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Abstract
Diagrammatic notation has become a ubiquitous computational tool; early

examples include Penrose’s graphical notation for tensor calculus, Feynman’s
diagrams for perturbative quantum field theory, and Cvitanović’s birdtracks
for Lie algebras. Category theory provides a robust framework in which to
understand the nature of such diagrams, and Joyal and Street formalized this
framework by introducing string diagrams, governed by the syntax of monoidal
1-categories. The notion of ‘manifold diagrams’ generalizes string diagrams
to higher dimensions, and can be interpreted in higher-categorical terms by a
process of geometric dualization. The closely related notion of ‘tame tangles’
describes a well-behaved class of embedded manifolds that can likewise be
interpreted categorically. In this paper we formally introduce the notions of
manifold diagrams and of tame tangles, and show that they admit a combina-
torial classification, by using results from the toolbox of framed combinatorial
topology. We then study the stability of tame tangles under perturbation; the
local forms of perturbation stable tame tangles provide combinatorial models of
differential singularities. As an illustration we describe various such combinato-
rial singularities in low dimensions. We conclude by observing that all smooth
4-manifolds can be presented as tame tangles, and conjecture that the same is
true for smooth manifolds of any dimension.
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Introduction

Examples of diagrammatic notation include the Penrose graphical notation for tensor
calculations [Pen71], and its adaptions to spin and tensor networks [RS95] [Vid09],
Feynman diagrams for perturbative quantum field theory [tHV74], birdtracks for the
classification of Lie algebras [Cvi08], Petri nets [RE96] [BB18], Bayesian networks
[Fon13], and many more. Higher category theory provides a unifying context for
these examples, by providing a framework for compositional structures based on the
mechanism of ‘composing morphisms in diagrams’. Most of the preceding examples
can be translated into special instances of diagrams in 2-categories and variations
thereof—the required formal diagrammatic notation for 2-categories is known as
‘string diagram calculus’ [JS91]. The concept of manifold diagrams arises when
generalizing string diagrams to higher dimensions; while string diagrams represent
compositions of morphisms in 2-categories, manifold diagrams describe compositions
in n-categories. Intuitively, the notion of manifold diagrams is geometrically dual to
the more familiar representation of such compositions by diagrams of cells.

While on a heuristic level, both the manifold diagram and cell diagram approaches
to representing compositions in higher category theory have been known for many
decades, essentially all current approaches to the foundations of higher categories are
based on diagrams of cells. In contrast, manifold diagrams have only been investigated
in low dimensions. One reasons for this discrepancy may have been the difficulty
of formalizing a key geometric feature of manifold diagrams, namely that manifold
strata in manifold diagrams can be deformed by isotopies and such isotopies should
themselves be higher manifold diagrams. In cellular approaches, such deformations
have received little attention because geometric dualization converts isotopies into
certain mysterious, but still essential, ‘degenerate’ diagrams of cells whose role is less
evident. Despite much work on cellular models of higher categories, the problem of
formalizing the notion of manifold diagrams has previously remained unaddressed.

Even in the absence of a formal definition, manifold diagrams are actively being
used as a rough conceptual tool in areas such as quantum algebra, knot theory,
topological quantum field theory, and related areas [Yet01] [Koc04] [BL11] [Pst14]
[Ara17] [DSPS20]. The advantage that manifold diagrams bring to these areas is
that their isotopies make visible certain higher categorical coherences and thereby
allow the expression of non-trivial homotopical-algebraic calculations. In fact, the
idea of encoding higher categorical coherences in isotopies is one origin of the tangle
hypothesis [BD95], a central result in the study of topological quantum field theories
[Lur09]. Indeed, tangles can be thought of as manifold diagrams in which manifold
strata are amalgamated into a single embedded manifold. A formal theory of manifold
diagrams should therefore also provide a toolset for studying tangles and their local
forms.

In this paper we will formalize both the notions of manifold diagrams and of
‘tame’ tangles in a unifying combinatorial-topological language. We will explain how

4



this language naturally describes the geometric dualization between cell and manifold
diagrams. The language also provides notions of bundles of manifold diagrams
and tame tangles, and thus allows us to study the stability of tame tangles under
perturbations. We will discuss how the local forms of perturbation stable tame
tangles provide combinatorial models of differential singularities.

I.1 Overview

Consider the six ‘diagrams’ in dimensions n = 1, 2, 3 shown in Fig. I.1. As we will
see later, all six are in fact examples of manifold n-diagrams (in particular, the
2-dimensional diagrams are examples of ordinary string diagrams). Observe that the
diagrams are related across dimensions by projecting onto one another (depicted in
the same figure by sideways projections). This is indicative of an ‘inductive structure’
in the data of manifold diagrams—and our definitions will precisely exploit this
structure.

dim 1 dim 2 dim 3

→

→ →

→

Figure I.1: Manifold diagrams and their projections

First, we have to formalize the notion of ‘projections’: we do so by introducing a
notion of ‘constructible fiber bundles with framed stratified 1-dimensional fibers’—we
refer this notion as 1-mesh bundles. Inductively stacking 1-mesh bundles on top of
one another, defines the notion of n-mesh bundles. If the base is trivial we simply
speak of n-meshes. Note, however, what we end up with here is not yet a manifold
diagram: instead, an n-mesh will look like a complex of (framed regular) cells as
shown in Fig. I.2, on the right. The role of such n-meshes is to ‘cellulate’ (think
‘triangulate’, but with framed regular cells) manifold diagrams; this is illustrated in
the same figure for two of our earlier examples of manifold diagrams. Let us call a
stratification tame if it can be cellulated by a mesh.

A manifold diagram can now be defined as a tame stratification of the open n-
cube In ≡ (−1, 1)n satisfying an additional condition which we call framed conicality:
roughly speaking, this means every point has a stratified neighborhood that is the
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Figure I.2: Meshes cellulate manifold diagrams

product of a ‘tangential’ Rk and a ‘normal’ stratified cone appropriately compatible
with the ambient framing. (Framed conicality is therefore a ‘framed’ variation of the
usual notion of conicality for stratifications.) The framed conicality condition in this
definition is illustrated in Fig. I.3.

∼= ×

Figure I.3: The framed conicality condition

Definition 1. A manifold n-diagram is a framed conical tame stratification of the
open n-cube.

Closely related to our definition of manifold diagrams, the second central notion
of this paper is the notion of tame tangles. For us, the role of tame tangles is two-fold:
on one hand, we will show that tame tangles can be canonically refined by manifold
diagrams, and the manifold diagrams obtained from tame tangles in this way can
be thought of as describing composites of (appropriately ‘structured’) dualizable
morphisms—this line of thinking, of course, follows the tangle hypothesis [BD95].
On the other hand, however, the notion of tame tangles by itself will provide a new
bridge between classical manifold theory and our framework of framed combinatorial
topology [DD21], and many of our later observations and conjectures will aim to
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better understand this bridge, by relating tame tangles to classical piecewise linear
(PL) and smooth manifolds.

Formally, tame m-tangles in dimension n will be defined as topological manifolds
embedded in the open n-cube, with the requirement that this embedding be tame (i.e.
define a tame stratification) and ‘framed transversal’: roughly speaking, the latter
condition requires that each point on the tangle manifold has a neighborhood that is
the product of a ‘transversal’ part which looks like Rk, and a ‘non-transversal’ part,
which looks like the cone of an (m− k − 1)-sphere embedded in the boundary of the
(n − k)-cube. (Note the conceptual similarity to our earlier description of framed
conicality.) We arrive at the following definition.

Definition 2. A tame m-tangle in dimension n is an m-manifold tamely embedded
in the open n-cube which is framed transversal.

So far all of the above is phrased purely in the language of stratified topology.
However, as discussed in detail in [DD21, §5], ‘framed tame topology and framed
combinatorial topology are locally the same thing’. We will use results from loc.cit.
to write out a fully combinatorial story paralleling the above discussion of manifold
diagrams and tame tangles.

We briefly outline this parallel story. The combinatorial counterparts of meshes are
called n-trusses : these will be introduced as the structured (namely, combinatorially
framed) entrance path posets of meshes. As we recall, there is a weak equivalence
that takes n-meshes to their ‘fundamental’ n-trusses. This can be generalized to a
construction that takes manifold diagrams (resp. tame tangles) to their ‘fundamental
combinatorial manifold diagrams’ (resp. their ‘fundamental combinatorial tangles’).
In this way we obtain a combinatorialization (and thereby a classification) of manifold
diagrams and tame tangles as follows.

