meshes, they they too have a ‘dual version’, to
which one may refer to as ‘cocells’. There’s a unifying theory of such cells and cocells, and
the objects central to this story are called meshes and trusses. (This notion of ‘meshes’ will,
in particular, generalize the ‘closed’ and ‘open’ case that we have met already in the last
section.)

3.1 Meshes

Meshes are stratified topological structures that arise as models for ‘local (co)cell structures’
in framed combinatorial topology. Their definition, modelled on our earlier idea of defining
framings by towers of projections (see Remark 2.1.1), is inductive: one first defines 1-meshes,
then 1-mesh bundles, and then n-meshes as towers of 1-mesh bundles.

1-Meshes are rather ‘simple’ framed stratified manifolds as follows.

Definition 3.1.1 (1-Meshes). A 1-mesh M is a framed contractible k-manifold, k ≤ 1,
together with a stratification on M whose strata are open l-disks, l ≤ 1.

Note that we keep the stratification of M tacit, without introducing another letter for it (it
will usually be clear from context when we want M to be considered as a stratification).

Let us next define 1-mesh bundles. Given a stratified bundle p : E → B (see Defini-
tion 1.1.12) whose stratified fibers have manifold strata, and given a stratum s ∈ E, let
us write fibdim(s) for the ‘fiber dimension’ of s, which is the dimension of the manifold to
which the stratum s restricts in fibers Fx = p−1(x) over points x ∈ p(s) (note the dimension
is independent of the choice x ∈ p(s)).

Definition 3.1.2 (1-Mesh bundles). A 1-mesh bundle p : M → B is a stratified bundle
together with a choice of 1-mesh structure M b for each stratified fiber p−1(b), b ∈ B, and
with the following compatibility condition between fibers.

• There exists a bundle embedding γ : M ↪→ B × R into the trivial bundle B × R→ B,
which on each 1-mesh fiberM b = p−1(b) restricts to a framed embedding γb : M b ↪→ R
with bounded image [γb−, γ

b
+] ⊂ R, such that the mapping b 7→ γ±(b) := (b, γb±) is a

continuous map B → B × R.
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• For a stratum s in M with fibdim(s) = 0, any arrow p(s)→ u in the entrance path
poset Entr(B) has a unique lift s → t in the poset Entr(M) along the poset map
Entr(p), and that lift is such that fibdim(t) = 0.4

There are further variations of the definition: importantly, the second condition is a ‘0-
categorical constructibility’ condition, which guarantees that mesh bundles can be classified
by functors on the entrance path poset of their (sufficiently nice) base stratification. The
condition can be categorified, such that bundles are classified by functors on the entrance
path ∞-category of the base stratification (see [DD21] for details). The first condition,
which is sort of a ‘trivializability’ condition, also has variations.

Definition 3.1.3 (n-Meshes). An n-mesh M is a tower of 1-mesh bundles

Mn →Mn−1 → ...→M1 →M0 = ∗.

We may sometimes identify M only with its top space M ≡Mn. Note, Mn is naturally a
framed space: we may pick any locally finite cover of charts (U ⊂Mn, U ↪→ Rn) that are
embeddings which factor through the maps Rn → Ri and Mn → Mi by a map Mi ↪→ Ri
(with the obvious condition that the framing of 1-mesh fibers of the projection Mi →Mi−1
is preserved by the resulting embedding into standard framed R-fibers of πi : Ri → Ri−1).

The mesh is said to be ‘closed’ if all fibers of the bundlesMi →Mi−1 are compact spaces,
and ‘open’ if all fibers the bundles Mi → Mi−1 are open intervals. These special cases of
the definition recover (up to an appropriate notion framed equivalence) the definitions of
closed and open meshes given earlier in ??.

n-Meshes too may be easily considered in bundles, as follows.

Definition 3.1.4 (n-Mesh bundles). An n-mesh bundle p over a ‘base’ stratification B
is a tower of 1-mesh bundles pi : Mi →Mi−1, 1 ≤ i ≤ n, ending in M0 = B.

