

("a - sets" = a - groupoids) (que des)

posets | Stratifications | posets w/ we
("an protein" = w - adaptives
| w/ constanting function to poseds w/ we
take nome unessage: stratifications would co-poseds
$$\simeq (e^{i}, e^{i}, -i)$$
-categories
weight - comment:
[posets = types exciled in (-1)-types = cat. O-types
 \sim strat. ore "space - like"]
1.2 Definition
idea: a stratification is
(A) [HA] a Space X w/ a continuous $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a continuous $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a continuous $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a continuous $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a continuous $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a continuous $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a continuous $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a continuous $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a continuous $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a conservative, essentially surg. $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a conservative, essentially surg. $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a conservative, essentially surg. $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a conservative, essentially $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a conservative, essentially $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a conservative, essentially $f: X \rightarrow P$
 \Rightarrow (B) [FeT) a space X w/ a conservative, essentially $f: X \rightarrow P$
 $f: g: strat. of the closed 2- diste:$
 $f: g: strat. of the closed 2- diste:$
 $f: g: analognous to:$
 $Set : Space To Set ,$

such that F: preserves orientation of IR-fibers.

$$rac{e.g.}{rac{m}{m}}$$
 $m = 2$

2.2. Definition

Defn: A manifold n-diagram
$$(\mathbb{R}^n, f)$$
 is a strat.
of framed \mathbb{R}^n that locally looks like
 $\mathbb{R}^k \times \operatorname{Cone}(f)$

Ruck: omitted a "finiteness" (or "tomeness" [MT]) condition \rightarrow f has framed compact support iff I finite triangulation of IR" that refines f by a framed homeorphism

<u>Runk</u>: A bit more convenient to work with the open cube $(-1, 1)^{n}$ (\cong fr IRⁿ) for the purpose of "fromed compactification" (yielding strat. of the closed cube $[-1, 1]^{n}$)

Ex: Convince yourself that the Reidemeister moves are manifold 4-diagrams

a tower like {pi} is colled an <u>n-mesh</u>
a tower like {Entr(pi)} is colled on <u>n-truss</u>

4. Conclusion

Pay-offs:

- · formalization of directed TP
- · finite combinatorial representation of (compact) Smooth Structures
- · Combinatorial approach to Singularity teneary

(raque)

quections:

- · Where is the 4D weirdness hiding?
- Classification of singuearities? ADE?
 (~> Enemerability of manifolds)
- · Comparison to other (as. n) dets?