Theorem 3 (Combinatorialization of manifold diagrams resp. tame tangles). Mani-
fold diagrams up to framed stratified homeomorphism are classified by combinatorial
manifold diagrams. Tame tangles up to framed stratified homeomorphism are classified
by combinatorial tangles.

The theorem is proven (in the respective cases of manifold diagrams and tame tangles)
in Theorem 2.3.3 resp. Theorem 3.1.25.

As a first immediate application of these combinatorialization results we will find
that manifold diagrams and tame tangles are canonically endowed with PL structures
(see Section 2.1.3 resp. Section 3.1.5).

As a second application, we will construct geometric duals for manifold diagrams.
This relies on the combinatorial theory of trusses being naturally self-dual. Via the
previous theorem, this duality carries over to the case of manifold diagrams, yielding
a dual notion of ‘cell diagrams’. The process of dualizing a manifold diagram is
illustrated in Fig. I.4. (In Section 2.4.2 we discuss an interpretation of cell diagrams
in familiar higher categorical terms as ‘pasting diagrams of higher morphisms’.)

7



Observation 4 (Manifold diagrams dualize to cell diagrams). Up to framed stratified
homeomorphism, manifold and cell diagrams are in correspondence by geometric
dualization.

 
cellulates pass to

dual cells
cellulates
 !

Figure I.4: Dualizing a manifold diagram to its dual cell diagram

The combinatorialization of tangles will also play a crucial part in our study of
stability of tangles. For this, we will first use the fact that theory of meshes and
trusses naturally accommodates notions of bundles, which allows us to generalize the
above definition of tame tangles to a notion of tame tangle bundles (the generalization
similarly applies to manifold diagrams and lets us study ‘manifold diagram bundles’,
even though we will not do so here). Our main interest will lie with perturbations of
tame tangle which are bundles of tame tangles over the base stratification {0} ⊂ [0, 1]
(fiber over 0 is usually called ‘special’, whereas the fiber over its complement (0, 1]
is called ‘generic’). Perturbations allow us to describe the situation in which one
tangle can be perturbed into a ‘more generic’ tangle; importantly, to decide if one
tangle is strictly more generic than another tangle, we will introduce a measure
of complexity based on the combinatorialization of tangles. If a tangle cannot be
perturbed into a strictly less complex tangle, then we will say it is perturbation
stable. We are particularly interested case of tangle singularities, which are the local
neighborhoods around critical points in a tangle (think for instance of a saddle point).
In low dimensions, we will show that our definitions lead to the following classes of
stable singularities.

Theorem 5 (Stable tangle singularities in dimension ≤ 4). Up to reflection and
appropriate equivalence, the stable tangle singularities in dimensions less than 4 can
be determined as follows.

1. There is one stable 1-tangle singularity in dim 2 and dim 3.
2. There are three stable 2-tangle singularities in dim 3: these are shown in Fig. I.5.
3. There are four stable 2-tangle singularities in dim 4.

The three cases of the theorem will be addressed in Proposition 3.3.6, Proposition 3.3.2,
and Proposition 3.3.7 respectively. Pictures of the cases 1 and 3 of the theorem are
given in the main text: see Fig. 3.11, Fig. 3.23 for case 1, and Fig. 3.25 and Fig. 3.26
for case 2. There we also discuss the case of stable 3-tangle singularities in dim 4,
see Remark 3.3.9, in which case we claim that there are five classes singularities, see
Fig. 3.30, but do not give a rigorous proof of this claim. Finally, for the case of tangle
singularities in codimension 1, we will sketch how the classification could propagate
into higher dimensions.
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Figure I.5: The stable 2-tangle singularities in dimension 3 (up to reflection)

Our discussion will exhibit a surprising relationship between the combinatorics of
tame tangles and the classical differential machinery of singularity theory. This will
motivate us to make several conjectures about the relationship between framed com-
binatorial topology and smooth topology—the gist of these conjectures is summarized
in the following hypothesis, and further discussion can be found in Section 3.4.

Hypothesis 6 (Combinatorialization of smooth structures). Smooth structures on
manifolds can be captured by tame tangles up to framed stratified homeomorphisms.

The hypothesis later reappears (in strengthened form) in three separate statements,
respectively given in Conjecture 3.4.18, Conjecture 3.4.19 and Conjecture 3.4.20.
Together with the earlier observation that tame tangles and manifold diagrams have
canonical PL structures, the hypothesis lends substance to the idea that different
topological worlds may to some extent be ‘unified’ in the combinatorial language of
framed combinatorial topology; we briefly return to the idea in Section I.3.

Remark 7 (Combinatorialization of smooth 4-structures). The above hypothesis can
be made precise and holds for manifolds of dimension ≤ 4 (see Observation 3.4.17).
A particular consequence is that all smooth structures of 4-manifolds can be com-
binatorially represented as tame tangles; in the case of the 4-sphere, this allows
smooth structures to be visualized as tame 4-tangles in dimension 5, leading to a
new ‘diagrammatic’ approach to such structures (see Note 3.4.14).

Disclaimer. What this paper does not contain is any attempt at using manifold
diagrams (or their dual diagrams of cells) to build geometric models of higher
categories (see Section I.3 for further discussion). Indeed, due to the presence
of isotopies, this becomes a somewhat more delicate issue than simply imposing
conditions on presheafs of cells, and goes beyond the scope of the present work.

I.2 Related work

Manifold diagrams. Manifold diagrams have previously been described in low
dimensions. Joyal and Street [JS91] gave the first definition of manifold 2-diagrams
(also called ‘string diagrams’ in this dimension). McIntyre and Trimble [Tri99] worked
towards a definition of manifold 3-diagrams (also called ‘surface diagram’ in this
dimension) but the project was never completed. Later, manifold 3-diagrams for Gray
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categories (with duals) were defined in both [Hum12] and [BMS12]. In dimension
4, there has been substantial work on the ‘diagrammatic algebra’ of immersed and
knotted surfaces [CKS96] [Car11], however, this was not aimed directly at defining
manifold 4-diagrams. A ‘combinatorial presentation’ of 4-diagrams in terms of
generators and relations (more specifically, in terms of elementary 4-coherences and
their 5-diagram identities) was discussed by Bar and Vicary in [BV17], and was in
part based on earlier work by [Cra00]. The thesis [Dor18] described a combinatorial
datastructure called ‘singular cubes’ for the purpose of capturing manifold diagrams
in all dimensions. This provided a precursor to the notion of ‘trusses’ introduced in
[DD21], which then also introduced the stratified topological notion of ‘meshes’, and
formalized the theory of both trusses and meshes in a geometrically self-dual way.
Sketch definitions of manifold diagrams and tame tangles were given in loc.cit., and
we expand upon these sketches here.

Tangles and singularities. The notion of ‘ordinary’ 1-dimensional tangles in
dimension 3 has been an important object of study in knot theory for several decades
[Ada04] (the word ‘tangle’ itself goes back to [Con70]). It was soon realized that
1-tangles in this dimension bore close relation to category theoretic ideas, namely, to
the notion of braided monoidal categories [Yet88] [FY89] [Tur90]. This relation was
generalized to m-tangles in any dimension in the statement of the so-called ‘tangle
hypothesis’ by Baez and Dolan in [BD95]; while the statement was given only at a
heuristic level (leaving much “to be made precise” as the authors noted), it sparked a
flurry of new research in the surrounding areas of topological quantum field theories
and quantum algebra [Kap10] [BDSPV15] [Tel16] [AFT17a], and a proof of the
hypothesis was sketched in [Lur09]. Full definitional accounts of higher dimensional
tangles in the literature remained nonetheless sparse (and loc.cit. only gives a sketch
definition)—one encounters difficulties comparable to those in the case of manifold
diagrams. Several descriptions were given in low dimensions; work on diagrams
of knotted surfaces by Carter and others [CRS97] [CS98] falls into this category.
Likewise in dimension 2, a thorough treatment of cobordisms (tangles in infinite
codimension) was given by Schommer-Pries [SP09], who describes a presentation of
their category by generators and relation using Morse-Cerf theoretic methods. The
idea of ‘generators and relations’ for categories of tangles (which already featured in
the original work by Baez and Dolan) is in turn directly related to our discussion
of singularities: any tame tangle can be perturbed into a tangle built only from
perturbation stable singularities, and in this sense perturbation stable singularities
precisely play the role of ‘generating tangles’ (indeed, our study of stable 2-tangle
singularities will recover results from loc.cit. in the setting of tame tangles). In higher
dimensions, the classical theory of smooth singularities roots in the works of Morse
[Mor25] and Cerf [Cer70], with works by Thom, Mather, Arnold, Wall and many
other ensuing [Mat71] [Arn72] [Tho76] [AGZV85] [DPW95]. A good recent summary
can be found in [MNB20].
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I.3 Outlook

Towards geometric higher category theory. A core promise of the theory of
manifold diagrams and their isotopies is to provide geometric semantics for the
‘coherences’ of homotopy theory and higher category theory. For instance, the
Eckmann-Hilton argument, which categorically can be expressed as sequence of
coherences induced by a zig-zag of evaluations (as shown in Fig. I.6 on the left) can
dually be expressed by an isotopy of two points in the plane (illustrated by its graph
in R3 in the same figure on the right)—this isotopy is also known as the ‘braid’.