Just as stratifications have entrance path posets (or ‘∞-posets’), n-meshes have fundamental-
categorical structures associated to them as well; these structures are called n-trusses and
we will meet them in the next section. Getting ahead of ourselves slightly, let us remark
that n-truss bundles are classified by a category Tn, and one can show (by establishing an
equivalence between n-trusses and n-meshes) that n-mesh bundles are classified by functors
on entrance path poset of their base into that category! In this sense, n-mesh bundles are
‘constructible’ stratified bundles (see Remark 1.1.13).

3.2 Trusses

Trusses are combinatorial structures that arise in framed combinatorial topology, where
they yield a combinatorial description of framed regular cells and cocells. The definition

4One of the reasons that both [DD21] and [DD22] work with entrance path posets rather than exit path
posets is precisely that this condition is a bit more natural to visualize in terms of entrance paths!
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is, analogous to that of meshes, inductive. One starts with the definition of 1-dimensional
trusses, then studies their bundles, and then defines n-dimensional trusses as towers of
bundles of 1-trusses.

Definition 3.2.1 (1-Trusses). A 1-truss is a finite poset (T,≤) together with:
• a full and conservative functor dim : (T,≤)→ [1]op,
• a second order (T,�) which is total, and whose generating arrows t ≺ s satisfy either
t < s or s < t.

Given a truss T , denote by T(i) the dimension-i objects of T .
To define bundles of 1-trusses, the language of ‘Boolean profunctor’ is useful: one may

think of a boolean profunctor H : C −7−→ D as an ordinary profunctor whose values are either
the initial set ∅ ≡ ⊥ or the terminal set ∗ ≡ >. If C and D are discrete, then such a
profunctor H is simply a relation of sets (in this case, we call the profunctor H a ‘function’
if it is a functional relation or a ‘cofunction’ if the dual profunctor Hop is a function). For
any map of posets F : P → Q, the fiber F−1(x→ y) over an arrow x→ y of Q defines a
Boolean profunctor F−1(x) −7−→ F−1(y) by mapping (a, b) to > iff a→ b is an arrow in P .

Definition 3.2.2 (Category of 1-truss bordisms). Given 1-trusses T and S, a 1-truss
bordism R : T −7−→ S is a Boolean profunctor T −7−→ S satisfying the following:
(A) R restricts to a function R(0) : T(0) −7−→ S(0) and a cofunction R(1) : T(1) −7−→ S(1).
(B) Whenever R(t, s) = > = R(t′, s′), then either t ≺ t′ or s′ ≺ s but not both.

Given 1-truss bordisms R : T −7−→ S and Q : S −7−→ U , their composite profunctor R ◦ Q
(composed as ordinary profunctors) is again a 1-truss bordism.5 This gives rise to the
category T1 of 1-trusses and their bordisms. Forgetting truss structures yields the
‘forgetful’ functor T1 → Prof to the category of profunctors.

Definition 3.2.3 (1-Truss bundles). A 1-truss bundle over a poset P is a poset map
q : T → P in which each fiber q−1(x), x ∈ P , is equipped with the structures of a 1-truss
T x, and for each arrow x→ y in P , the fiber q−1(x→ y) is a 1-truss bordisms T x −7−→ T y.

Definition 3.2.4 (n-Trusses). An n-truss T is a tower of 1-truss bundles

Tn
qn−→ Tn−1

qn−1−−−→ ...
q2−→ T1

q1−→ T0 = ∗.

Definition 3.2.5 (n-Truss bundles). An n-truss bundle q over a ‘base’ poset P is a tower
of 1-truss bundles qi : Ti → Ti−1, 1 ≤ i ≤ n, ending in T0 = P .

Definition 3.2.6 (Maps of trusses, cellular and cocellular). A map of trusses F : T → S
consists of poset maps Fi : Ti → Si that commute with the 1-truss bundle maps Ti → Ti−1
and Si → Si−1 in T respectively in S. (A completely analogous definition can be given

5In stark contrast, composites of Boolean profunctors, composed as ordinary profunctors, in general
need not themselves be Boolean.