α
β

α

α

αβ

β

β

α
β

α
βev

ev

ev

ev

Figure I.6: Eckmann-Hilton argument for 2-cells α, β : id→ id witnessed by a zig-zag
of evaluations (on the left) and by the braid isotopy (on the right)

The heuristic idea of relating isotopies and coherences in this way has been long-
known and it motivated, for instance, the early project [Tri99] to develop manifold
3-diagrams as a geometric model for Gray 3-categories [GPS95]. (Gray 3-categories
are a ‘maximally strict’ variation of the notion of weak 3-categories, which is still
though equivalent to the weak one; in other words, Gray 3-categories retain only
homotopically ‘essential’ coherences). One may, of course, also argue in the converse
direction: understanding manifold diagrams and their isotopies could provide an
understanding of essential coherences, allowing us to build geometric models of higher
categories. We refer to this approach to constructing coherences as the paradigm of
isotopy. In contrast, most cellular models of higher categories in use are based on the
paradigm of contraction for the construction of coherences. The following summary
specifies the difference between the two paradigms:

1. Contraction: A coherence between two n-diagrams can be constructed as a
sequence of ‘contractions’; a contraction is an (n + 1)-cell between two n-
diagrams that exists whenever both diagrams can be obtained as evaluations of
another n-diagram.

2. Isotopy : A coherence between two n-diagrams can be constructed as an (n+ 1)-
diagram which (as a manifold (n+ 1)-diagram) is an isotopy between the two
diagrams, i.e. it does not introduce new manifold strata.

Comparing the two we note the following. First, implementing the contraction
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paradigm requires us to enforce the existence of structure (namely, of contractions)
whereas, in the paradigm of isotopy, coherences are constructed only from already
existing structure via the ‘primitive’ mechanism of composing morphisms in diagrams.
Arguably, this makes the latter the simpler paradigm to work with from a constructive
foundational perspective. Moreover, individual contractions are ‘homotopically trivial’
(the space of contractions of a given diagram is ‘contractible’). In contrast, coherences
in the isotopy sense may describe non-trivial equivalences, such as the braid isotopy.
This makes manifold diagrams a framework suitable for studying the ‘non-trivial
pieces’ of general homotopical behavior.

A combinatorial language for smooth structures. Even if we weren’t interested
in models of higher category theory per se, there is a last, and (to us) central,
promise of the theory of manifold diagrams and tame tangles. Namely, we will
hypothesize that manifold diagrams and tame tangles enable the description of
essential phenomena from the worlds of ‘tame topology’, ‘PL topology’ and ‘smooth
topology’ in a single unifying combinatorial-topological language, without the need
to separately define concepts in the respective three worlds. This contrasts that in
classical terms the topological, PL and smooth categories are built in fundamentally
different languages. As an example of our claim, we will see that manifold strata in
manifold diagrams, despite being defined in tame topological terms, carry unique PL
and smooth structures. We will also see that tangle manifolds of tame tangle can
faithfully represent all (compact) PL manifold structures. Finally, a central hypothesis
of this paper is that tame tangles can also be used to represent (compact) smooth
structures and diffeomorphism. The hypothesis, if true, means that the language
developed here can be used to work with smooth structures in purely combinatorial
terms.

I.4 Reader’s Guide

The combinatorial-topological language for manifold diagrams that we introduce
here will build on the theory of framed combinatorial topology developed in our
book [DD21]. In Section 1, we will recall central definitions and results from [DD21]
(as well as basic notions from the theory of stratifications), which ensures that the
present paper is as self-contained as possible. Note that even readers already familiar
with this material might benefit from skimming the section, as our presentation and
terminology differs slightly from that in the book. All mentions of ∞-categories can
be ignored; ultimately, our results do not rely on them.

In Section 2, as a first contribution of this paper, we give a formal definition of
manifold diagrams in all dimensions, elaborating on a sketch given in [DD21, §5]. We
will show that, while our definition is phrased in stratified topological terms, manifold
diagrams can in fact be classified by purely combinatorial means. This combinatorial
classification will also enable the translation of manifold diagrams into diagrams of
(directed) cells by a process of geometric dualization.
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In Section 3, we then introduce the related notion of tame tangles. We will show
that tame tangle can be canonically refined to manifold diagrams, which makes the
relation between the two notions precise. Analogous to manifold diagrams, tame
tangles have a combinatorial counterpart which we exploit in order to study the
stability of tame tangles under perturbations. We will classify perturbation stable
tangle singularities in low dimensions. The fact that this bears resemblance to
deep results from classical differential singularity theory will lead us to make several
conjectures about the relation between the framed topology of tame tangles and
smooth manifolds—these and other ideas discussed in the final section Section 3.4
are speculative, and are yet to be made rigorous.
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1 Meshes and trusses

We recall definitions of iterated ‘1-framed, stratified’ bundles, which give rise to
the notion of meshes ([DD21, §4]). As outlined in the introduction, meshes provide
cellulations of manifold diagrams (that is, they refine the manifold diagrams by cell
complexes). The construction has a faithful combinatorial counterpart in the notion
of trusses ([DD21, §2]), which is obtained by describing iterated stratified bundles on
the level of their fundamental categories.

1.1 Recollections from stratified topology

We briefly recall the basic notions of the theory of stratifications (and refer to [DD21,
App. B] for further details).

Convention 1.1.1 (Posets as categories). Given a poset (or preorder) (P,≤) we regard
it as a category with the same objects as P , and an arrow x→ y between two objects
if and only if x ≤ y.
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Stratifications and stratified maps.

Recollection 1.1.2 (Stratifications and entrance path posets). A prestratification (X, f)
is a decomposition f of a topological space X into a disjoint union of connected
subspaces called strata. Its entrance path preorder Entr(f) is the preorder whose
objects are strata s, and whose arrows are generated by arrows s → r for all non-
empty intersections s ∩ r. (The opposite poset Entr(f)op is often called the exit
path preorder and denoted by Exit(f).) If Entr(f) is a poset then we call (X, f) a
stratification. The canonical map X → Entr(f), taking x to s if x ∈ s, is called the
characteristic map of the stratification f and often denoted by f .

Convention 1.1.3 (Finiteness). We assume all stratifications to be finite, i.e. to contain
only finitely many strata. Equally, we assume all posets to be finite.

Convention 1.1.4 (Manifold strata). Strata in any stratification are assumed to be
manifolds.

Convention 1.1.5 (Abbreviations). We often abbreviate stratifications (X, f) by their
characteristic map f , or even by their underlying space X.

Recollection 1.1.6 (Trivial and product stratifications). By default, spaces X are given
the trivial stratification (with characteristic map being the terminal map X → ∗).
Given two stratification (X, f) and (Y, g), their product stratifications (X, f)× (Y, g)
is the stratification of X × Y with characteristic map f × g.
Recollection 1.1.7 (Stratified maps). A stratified map F : (X, f)→ (Y, g) is a map
F : X → Y that factors through the characteristic maps f : X → Entr(f) and
g : Y → Entr(g) by a (necessarily unique) poset map Entr(F ) : Entr(f)→ Entr(g).
− If F : X → Y is a subspace and Entr(F ) is conservative (i.e. reflects identities),

then we say F : (X, f)→ (Y, g) is a substratification.
− If F : X → Y is a subspace, Entr(F ) : Entr g → Entr f is a subposet, and
X = f−1(Entr g), then we say F is a constructible substratification.

− If F : X → Y is a homeomorphism, we say F : (X, f)→ (Y, g) is a coarsening
of (X, f) to (Y, f)—equivalently, we say F is a refinement of (Y, f) by (X, f).
We say a coarsening (or refinement) is strict if F = idX : X = X.

− If F : X → Y is a homeomorphism and Entr(F ) is an isomorphism, we say
F : (X, f)→ (Y, g) is a stratified homeomorphism.

We also write ‘↪→’, ‘�’ and ‘∼=’ in place of ‘→’ to indicate that a stratified map is a
substratification, coarsening or stratified homeomorphism respectively.

Recollection 1.1.8 (Stratified bundles). A stratified bundle is a stratified map p :
(X, f)→ (Y, g) such that for each stratum s of the ‘base’ stratification (Y, g), each
point x in s has a neighborhood V (in s) over which the map p trivializes to a
stratified ‘projection’ map V × (Z, h)→ V .

The passage from stratifications to their entrance path posets has a converse.

Recollection 1.1.9 (Classifying stratifications). Every poset P has a classifying strat-
ification CStrP , whose underlying space is the classifying space |P | of P (i.e. the
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realization of the nerve of P ), and whose characteristic map is the map |P | → P that
maps

∣∣P≥x∣∣\ |P>x| to x (here, P≥x and P>x are the upper resp. strict upper closures
of an element x in P ). Moreover, given a poset map F : P → Q, the realization of
its nerve yields a stratified map CStrF : CStrP → CStrQ.

Recollection 1.1.10 (Cellular posets, regular cell complexes). A cellular poset P is
a poset in which each strict upper closure is a sphere, i.e. for all x ∈ P , |P>x| is
homeomorphic to a topological k-sphere Sk (for k ∈ N). A regular cell complex is
a stratification that is stratified homeomorphic to the classifying stratification of a
cellular poset. (Standard results in combinatorial topology show that this coincides
with the usual definition of regular cell complexes [LW69] [Bjö84].)

Remark 1.1.11 (Dual stratifications). Given a poset P , we say CStrP op is the ‘dual
stratification’ of CStrP . This definition recovers the following familiar situation:
given a PL manifold M with a triangulating simplicial complex K, then K is in
particular a regular cell complex and thus K ∼= CStrP where P = EntrK. The usual
condition for (M,K) to define a PL manifold requires that links of simplices in K
are PL standard spheres. Equivalently, this can now be phrased as saying that strict
lower closures P<x are standard PL spheres. Thus P op is a cellular poset: the regular
cell complex CStrP op is the ‘dual cell complex’ of K, which is often used in the proof
of Poincaré duality (cf. [Mun84, §65] [Hat02]).

Conical, regular, and cellulable stratifications. We recall two classes of ‘nice’
stratifications: conical and regular stratifications (with the latter equivalently char-
acterized as cellulable stratifications). One upshot of these conditions is that they
enable simple definitions of ‘higher’ fundamental categories of stratifications, which
categorify the notion of entrance path posets. We assume all posets P to be ‘locally
finite’, meaning all lower closures P≤x of P are finite.

Recollection 1.1.12 (Cone stratifications). Given a stratification (X, f), the stratified
open cone (c(X), c(f)) stratifies the topological open cone c(X) = X× [0, 1)/X×{0}
by the product (X, f)× (0, 1) away from the cone point 0, and by setting {0} to be
its own stratum. To define the closed cone (c(X), c(f)) replace ‘1)’ by ‘1]’.

Recollection 1.1.13 (Conical stratifications). A conical stratification is a stratification
in which each point x has a neighborhood that is a stratified product U × (c(Z), c(l))
with x ∈ U × {0}.
Remark 1.1.14 (Entrance path ∞-categories via homs). In [Lur12, App. A] Lurie
constructs entrance path ∞-categories Entr(f) of conical stratifications (X, f): the k-
simplices of the quasicategory Entr(f) are precisely stratified maps CStr [k]→ (X, f),
where [k] is the ‘k-simplex’ poset (0→ 1→ ...→ k).

Convention 1.1.15 (Entrance paths). Unnamed entrance paths s→ t refer to arrows
in Entr(f), while named entrance paths α : s→ t refer to 1-morphisms in Entr(f).

Remark 1.1.16 (Posets are conical). Given a poset P , its classifying stratification
CStrP is conical [DD21, App. B].
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Recollection 1.1.17 (0-Truncated stratifications). A conical stratification (X, f) is
called 0-truncated if Entr(f) is 0-truncated (i.e. a poset). Roughly speaking, in a
0-truncated stratification it doesn’t matter which entrance path we take between any
two given strata, as we can identify Entr(f) ' Entr(f) canonically.

In [DD21, App. B] we showed that classifying stratifications of posets are 0-truncated.
In particular, regular cell complexes are 0-truncated. The property of being 0-
truncated is furthermore inherited by all constructible substratifications.

Recollection 1.1.18 (Regular stratifications). An (open) regular stratification (X, f)
is a stratification that admits a ‘posetal subrefinement’: this is a span (X, f) �
(Y, g) ↪→ CStrP where (Y, g) � (X, f) is refinement of (X, f) and (Y, g) ↪→ CStrP
an (open) constructible substratification of the classifying stratification of a poset P .
(Here, an ‘open’ substratification is an open subspace on underlying spaces.)

Note, every stratification that can be triangulated or cellulated (i.e. refined by a
simplicial or regular cell complex) is open regular.

Convention 1.1.19 (Base stratifications). Base stratifications B in any stratified
bundle E → B are assumed to be ‘sufficiently nice’ (which can be taken to be
mean e.g. ‘conical and open regular’). For our purposes, we moreover assume base
stratifications are always 0-truncated unless otherwise noted.

Remark 1.1.20 (Cellulable stratifications). Replacing the ‘poset P ’ by ‘cellular poset P ’
in the previous recollection leads to the notion of (open) cellulable stratification (X, f)
(i.e. a stratification which admits a ‘cellular subrefinement’ (X, f)� (Y, g) ↪→ CStrP
for P a cellular poset). Since every classifying stratification CStrP is triangulable
(i.e. can be refined by a simplicial complex), and since simplicial complexes are in
particular regular cell complexes, cellulability and regularity are, in fact, equivalent
conditions. Many proofs in [DD21] focused on the case of cellulable stratifications,
but they equally apply to regular stratifications.

Remark 1.1.21 (Entrance path∞-categories via localization). Given a regular stratifi-
cation (X, f) its entrance path∞-category has a presentation as follows. Pick a pose-
tal refinement F : g � f of f . Then Entr(g) is 0-truncated and thus Entr(g) ' Entr(g).
We define Entr(f) to be the∞-localization of Entr(g) at the set of arrows that Entr(F )
maps to identities—thus Entr(f) is presented by a poset with weak equivalences.1

Stratifications as ∞-posets. For the categorically-minded reader it may be worth
pointing out where stratifications are situated in the categorical landscape—see
Fig. 1.1. Here, intuitively, an ‘∞-X’ is an (∞,∞)-category which admits a conservative
functor to an X, where X can e.g. stand for ‘set’, ‘poset’, or ‘category’. Yet more

1While this makes it easy to construct a candidate∞-category Entr(f), checking well-definedness
of the construction requires us to verify independence of the choice (Y, g); a reasonable argument
can be given for the case of conical regular stratifications, and checks equivalence of the given
presentation with the definition of Entr(f) in the conical case (see Remark 1.1.14). We omit the
argument as we’ll not need it here.
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generally, X can be an (n, k)-category for n, k < ∞ (note that, if n < k, then for
n < m ≤ k it is convention to require that there is at most one m-arrow between any
two (m− 1)-arrows; in particular, posets and preorders are (0, 1)-categories by this
convention). A ‘set with weak equivalences’ means a poset with weak equivalences
in which each arrow is a weak equivalence (see Remark 1.1.21). Note that both
‘∞-fication’ can be ‘∞-localization’ become functors when appropriately defined.
This illustrates that the role of posets in the theory of stratifications is analogous to
the role of sets in the theory of spaces.

sets ≡ (0, 0)-categories ∞-sets ' spaces sets with w.e.

posets ≡ (0, 1)-categories ∞-posets ' stratifications posets with w.e.

categories ≡ (1, 1)-categories ∞-categories categories with w.e.

∞-fication ∞-localization

Figure 1.1: Stratifications in the categorical landscape

1.2 Meshes and trusses in dimension 1

1.2.1 1-Meshes and their bundles. A 1-dimensional mesh, or simply a 1-mesh,
is a contractible k-manifold, k ≤ 1, which is stratified ‘by cells’, together with a
choice of framing on that manifold.2

Definition 1.2.1 (1-Meshes). A 1-mesh M is a stratified framed contractible 0- or
1-manifold, whose strata are open 0- or 1-disks.