16



for truss bundles.) We say a truss map is ‘cellular’ if on each 1-truss fiber bundle maps
Ti → Ti−1 and Si → Si−1 it preserves dimension-0 objects; dually, we say it is ‘cocellular’ if
it preserves dimension-1 objects in this way.

n-Truss bundles have a classifying category Tn (as constructed e.g. in FCT-citation), i.e.
bundles over a poset P correspond to functor P → Tn (up to some notion of equivalence).
One particularly concise characterization of this category (pointed out to us by Lukas
Heidemann) is the following.

Remark 3.2.7 (Classifying n-truss bundles). Applying the profunctorial Grothendieck con-
struction to the forgetful functor T1 → Prof , yields an exponentiable fibration ET1 → T1.
By general nonsense, the composition of pullback Cat/T1 → Cat/ET1 and forgetful func-
tor Cat/ET1 → Cat has a right adjoint Cat → Cat/T1 ; this adjoint is of the form
C 7→ (T1(C) → T1) giving rise to a endo-functor T1 : Cat → Cat. Applying this functor
n-times to the terminal category ∗ yields a category Tn ≡ Tn(∗). This is the classifying
category of n-truss bundles.

More explicit constructions of Tn can be found e.g. in [DD22] (and also in [DD21], where it
is denoted TBordn).

Finally, and importantly, trusses can be endowed with ‘labels’ by functorially associating
data in some category (or higher category) to their objects and morphisms.

Definition 3.2.8 (Labelings). For a category C, a C-labeled n-truss (T, f) is an n-truss T
together with a ‘labeling’ functor f : Tn → C.

Aside: one may fully analogously define C-labeled n-truss bundles—such bundles are classified
by the category Tn(C) (obtained by applying the functor T1 n times to the category C).

A particular type of labeling structure is a stratification: a ‘stratified n-truss’ is a labeled
n-truss whose labeling functor is the characteristic map of a stratification on the poset Tn
(where one regards a poset P as a topological space whose subbasic open are downward
closures P≤x = y ≤ x ⊂ P of elements x ∈ P ).

Labeling structures on trusses ‘normalize’. The normalization steps are given by so-called
coarsenings (which are named so, because they correspond to actual stratified coarsenings in
the case when labelings are stratifications after geometric realization of trusses as meshes).

Definition 3.2.9 (Truss coarsenings). Given C-labeled n-trusses (T, f) and (S, g), a truss
coarsening F : (T, f)→ (S, g) is a truss map F : T → S such that:

• F commutes with f and g (this makes F a ‘labeled truss map’),
• Fi maps dimension-1 objects in fibers of Ti → Ti−1 to dimension-1 objects in fibers of
Si → Si−1, and it preserves the dimension of the endpoints of these fibers.

The crucial observation about normalization of labeling structures (which, in some sense, is
the combinatorial counterpart to our earlier Theorem 2.3.5) is now the following.
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Observation 3.2.10 (Normalization). A C-labeled n-truss is normalized if no non-trivial
truss coarsening applies to it. Every C-labeled n-truss has a truss coarsening to an essentially
unique normalized C-labeled n-truss. (This was shown in [Dor18, Thm. 5.2.2.11] in the
special case of ‘open’ n-trusses, also called ‘singular n-cubes’ back then, but the argument
given there can be easily reused for the case of general trusses as well. The statement is
shown by different arguments for stratified trusses in [DD21, Ch. 5]).

3.3 Classification of meshes and framed regular cells

We now briefly remark how trusses are the ‘framed entrance path posets’ of meshes.