Given a 1-mesh M , assigning dimension to strata yields a functor Entr(M)→ [1]op

from the entrance path poset to the (opposite) interval poset [1]op = (0← 1).

Terminology 1.2.2 (Closed and open 1-meshes). If the underlying manifold of a 1-mesh
M is compact (resp. an open interval) then we say M is ‘closed’ (resp. ‘open’). If
neither applies, we say M is ‘mixed’.

Example 1.2.3 (1-Meshes). Examples of 1-meshes are shown in Fig. 1.2: we use
arrows to indicate the framing of underlying manifolds.

Terminology 1.2.4 (Coordinates and bounds). A ‘coordinatization’ γ of a 1-mesh M
is a framed bounded embedding γ : M ↪→ R. (Here, the embedding being ‘framed’
means that the standard framing of R pulls back along γ to a framing equivalent to
that of M .) Since γ is bounded, its image closure im(γ) is a subspace [γ−, γ+] of R:
we call γ− and γ+ the ‘lower’ resp. ‘upper bound’ of γ.

2We are somewhat agnostic to what we mean by ‘framing’, since in dimension k ≤ 1 all reasonable
notions are equivalent (whether we work in the topological, PL or smooth category). The reader
may also take framing to mean ‘orientation’ if k = 1, and to mean the trivial structure if k = 0.
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closedopen mixed

Figure 1.2: 1-Meshes of open, closed. and mixed type

Definition 1.2.5 (1-Mesh maps). A map of 1-meshes F : M → N is a stratified
map that preservers the framing of the 1-meshes.

The space of maps of 1-meshes inherits a topology from the mapping space of the
underlying spaces.

Notation 1.2.6 (The ∞-category of 1-meshes). The topologically enriched category
of 1-meshes and their maps is denoted by Mesh1.

We next recall the definition of bundles of 1-meshes.

Notation 1.2.7 (Fiber dimension). Given a stratified bundle p : E → B, whose fibers
have strata that are manifolds, and given a stratum s ∈ E, we write fibdim(s) for
the ‘fiber dimension’ of s, which is the dimension of the manifold to which s restricts
in fibers over points in p(s).

Definition 1.2.8 (1-Mesh bundles). A 1-mesh bundle p : M → B is a stratified
bundle together with a choice of 1-mesh structure M b for each stratified fiber p−1(b),
b ∈ B, and with the following compatibility condition between fibers.
− Coordinatizability : there exists a ‘coordinatizing’ bundle embedding γ : M ↪→
B × R into the trivial bundle B × R → B, which on each 1-mesh fiber M b

restricts to a coordinatization γb : M b ↪→ R of M b, such that the ‘bounding
sections’ b 7→ γ±(b) := (b, γb±) are continuous maps B → B × R.

− 0-Constructibility : For a stratum s in M with fibdim(s) = 0, any entrance path
p(s)→ u in Entr(B) has a unique lift s→ t in Entr(M), and that lift is such
that fibdim(t) = 0.

Observe that the constructibility condition ensures that there is a functor Entr(M)→
[1]op which assigns to each stratum s its fiber dimension fibdim(s).

Terminology 1.2.9 (Closed and open 1-mesh bundles). If all fibers of a 1-mesh bundle
p are closed (resp. open) then we call p itself ‘closed’ (resp. ‘open’).

Example 1.2.10 (1-Mesh bundles). Two 1-mesh bundles are shown in Fig. 1.3.

The constructibility condition required for 1-mesh bundles acts at the ‘0th categorical
level’: namely, the condition will ensure that 1-mesh bundles p : M → B can be
classified by functors on the entrance path poset Entr(B). To describe 1-mesh bundles
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framing of
fibers

Figure 1.3: 1-Mesh bundles

classified by functors on the entrance path ∞-category Entr(B), we can replace the
condition as follows.

Remark 1.2.11 (1-Constructibility, [DD21, Rmk. 4.1.33]). The ‘0-constructibility’
condition in Definition 1.2.8 is categorified by the following condition:
− 1-Constructibility : For a stratum s in M with fibdim(s) = 0, any entrance path
α : p(s)→ u in B has a unique lift β : s→ t in M with p ◦ β = α, and that lift
satisfies fibdim(t) = 0.

If the baseB is a 0-truncated stratification then 0-constructibility and 1-constructibility
are equivalent conditions. We refer to 1-mesh bundles satisfying 1-constructibility
(in place of 0-constructibility) as ‘1-constructible 1-mesh bundles’.

Remark 1.2.12 (Coordinatizations as structure). Our definitions of 1-meshes and
their bundles differ slightly from those given in [DD21, §4], where we required
coordinatizations γ as part of the structure of both 1-meshes and 1-mesh bundles. In
contrast, here we only ask for the existence of such coordinatizations. Categorically
both approaches are equivalent (see also Section 1.3.3).

1.2.2 1-Trusses and their bundles. The entrance path posets of 1-meshes
naturally carry additional structure given by strata dimensions and framing. This
leads a notion of structured entrance path posets of 1-meshes, which we refer to as
the ‘fundamental 1-trusses’ of the 1-meshes.

Notation 1.2.13 (Frame order � in meshes). Given a 1-mesh M and strata s, t in M ,
we write s ≺ t if for some (or equivalently, any) coordinatization γ : M ↪→ R we have
γ(s) < γ(t) (meaning γ(s) lies to the left of γ(t) in the standard order of R).

Definition 1.2.14 (1-Trusses from 1-meshes). A 1-truss T = (T,≤, dim,�) is a
poset (T,≤) together with a ‘dimension’ map dim : (T,≤)→ [1]op and a ‘frame order’
(T,�), for which we can find a 1-mesh M such that
− there exists poset isomorphism φ : (T,≤) ∼= Entr(M),
− which is compatible with dimensions, i.e. dim(s) = dim(φ(s)),
− and compatible with framings, i.e. for s, t ∈ T , we have s � t iff φ(s) � φ(t).

(Note that for fixed M the choice of φ is necessarily unique.) We call M a ‘classifying
1-mesh’ of T , and say T is a ‘fundamental 1-truss’ of M .
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Notation 1.2.15 (Fundamental 1-trusses). Fundamental 1-trusses of 1-meshes M
are ‘essentially unique’ (this means, any two fundamental trusses of a given 1-mesh
are related by unique structure preserving isomorphisms), and we denote them by
ETrsM .

Notation 1.2.16 (Classifying 1-meshes). Classifying 1-meshes of 1-trusses T are ‘unique
up to contractible choice’ (this means, any two classifying 1-meshes of a given 1-truss
are related by a contractible space of framed stratified homeomorphisms), and we
denote them by CMshT .

The structure (T,≤, dim,�) of a 1-truss T can alternatively be characterized in
purely combinatorial terms, without requiring the existence of classifying 1-meshes.
Recall a ‘fence’ is a connected poset P in which each object is a least or greatest
element, and no element is comparable to more than two other elements (equivalently,
fences are characterized by their realization |P | being a connected 0- or 1-manifold,
see [DD21, §1]). A fence is called ‘linear’ if it has elements (called ‘endpoints’) which
are comparable to less than two elements. Recall also, a functor is called ‘conservative’
if it reflects isomorphisms (or, in the case of posets, identities).

Alternative Definition 1.2.17 (1-Trusses, combinatorially). A 1-truss is a trivial
or linear fence (T,≤) together with a conservative functor dim : (T,≤)→ [1]op, as
well as a second order (T,�) which is total, and whose generating arrows t ≺ s satisfy
either t < s or s < t.

Example 1.2.18 (1-Trusses). The fundamental trusses of the 1-meshes from Fig. 1.2
are shown in Fig. 1.4 below: the order ≤ is indicated by arrows between objects,
dimension assignments are indicated by numbers, and the total order � is indicated
by a single arrow along all (linearly arranged) objects.

Figure 1.4: The fundamental trusses of the earlier 1-mesh examples

Notation 1.2.19 (Dimension-i objects). Given a 1-truss (T,≤,dim,�) we denote by
T(i) the subset dim−1(i) of T (where i ∈ [1]).

Definition 1.2.20 (Maps of 1-trusses). A map of 1-trusses T → S is a map of
posets (T,≤)→ (S,≤) that preserves the frame orders.

Notation 1.2.21 (Category of 1-trusses). The category of 1-trusses and their maps is
denoted by Trs1.
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Remark 1.2.22 (Fundamental 1-truss functor). Any 1-mesh map F : M → N de-
termines, by its mapping Entr(F ) on entrance path posets, a unique 1-truss map
ETrsM → ETrsN , which we call its ‘fundamental 1-truss map’ and denote by ETrs(F ).
This yields a functor ETrs : Mesh1 → Trs1.

Remark 1.2.23 (Classifying 1-mesh functor). Any 1-truss map G : T → S has
a ‘classifying 1-mesh map’ : M → N such that ETrs(CMshG) = G. CMshG is
determined up to contractible choice (which yields an ‘weak inverse’ CMsh : Trs1 →
Mesh1 to the functor ETrs; we return to this in Remark 1.4.3).

We next consider bundles of 1-trusses. We first define 1-truss bundles as the com-
binatorial structures underlying 1-mesh bundles, and then also give an independent,
purely combinatorial definition.

Definition 1.2.24 (1-Truss bundles from 1-mesh bundles). For a stratification B,
a 1-truss bundle over the poset Entr(B) is a poset map q : T → Entr(B) together
with the structure of a 1-truss T s on each fiber q−1(s), s ∈ Entr(B), for which there
exists a 1-mesh bundle p : M → B with an isomorphism φ : T ∼= Entr(M) such that
q = Entr(p) ◦ φ, and φ exhibits fibers T s as the fundamental 1-trusses of fibers M b,
b ∈ s (in the sense of Definition 1.2.14). We call p a ‘classifying 1-mesh bundle’ for q,
and conversely say q is a ‘fundamental 1-truss bundle’ of p.

Notation 1.2.25 (Fundamental 1-truss bundles). Fundamental 1-truss bundles of
1-mesh bundles p are essentially unique, and we denote them by ETrs p.

Notation 1.2.26 (Classifying 1-mesh bundles). Classifying 1-mesh bundles of 1-truss
bundles q are unique up to contractible choice, and we denote them by CMsh q.

Example 1.2.27 (1-Truss bundles). The fundamental trusses of the 1-meshes from
Fig. 1.3 are shown in Fig. 1.5 below.

Figure 1.5: Fundamental 1-truss bundles of earlier 1-mesh bundles

Analogous to our combinatorial definition of 1-trusses in Definition 1.2.17, we next
give an alternative, purely combinatorial definition of 1-truss bundles. This will in
particular imply that the definition of 1-truss bundles is independent of the choice of
stratification B in Definition 1.2.24.
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Remark 1.2.28 (Boolean profunctors). A ‘Boolean profunctor’ is an ordinary pro-
functor H : C −7−→ D whose values are either the initial set ∅ ≡ ⊥ or the terminal set
∗ ≡ >. If C and D are discrete, then such a profunctor H is simply a relation of sets.
In this case, we call the profunctor H a ‘function’ if it is a functional relation or a
‘cofunction’ if the dual profunctor Hop is a function.

Remark 1.2.29 (Boolean profunctors from posets maps). For any map of posets
F : P → Q, the fiber F−1(x → y) over an arrow x → y of Q defines a Boolean
profunctor F−1(x) −7−→ F−1(y) by mapping (a, b) to > iff a→ b is an arrow in P .

Recall our notation for dim-i objects T(i) of a 1-truss T (see Notation 1.2.19).

Definition 1.2.30 (Category of 1-truss bordisms). Given 1-trusses T and S, a
1-truss bordism R : T −7−→ S is a Boolean profunctor T −7−→ S satisfying the following:
(A) R restricts to a function R(0) : T(0) −7−→ S(0) and a cofunction R(1) : T(1) −7−→ S(1).
(B) Whenever R(t, s) = > = R(t′, s′), then either t ≺ t′ or s′ ≺ s but not both.

Given 1-truss bordisms R : T −7−→ S and Q : S −7−→ U , their composite profunctor R ◦Q
(composed as ordinary profunctors) is again a 1-truss bordism.3 This gives rise to
the category T1 of 1-trusses and their bordisms.

Alternative Definition 1.2.31 (1-Truss bundles, combinatorially). A 1-truss bun-
dle over a poset P is a poset map q : T → P in which each fiber q−1(x), x ∈ P , is
equipped with the structures of a 1-truss T x, and for each arrow x→ y in P , the fiber
q−1(x→ y) is a 1-truss bordisms T x −7−→ T y (note q−1(x→ y) is a Boolean profunctor
by Remark 1.2.29).

When P = Entr(B) (for some stratification B), then this alternative definition
is equivalent to Definition 1.2.24 (one verifies that the conditions (A) and (B) in
Definition 1.2.30 precisely guarantee the existence of a classifying mesh bundle over
B, as required in Definition 1.2.24). Using this alternative characterization, we now
recall that the category T1 of 1-truss bordisms acts as a classifying category for
1-truss bundles.

Observation 1.2.32 (Essential gauntness of T1). The category T1 is ‘essentially gaunt’,
in the sense that it does not have non-identity automorphisms. Thus, passing to
any skeleton, we can replace ‘natural isomorphism’ of functors P → T1 by ‘equality’
without harm.

Construction 1.2.33 (Classification of 1-truss bundles). Given a functor χ : P →
T1, the usual Grothendieck construction for profunctors yields a functor qχ : T → P
over P (more specifically, a functor constructed in this way is called an ‘exponentiable
fibration’, see [Str01]). Since 1-truss bordisms are Boolean profunctors, qχ is in fact
a map of posets. Moreover, each fiber q−1χ (x), x ∈ P , has the structure of a 1-truss

3In contrast, composites of Boolean profunctors (composed as ordinary profunctors) in general
need not themselves be Boolean.
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(given by the image χ(x)), and this makes qχ a 1-truss bundle. The mapping χ 7→ qχ
yields a 1-to-1 correspondence between functors P → T1 and 1-truss bundles over
P (up to structure preserving bundle isomorphism). The inverse mapping will be
denoted by q 7→ χq, and we refer to χq as the ‘classifying functor’ of the 1-truss
bundle q.

Remark 1.2.34 (Alternative definition of T1). The fact that the category T1 classifies
1-truss bundles means that it can equivalently be defined of as follows: objects of
T1 are 1-truss bundles over the [0]; morphisms are 1-truss bundles over [1] (with
domain and codomain given by restricting to fibers over {0, 1} ⊂ [1]); two morphisms
compose to a third morphism iff there is a 1-truss bundle over [2] that restricts over
(0→ 1), (1→ 2), and (0→ 2) to the first, second, resp. third morphism.

The relation of 1-mesh bundles and 1-truss bundles, together with the classification
of 1-truss bundles by the category T1, combines to give the following observation.

Lemma 1.2.35 (Classification of 1-mesh bundles). Bundle isomorphism classes of
1-mesh bundles p : M → B bijectively correspond to functors Entr(B) → T1. The
correspondence takes p to the classifying functor χETrs(p) of the 1-truss bundle ETrs(p).

Proof. Follows from [DD21, Prop. 4.2.26] and [DD21, Obs. 4.2.68].

Note 1.2.36 (Classification of 1-constructible mesh bundles). The preceding lemma still
applies, with essentially the same proof, in the 1-constructible case (see Remark 1.2.11):
bundle isomorphism classes of 1-constructible 1-mesh bundles p : M → B (with B
not necessarily 0-truncated) correspond to functors Entr(B)→ T1.

1.2.3 Geometric duality. The category of trusses admits natural duality opera-
tion. Combinatorially, this mirrors the dualization functor C 7→ Cop of categories.
Geometrically, the operation passes to dual cell structures in the spirit of classical
Poincaré duality.

Definition 1.2.37 (Dualization of trusses). Given a 1-truss T ≡ (T,≤,dim,�),
its dual 1-truss T † is the truss (T,≤op,dimop,�) (where the definition of dimop :
(T,≤op) → [1]op uses that [1] ∼= [1]op). Given a 1-truss map F : T → S, its dual
map F † : T † → S† is the truss map of dual 1-trusses, that maps objects by F .

As a result, we obtain an involutive dualization functor † : Trs1 ∼= Trs1. This
dualization functor maps closed trusses to open trusses. To refine our description
of how dualization acts on maps, we now distinguish certain types of maps by their
action on dimensions.

Terminology 1.2.38 (Cellular and cocellular 1-truss maps). Let F : T → S be a 1-truss
map.

- We say F is ‘cellular’ if it restricts to a map T(0) → S(0), i.e. it maps dimension 0
objects to dimension 0 objects. If T and S are closed trusses, then equivalently
F preserves upper closures, that is, F (T≥x) = S≥F (x).
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- We say F is ‘cocellular’ if it restricts to a map T(1) → S(1), i.e. it maps dimension
1 objects to dimension 1 objects. If T and S are open trusses, then equivalently
F preserves lower closures, that is, F (T≤x) = S≤F (x).