Remark 3.3.1 (Relation to meshes). There is a ‘fundamental truss’ functor from the category
of meshes to the category of trusses. The functor takes an n-mesh M given by a tower

Mn →Mn−1 → ...→M1 →M0 = ∗

of 1-mesh bundles, and, by applying Entr, sends it to the tower of entrance path poset maps

Entr(Mn)→ Entr(Mn−1)→ ...→ Entr(M1)→ Entr(M0) = ∗

whose fibers can be canonically endowed with the structure of 1-trusses, thus yielding an
n-truss (this translate the framings of 1-mesh fibers into the total order required in the
definition of 1-trusses). With appopriate care, the fundamental truss functor is, in fact, a
weak equivalence between the ∞-category of meshes and the 1-category of truss.

As we’ve seen, meshes generalize closed meshes, and closed meshes generalize framed
regular cells. The combinatorial analog of these notions are the following.

Definition 3.3.2 (Closed n-trusses). A closed n-truss T is an n-truss in which the
endpoints of fibers of 1-truss bundles qi : Ti → Ti−1 are of dimension 0

Definition 3.3.3 (n-Truss block). An n-truss block T is a closed n-truss such that the
poset Tn has an initial object.

Observation 3.3.4 (Classification of framed regular cells). n-Framed regular cells (up to
framed cell-preserving homeomorphism) are in correspondence with n-truss blocks (up to
structure-preserving isomorphism).

Finally, we can return to an earlier claim, that the category of framed regular cells has a
purely ‘combinatorial’ definition: here it is.

Definition 3.3.5 (Category of framed regular cells). The ‘combinatorial’ category of
framed regular cells is the category of n-truss block and their cellular maps.
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4 Definitions of manifold diagrams and tangles

Manifold diagrams generalize string diagrams [JS91] to higher dimensions. Just as string
diagrams can be regarded the geometric duals (in the sense of Poincare duality) to commu-
tative diagrams in 2-categories, manifold diagrams can be regarded as the geometric duals of
commutative diagrams in n-categories. As such, manifold diagrams are ‘directed diagrams’
(with directions corresponding to those of morphisms in higher categories). Framed combi-
natorial provides a natural framework for describing such diagrams. It similarly provides
a natural framework for describing the closely related notion of tangles [BD95] (or, more
precisely, of ‘tame’ tangles, which are tangles in which there exists a ‘finite stratification by
critical value types’).

4.1 Manifold diagrams

To begin with, a very brief remark on the history of the ‘problem’: the idea of manifold
diagrams in higher category has been around for many decades and was known, for instance,
to Joyal and Street at the time of writing their seminal paper on string diagram calculus.
There have been several approaches of defining manifold diagrams in dimension 3. For a
long time the case of general dimensions n remained unsolved. One reason for this may have
been the difficulty of formalizing ‘deformations by isotopy’ of manifold strata in manifold
diagrams (such isotopies arise only in dimension 3 and above, and get more and more
complex in higher dimensions). With our framed combinatorial-topological tools developed
in the previous sections, a useful definition of manifold diagrams will be quite easy to give!

4.1.1 Formalization on the open cube We first want to have a ‘framed’ analogue of
conical stratifications (see Definition 1.2.2). This will use the following notion of ‘framed’
cones.
Remark 4.1.1 (Framed cones). Denote by In = [−1, 1]n be the open n-cube, by In = [−1, 1]n

be the closed n-cube, and by ∂In = In \ In the n-cube’s boundary. We identify the open cone
cone(∂In) = ∂In × [0, 1)/∂In × {0} with the open cube In by mapping (x, λ) ∈ ∂In × [0, 1)
to λx ∈ In. Similarly we identify the closed cone cone(∂In) with In. Via the standard
embedding of cubes in Rn, these identification endow the cones of the cube’s boundary with
the structure of a flat n-framed spaces.