If F is both cellular and cocellular we say F is ‘balanced’. A balanced injection is a
called ‘subtruss’, and a balanced bijection a ‘truss isomorphism’. The terminology
similarly applies to 1-mesh maps.4

The dualization functor † : Trs1 ∼= Trs1 maps cellular maps to cocellular maps, and
vice versa.

Terminology 1.2.39 (Duality for 1-meshes and maps). We say meshes M and N are
dual iff ETrs(M) = ETrs(N)†. Duality of mesh maps works similarly, and is illustrated
in the next example.

Example 1.2.40 (Dualization of mesh maps). In Fig. 1.6 we depict pairs of dual
maps: the left column shows cellular maps which dualize to the cocellular maps
on the right. (These maps may be further terminologically distinguished as ‘face’,
‘degeneracy’, ‘embedding’, and ‘coarsening’ maps, as indicated in the figure; we refer
the reader to [DD21, Eg. 2.3.96] for a discussion.)

cellular cocellular
†

“face” “embedding”

“degeneracy” “coarsening”

Figure 1.6: Dualization of 1-mesh maps

Definition 1.2.41 (Duality on truss bundles). Given a 1-truss bundle q : T → B,
its dual 1-truss bundle q† : T op → Bop is the opposite map of posets together with
1-truss fiber structures dual to those of q.

The fact that q† is indeed a 1-truss bundle is easiest to verify using the classification
of 1-truss bundles (see Construction 1.2.33): recall, 1-truss bundles q are classified

4Note our terminology here differs from that in [DD21, §2], where ‘cellular’ resp. ‘cocellular’
maps of trusses were called ‘singular’ resp. ‘regular’ maps, since they map singular objects (i.e. the
objects of T(0)) to singular objects resp. regular objects (i.e. the objects of T(1)) to regular objects.
Our terminology choice here instead mirrors the terminology for ‘cellular maps’ of cellular posets, cf.
[DD21, Def. 1.3.18].
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by functors χq : B → T1. Now, given a truss bordism R : T −7−→ S, the dual Boolean
profunctor Rop defines a truss bordism R† : S† → T † (that is, Rop satisfies conditions
(A) and (B)). This yields an involution

† : T1 ∼= (T1)op.

Post-composing χp with this involution yields a functor († ◦ χq)op : Bop → T1. This
functor classifies a truss bundle, which equals the dual bundle q† : T op → Bop defined
above (in particular, q† is a 1-truss bundle).

Terminology 1.2.42 (Duality for 1-mesh bundles). Given 1-mesh bundles p and p′

we say they are dual if their fundamental 1-truss bundles are, i.e. if ETrs(p) =
ETrs(p′)†.

Example 1.2.43 (Dualization of mesh bundles). In Fig. 1.7 we depict two dual
1-mesh bundles.

†

Figure 1.7: Dualization of 1-mesh bundles

Note 1.2.44 (The dual worlds of cells and cocells). Given a cellular 1-mesh map F
we may think of it as a 1-mesh bundle, by projecting its mapping cylinder MF to
the stratified 1-simplex CStr [1]. Passing to the dual of that bundle now represents
the cocellular map F † via some (less familiar) notion of ‘comapping cylinder’. This
illustrates the following heuristic observation: as topologists we are used to think
about the world using cell structures and cell complexes, but less used to thinking in
the dual world of cocells. Using the self-duality of meshes and trusses one can cleanly
connect the two worlds.

1.2.4 Labelings and stratifications. We now endow 1-trusses and their bundles
with an additional structure, called a ‘labeling’. This structure will serve two purposes:
firstly, it will enable the later inductive classification of n-truss bundles, and secondly,
it specializes to a structure of ‘stratifications’ on 1-truss bundles which, analogous
to stratifications on spaces, will decompose the bundle’s total poset into subposet
‘strata’.
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Labelings and stratifications of 1-trusses. A ‘C-labeling’ of a stratified space (X, f) is
a functor Entr(f)→ C from its entrance path ∞-category to another (∞-)category C.
When labeling 0-truncated stratifications we may work instead with entrance path
posets Entr(f); in particular, for 1-meshes we work with their fundamental 1-trusses.
This leads to the following notion of trusses with ‘labelings’. Throughout this section,
let C be an ordinary category.

Definition 1.2.45 (Labeled 1-trusses and 1-truss bundles). Let C be a category.
A C-labeled 1-truss (T, f) is an ‘underlying’ 1-truss T together with a ‘labeling’
functor f : T → C. A C-labeled 1-truss bundle (q, f) is an ‘underlying’ 1-truss
bundle q : T → P together with a ‘labeling’ functor f : T → C.

Analogous to 1-truss bundles being classified by functors into the category 1-truss
bordisms T1, we now construct a classifying category for the case of labeled 1-truss
bundles. We define this category by considering labeled bundles over simplices, with
objects being bundles over the 0-simplex, morphisms being bundles over the 1-simplex,
and their composites being described by bundles over the 2-simplex—this mirrors
our earlier construction of T1 via unlabeled bundles over simplices in Remark 1.2.34.
(However, an alternative construction, which mirrors the construction of T1 via 1-truss
bordisms in Definition 1.2.30, can also be given, see [DD21, Obs. 2.3.21].)

Construction 1.2.46 (Labeled 1-truss bordisms). Given a category C, the category
T1(C) of C-labeled 1-trusses and their bordisms is defined as follows: objects of
T1(C) are C-labeled 1-truss bundles over [0]; morphisms are C-labeled 1-truss bundles
over [1] (with domain and codomain given by restricting to fibers over 0 resp. 1); two
morphisms compose to a third iff there is a C-labeled bundle over [2] that restricts
over (0→ 1), (1→ 2), and (0→ 2) to the first, second, resp. third morphism. The
fact that this defines a category is shown in [DD21, §2.3.1].

Remark 1.2.47 (Label forgetting functor). Comparing the preceding construction of
T1(C) to our earlier construction of T1 in Remark 1.2.34, note that there is a ‘label
forgetting’ functor un : T1(C)→ T1 which discards labelings.

Observation 1.2.48 (Classifying labeled 1-truss bundles). Given a functor χ : P →
T1(C), the composite un◦χ classifies a 1-truss bundle qχ over P by Construction 1.2.33.
Note, the restriction of qχ over each arrow x→ y in P equals the bundle classified
by un ◦ χ(x → y) (up to a unique bundle isomorphism). Using this identification,
the labelings of the labeled 1-truss bundle χ(x→ y) assemble into a labeling fχ of
qχ. The mapping χ 7→ (qχ, fχ) yields a bijective correspondence between functors
P → T1(C) and C-labeled 1-truss bundles over P (up to bundle isomorphisms that
commute with labelings). The inverse will be denoted by (q, f) 7→ χ(q,f).

Observation 1.2.49 (Labeled bordisms functor). Observe that the construction C 7→
T1(C) is functorial in C. Indeed, given a functor F : C→ D, then T1(F) : T1(C)→
T1(D) acts on objects and morphisms of T1(C) (see Construction 1.2.46) by post-
composing their labelings with F.
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A ‘stratification’ is a particular type of labeling structure. Let us first recall a few
useful facts about such structures. We call a map X → P from a space to a poset
‘characteristic’ if it is the characteristic map of a stratification of X.

Remark 1.2.50 (Stratified posets). Any poset P can be considered as a topological
space by defining the basic opens to be the lower closures P≤x of objects x ∈ P (we
speak of the ‘poset space P ’ when endowing P with this topology). A ‘stratified poset’
(P, f) is a poset P together with a stratification f of the poset space P . Usually,
we think of f in terms of its characteristic map f : P → Entr(f). Importantly, the
characteristic map f of a stratified poset (P, f) is always a poset map P → Entr(f).

In particular, given a stratified space (X, g), a stratification of the poset Entr(g) given
by a characteristic map f : Entr(g)→ Entr(f) is a special case of a labeling of (X, g).

Remark 1.2.51 (Poset labelings of stratifications). Let P be a poset.
1. Given a stratification (X, g), with characteristic map g : X → Entr(g), then

strict coarsenings of X are in bijective correspondence with stratifications of the
poset Entr(g): the correspondence takes a strict coarsening F to its entrance
path poset map Entr(F ). For details, see [DD21, Lem. B.2.12].