A stratification (∂In, f) of the n-cube’s boundary is called a ‘cubical link’ (or simply
a ‘link’ in the present context). Given a cubical link (∂Ik, f), the ‘framed open cone’
(Ik, cone(g)) (resp. the ‘framed closed cone’ (Ik, cone(l))) is simply the open (resp. closed)
stratified cone of f using the previous identifications. We say l is a ‘tame link’, if its open
cone (In, cone(l)) is a tame stratification (equivalently, this may use the closed cone).
Next, we may introduce a ‘framed’ conicality condition as follows. The definition uses the
trivial observation that, given a flat n-framed space X ↪→ Rn, its product Ik ×X is also a
flat (n+ k)-framed space (simply by taking the product of Ik ↪→ Rk with X ↪→ Rn).
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Definition 4.1.2 (Framed conical stratifications). A stratification (X, f) of a flat framed
space X ↪→ Rn is framed conical at x ∈ X if there exists a link (∂In−k, lx) and a framed
stratified neighborhood φ : Ik × (In−k, cone(lx)) ↪→ (In, f) such that x ∈ Ik × {0}, where 0
is the cone point of cone(lx). If the link can be chosen tame, and the framed stratified map
φ can be chosen to be a tame map, then we say (X, f) is tame framed conical at x ∈ X.
We say (X, f) is (tame) framed conical if it is (tame) framed conical at all x ∈ X.

The definition of manifold diagrams takes the following simple form.

Definition 4.1.3 (Manifold diagrams). A manifold n-diagram is a tame stratification
(I, f) of the open n-cube that is tame framed conical.

Moreover, in [DD22, Sec. 2.1], it is claimed that this definition is equivalent to defining
manifold diagrams as tame stratifications that are framed conical (thus, omitting the
requirement of links being tame themselves!).

The almost immediate pay-off of working in the setting of framed combinatorial topology
is that we can translate a purely topological phrasing of the definition (which, indeed,
uses only tameness, i.e. refinability by meshes and therefore certain towers of constructible
stratified bundles, and a framed conicality condition) and obtain a constructive combinatorial
counterpart (here, ‘constructive’, as before, in particular means ‘algorithmically tractable’).
We only record the existence of such a counterpart briefly in the next remark and refer to
[DD22, Sec. 2.2 & 2.3] for details.

Remark 4.1.4 (Combinatorial classification of manifold diagrams). Framed stratified homeo-
morphisms classes of manifold diagrams are classified by certain normalized stratified open
trusses (cf. Observation 3.2.10).

4.1.2 Formalization on the closed cube While it is in some sense more natural to
define manifold diagrams on the open cube than on the closed cube (due to the duality of
‘open’ and ‘closed’ structures, and manifold diagrams being ‘dual’ to closed cell diagrams,
see below), one can nonetheless also write down a reasonable definition of manifold diagrams
on the closed cube.

Remark 4.1.5 (Corner neighborhoods). Let P = {∅,−1,+1}, and recall that I = (−1, 1)
and I = [−1, 1]. For σ ∈ P, denote by Iσ the (open or half-open) interval I ∪ σ (which is a
subinterval of I). Now let σ = (σ1, σ2, ..., σk) ∈ Pk be a P-valued k-tuple. Denote by Iσ the
‘σ-corner’ obtained as the k-fold product Iσ1 × Iσ2 × ...× Iσk .

Definition 4.1.6 (Compact framed conicality). Generalizing our earlier definition of framed
conicality, one says (X, f) is compact framed conical at x ∈ X if there exists a link
(∂In−k, lx) and a framed stratified neighborhood φ : Iσ× (In−k, cone(lx)) ↪→ (In, f) (for some
σ ∈ Pk) such that x ∈ Iσ × {0}. If this holds for all x ∈ X, we say X is compact framed
conical. The adjective ‘tame’ may be added as before.
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Definition 4.1.7 (Compact manifold diagrams). A compact manifold n-diagram is a
tame stratification (In, f) of the closed n-cube that is tame compact framed conical.

An equivalent definition is obtained by weakening ‘tame compact framed conical’ to ‘compact
framed conical’. Another observation made in [DD22] is that ‘tameness’ may be replaced by
‘piecewise linearity’ in the compact case.

Remark 4.1.8 (PL vs tame). Recall from Example 2.3.7 that, in fact, all PL stratifications
of In are tame. Therefore, given a PL stratification (In, f) that is compact framed conical
then it is a compact manifold diagram.

An analogous observation allows us to replace ‘tameness’ by ‘piecewise linearity’ in the
case of open manifold diagrams (In, f), but this requires a bit more care around the cube’s
boundaries (roughly speaking, a ‘framed collar’ needs to be imposed to avoided parts of the
stratification running of to the cubes sides in places which are disallowed by tameness).

The relation of open and compact manifold diagrams is a bit subtle as our compact
definition allows for the cube’s boundary to contain non-trivial information (to take-away:
really, open manifold diagrams are the way to go). One can may summarize the relation as
follows.

Remark 4.1.9 (Open vs compact manifold diagrams). Every open manifold diagram (In, f)
can be compactified (in a universal way!) to a compact manifold diagrams (In, f). Every
compact manifold diagram (In, g) has an ‘interior’ stratification, but this is only an open
manifold diagram (In, g◦) under additional conditions (again, these are ‘collar-like’ conditions
that ensure that nothing runs off to the cube’s sides). Every compactification of an open
diagram satisfies these conditions, and we have (In, f) = (In, f◦). In particular, the
image of the compactification operation yields a subclass of compact manifold diagrams
that are in 1-to-1 correspondence with open manifold diagrams (up to framed stratified
homeomorphism).

4.2 Duality of manifold diagrams and cell diagrams

Any manifold diagram can be turned into a diagram of directed cells by a process of
‘geometric dualization’. We here only sketch the process; for details see [DD22, Sec. 2.4].

Remark 4.2.1 (Geometric dualization to commutative diagrams). Given a manifold n-
diagram (In, f), by Theorem 2.3.5 it has a coarsest refining mesh M → f . This mesh is an
open mesh and thus has a dual closed mesh M †. The entrance path poset map Entr(M →
f) : Entr(M) → Entr(f) dualizes to a map Entr(M → f)op : Entr(M †) → Entr(f)op. This
map determines a refinement M † → f † for some stratification f † (with the same underlying
space as M †). The framed regular cell complex, together with the stratification f † that
it refines, can be presented by a point-and-arrow diagram as follows: draw 0-cells in M †

as points, and draw k-cells c as k-arrows (the direction of the arrows is determined by the
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framing); draw these arrows as equalities if and only if the stratum s of f † that contains the
cell c contains cells c′ over strictly lower dimension than c.

The geometric dualization allows use to interpret manifold diagram as ‘classical’ commutative
diagrams of directed cells—but the kinds of cells that result from this dualization operation
are of very general shape, and may be deserving of the name ‘weak computadic cell shapes’.
We again refer to [DD22, Sec. 2.4] for further discussion.

4.3 Tame tangles

Next let us define tangles in the setting of framed combinatorial topology. In their simplest
form, tangles are just m-manifolds embedded in some space X. First note that any such
embedding W ↪→ X determines a stratification of X whose strata are the connected
components ofW and the connected components of the complement X \W . In the following,
we will always tacitly interpret the given embeddings as stratifications in this way. Let us
denote by Sd the d-dimensional topological sphere, by In = (−1, 1)n the open n-cube, and
by In = [−1, 1]n the closed n-cube.

Definition 4.3.1 (Framed transversal stratifications). Let W be a topological m-manifold
and X a flat framed space X ↪→ Rn. A stratification f : W ↪→ X is said to be framed
transversal at x ∈W if there is k ≤ m, a cubical link lx = (Sm−k ↪→ ∂In−k), and a framed
stratified neighborhood φ : Ik × cone(lx) ↪→ f such that x ∈ Ik × {0} (where 0 is the cone
point of the framed cone cone(lx)). If the link can be chosen tame, and the framed stratified
map φ can be chosen to be a tame map, then we say f is tame framed transversal at
x. We say (X, f) is (tame) framed transversal if it is (tame) framed transversal at all
x ∈ X.

Definition 4.3.2 (Tame tangles). A tame m-tangle in dimension n is a tame strati-
fication W ↪→ In of the open n-cube In by embedding an m-manifold W , which is tame
framed transversal.

In [DD22, Sec. 3.1] it is claimed that this definition is equivalent to defining tame tangles as
tame stratifications that are framed conical (thus omitting the requirement of links being
tame).

Example 4.3.3 (Recovering the case of ordinary tangles). The definition recovers the case
of ordinary 1-tangles in the 3-cube (i.e. unions of 1-manifolds suspended at their boundaries
on opposing sides of the 3-cube), except that tameness enforces that there are finitely many
braid crossings under the projection I3 → I2, and that each 1-manifold has finitely many
‘handle singularities’, i.e. points at which the projection I3 → I restricted to that 1-manifold
is not a local homeomorphisms.
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Remark 4.3.4 (Compact tame tangles). As in the case of manifold diagrams, any tame
tangle W ↪→ In an be compactified, in a universal way, to a stratification W ↪→ In. The
resulting ‘compact tame tangle’ can be understood to embed a ‘manifold with corners’ W
in the closed n-cube In. Such compact tame tangles can also be described more directly, by
replacing the open cube In with corner cubes as in Section 4.1.

Again analogous to the case of manifold diagrams, tame tangles have a combinatorial
counterpart—we make this a remark, which however has an important novelty that may be
of particular interest to the reader familiar with the intricacies of the computability theory
of manifolds.

Remark 4.3.5 (Combinatorial classifications). Framed homeomorphism classes of tame
tangles are classified by certain normalized stratified open trusses, see [DD22, Sec. 3.1]
for details. However, this combinatorialization is no longer ‘constructive’; that is, the
precise class of normalized stratified open trusses referred to here is not algortihmically
describable. The reason for this lies in the fundamental fact that it is provably impossible to
algorithmically detect manifolds (whether manifolds are presented as simplicial complexes,
algebraic sets, or as handlebodies using 1-Morse functions). Interestingly, [DD22] outlines
a path towards a resolution: if we can constructively understand the perturbation stable
singularities of tangles (i.e. higher analogs of ‘saddle points’, ‘cusps’, etc.) which, as we
touch upon in the next section, becomes a combinatorial question in the setting of tame
tangles, then this would allow us to understand the notion of tame tangles in constructive
combinatorial terms as well. We return to this point at the end of the next section.

4.4 Higher Morse and singularity theory

Earlier in this document we claimed that tame tangles are, ‘in essence, tangles which admit
a finite stratification by their critical value types’. Example 4.3.3 illustrated this claim in
the case of 1-tangles in dimension 3: in this case, tameness guarantees that there were only
finitely many braid crossings and handle singularities. In general dimensions, the claim
can be intuitively understood by regarding coarsest refining meshes as a framed-topological
representation of critical values of tame stratifications. In fact, this intuition can be exploited
to study ‘singularities of functions on manifolds’ from a fully combinatorial perspective.
Some of the details of this approach can be found in [DD22, Sec. 3.4]. We here only recall
the connection to Morse, Morse-Cerf, and n-Morse theory. The discussion is purely heuristic,
and mostly not formal at all.

To begin, let us understand how the notion of framing used in framed combinatorial
topology (see Remark 2.1.1) is conceptually related to the idea of higher Morse functions.
A Morse function of a smooth manifold M is in particular a map f : M → R. A 2-Morse
function, or Morse-Cerf function, is in particular a path of functions ft : M → R, t ∈ R,
which fail to be Morse functions only for finitely many ‘critical values’ ti ∈ R. Equivalently,
such a family ft can be encoded in a single map f : R×M → R2 mapping (x, t) to (t, ft).
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Yet more abstractly, one may consider maps f : W → R2 on some manifold W with the
property that, for all but finitely many t ∈ R, the restricted map f |t : f−1({t} × R)→ R is
a Morse function on a manifold Mt = f−1({t} × R). This now inductively generalizes. An
n-Morse function should in particular be a map f : W → Rn such that, for all but finitely
many critical values t ∈ R, the restriction f |t : f−1({t}×Rn−1)→ Rn−1 is an (n− 1)-Morse
function. Of course, one would want to impose further properties for the definition of an
actual n-Morse function in order to guarantee for it to be ‘generic’ in an appropriate sense
(in classical differential terms this turns out to be problematic, since singularities with more
than 5 parameters are generally unstable; this is one of the advantages of a combinatorial
approach, see [DD22, Sec. 3.4.1]).

In comparison, in framed combinatorial topology we study tame tangles W ↪→ Rn. Such
tangles can be canonically refined by coarsest meshM as shown by our earlier Theorem 2.3.5.
The tower of projections W ↪→ Mn → Mn−1 → ... → M1 provides a framed-topological
counterpart to the tower Rn → Rn−1 → ...→ R1 that arose inductively in our discussion
of n-Morse functions above. In particular, 0-strata of the 1-mesh M1 record precisely the
‘critical values’ t, on which W may not restrict to a tame tangle itself. To get to the
bottom line, this turns out to be a great framework for starting to think about higher Morse
functions from a combinatorial perspective. The approach reproduces familiar classical
smooth singularities in low dimensions.6

There is, potentially, even a bit more to the story, as higher Morse function may genuinely
capture more information than their 1-Morse counterpart. Namely, 1-Morse singularities (i.e.
‘handles’) fail detect smooth structures: for instance, exotic smooth spheres can be given
the same handlebodies as standard smooth spheres. We claim that this very likely changes
when studying higher Morse singularities (and an argument for this has been sketched in
[DD22, Sec. 3.4.4]; at the root of the argument is an induction by dimension using that at
the ‘boundary of each tame m-tangle singularity there is a tame (m− 1)-tangle’). Using
framed topology of tame tangles as the underlying set-up for higher Morse functions as
outlined above, one way of phrasing the conjecture is the following. (Let us call a tame
tangle W ↪→ In ‘smooth’ if W is smooth and its embedding into In is smooth.)

Conjecture 4.4.1 (Presenting smooth structures combinatorially). If two tame smooth tan-
gles are framed homeomorphic as stratifications then their tangle manifolds are diffeomorphic
as manifolds.

Due to the combinatorializability of the framed-topological set-up, the conjecture would
imply a sort of ‘combinatorialization of smooth structures’: namely, it would become possible
to present (compact) smooth structures on manifolds by the framed homeomorphism classes
of a tame tangles, and thus by finite combinatorial data. Note also that the conjecture can
be sharpened quite substantially: instead of all tame tangles we may only want to work with

6Note, the idea is also suitable to study maps W → Rn which are not embeddings, but depending on
the details of the chosen approach this may involve some semi-combinatorial structures.

24



the ‘generic’ ones, i.e. those that are ‘perturbation stably’ embedded in In (and, arguably,
the term ‘Morse’ should only really be used in this case!). It might be even possible to list
all the singularities that such generic tame tangles may contain (such as saddles, cusps,
swallowtails, etc.), which would yield constructive combinatorial foundations for the study
of generic tame tangles.

5 Future work

Framed combinatorial topology aims lay the ‘right’ foundations for many phenomena at the
intersection of higher algebra, stratified topology, and singularity theory. There are several
long-term goals of the program, which can be roughly summarized into two directions as
follows.

• Manifold theory : framed combinatorial topology is meant to link combinatorics and
smooth structures. In particular, it enables a combinatorial approach to studying
singularities. This approch is still in its infancy, but, on the horizon, lies a better
understanding of higher Morse theory and potentially new tools for our understanding
of exotic smooth structures.

• Higher algebra: framed combinatorial topology links stratified manifolds and higher
category theory, providing geometric models of the latter in the former (in particular,
interpreting coherences as isotopies). In the future, this may provide new (construc-
tive combinatorial) insights into other deep geometric-categorical questions, such as
cobordism hypothesis.

(While work towards both of these goals is underway, the authors do regard the program as
an ‘all-hands-on-deck’ type of situation!)
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