2. Given any continuous map f : X → P from a space X to a poset space P ,
there is an essentially unique decomposition f = discr(f) ◦ char(f) (called the
‘connected component splitting’ of f) such that char(f) is characteristic, and
discr(f) is conservative. For details, see [DD21, Constr. B.1.34].

3. The last observation applies to all poset maps Q→ P (since all poset maps are
continuous as maps of poset spaces). Thus, any poset map splits essentially
uniquely into a characteristic map and a conservative map.

Definition 1.2.52 (Stratified 1-trusses). A stratified 1-truss (T, f) is a labeled
1-truss such that f stratifies the poset (T,≤) (in the sense of Remark 1.2.50).

Remark 1.2.53 (Stratified trusses from poset labeled trusses). Using connected com-
ponent splittings from Remark 1.2.51 above, note that every poset labeled truss
(T, f : T → P ) canonically gives rise to a stratified truss (T, char(f)).

Let us also introduce an analogous notion for 1-meshes.

Definition 1.2.54 (Stratified 1-meshes). A stratified 1-mesh is a tuple (M,f)
consisting of a 1-mesh M and a strict coarsening M → f to a stratification f (that
is, f has the same underlying space as M , and M refines f).

Remark 1.2.55 (Relating stratified 1-meshes and 1-trusses). Given a stratified 1-mesh
(M,f) and stratified 1-truss (T, g), we say (T, g) is a ‘stratified fundamental 1-truss’
of (M,f) (and conversely, that (M,f) a ‘stratified classifying 1-mesh’ of (T, g)),
if, firstly, T = ETrsM is the fundamental 1-truss of M , and secondly, there is a
(necessarily unique) poset isomorphism Entr(g) ∼= Entr(f) such that the following
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commutes
Entr(M) T

Entr(f) Entr(g)

∼=

gEntr(M→f)

∼= .

Notation 1.2.56 (Stratified fundamental 1-trusses). Stratified fundamental 1-trusses of
stratified 1-meshes (M,f) are essentially unique, and will be denoted by ETrs(M,f).

Notation 1.2.57 (Stratified classifying 1-meshes). Stratified classifying 1-meshes of
stratified 1-trusses (T, g) are unique up to contractible choice (when considered in an
appropriate category, see Corollary 1.4.9), and will be denoted by CMsh(T, g).

Example 1.2.58 (Stratified 1-meshes and stratified 1-trusses). In Fig. 1.8, on the
left, we depict a stratified 1-mesh (M,f) consisting of a 1-mesh M and a coarsening
M → f ; and on the right, the corresponding stratified 1-truss consisting of a 1-truss
T and a characteristic poset map T → Entr(f).

M

coarsen

f Entr(f)

T

Figure 1.8: Stratified 1-mesh and its stratified fundamental 1-truss

Just as we defined labeled 1-truss bundles earlier, we could now also define stratifica-
tions for 1-truss (and 1-mesh) bundles. We won’t do so here, but will return to the
notion in the more general case of n-trusses (and n-meshes) in the next section.

1.3 Meshes and trusses in dimension n

Recall the bigger picture from Section I.1: when studying manifold diagrams one
observes an apparent inductive pattern; manifold n-diagrams project to manifold
(n − 1)-diagrams, which in turn project to manifold (n − 2)-diagrams, and so on.
With 1-mesh bundles playing a role analogous to that of such projections, we are
lead to the following definition.

Definition 1.3.1 (n-Meshes). An n-mesh M is a tower of 1-mesh bundles

Mn
pn−→Mn−1

pn−1−−−→ ...
p2−→M1

p1−→M0 = ∗.

At the level of structured entrance path posets, this has the following combinatorial
counterpart.
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Definition 1.3.2 (n-Trusses). An n-truss T is a tower of 1-truss bundles

Tn
qn−→ Tn−1

qn−1−−−→ ...
q2−→ T1

q1−→ T0 = ∗.

Notation 1.3.3 (Fundamental n-trusses). Given an n-mesh M consisting of 1-mesh
bundles pi : Mi →Mi−1, 1 ≤ i ≤ n, its ‘fundamental n-truss’ ETrsM is the n-truss
given by the 1-truss bundles ETrs pi.

Example 1.3.4 (2-Meshes and 2-trusses). In Fig. 1.9 we depict an open and a closed
2-mesh, together with their corresponding fundamental 2-trusses.

M ETrs(M) N ETrs(N)

Figure 1.9: Open and closed 2-meshes and their respective fundamental 2-trusses

The preceding example illustrates that all strata (in the total stratification Mn)
of an n-mesh M are k-cells, k ≤ n—indeed, as outlined in the introduction, the
role of n-meshes is precisely to ‘cellulate’ other stratifications (such as manifold
diagrams, to be defined in Section 2). For trusses, cell dimensions can be expressed
in combinatorial terms as follows.

Remark 1.3.5 (Cell dimensions in n-trusses). For an n-truss T given by 1-truss bundles
qi : Ti → Ti−1, and for x ∈ Tn, we write xi = q>i(x) where q>i := qi+1 ◦ ... ◦ qn−1 ◦ qn
maps Tn → Ti. Write dimi(x) = j if dim(xi) = j in the 1-truss fiber over xi−1. We
define dim(x) :=

∑
i dimi(x) and speak of that sum as the ‘cell dimension’ of x. The

cell dimension is a poset map dim : Tn → [n]op. Note if T = ETrsM , then dim(x) is
the dimension of the cell in Mn corresponding to x.

1.3.1 Bundles, maps, and classification. The definitions of n-meshes and
n-trusses immediately generalize to bundles thereof.

Definition 1.3.6 (n-Mesh bundles). An n-mesh bundle p over a ‘base’ stratification
B is a tower of 1-mesh bundles pi : Mi →Mi−1, 1 ≤ i ≤ n, ending in M0 = B.

Definition 1.3.7 (n-Truss bundles). An n-truss bundle q over a ‘base’ poset P is
a tower of 1-truss bundles qi : Ti → Ti−1, 1 ≤ i ≤ n, ending in T0 = P .

29



Note that both definitions also apply to the case n = 0: a 0-mesh bundle is simply
a stratification B, while a 0-truss bundle is simply a poset P . As before, the two
definitions are related as follows.

Notation 1.3.8 (Fundamental n-truss bundles). Given an n-mesh bundle p = {pi :
Mi →Mi−1}1≤i≤n over B, its ‘fundamental n-truss bundle’ ETrs(p) is the essentially
unique n-truss bundle over Entr(B) given by the 1-truss bundles {ETrs pi : EntrMi →
EntrMi−1}1≤i≤n.
Notation 1.3.9 (Classifying n-mesh bundles). An n-mesh bundle over B is said to
be the ‘classifying n-mesh bundle’ of an n-truss bundle q over Entr(B) if q is the
fundamental n-truss bundle of p. Classifying n-mesh bundles of q are unique up to
contractible choice (which will follow from Theorem 1.4.8, at least in the case of
closed and open bundles), and we denote any such n-mesh bundle by CMsh q.

Terminology 1.3.10 (Closed and open bundles). An n-mesh bundle p is called ‘closed’
(resp. ‘open’) if all of its 1-mesh bundles pi are closed (resp. open). The terminology
similarly applies to n-truss bundles.

Example 1.3.11 (n-Mesh bundles). We depict two examples of 2-mesh bundles over
the stratified 1-simplex CStr [1] in Fig. 1.10. (In each case, the reader may construct
a 2-truss bundle by passing to fundamental truss bundles).

Figure 1.10: A closed resp. open 2-mesh bundle over the stratified 1-simplex

We now discuss the theory mesh and truss bundles in more detail. Note that
many of our definitions specialize to the case of n-meshes and n-trusses as well, but
we will not explicitly repeat them.

Notation 1.3.12 (Total stratifications and posets). Given an n-mesh bundle p = {pi :
Mi →Mi−1}1≤i≤n, we call Mn the ‘total stratification’ of p and denote it by Tot p.
Similarly, in the case of an n-truss bundles q = {qi : Ti → Ti−1}1≤i≤n we call Tn the
‘total poset’ and denote it by Tot q.
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Definition 1.3.13 (Mesh bundle maps). Given n-mesh bundles p = {pi : Mi →
Mi−1}1≤i≤n and p′ = {p′i : M ′i →M ′i−1}1≤i≤n, an n-mesh bundle map F : p→ p′

is a tower of stratified maps Fi : Mi → M ′i that commute with all pi, p′i, and such
that the Fi restrict to 1-mesh maps on fibers.

Definition 1.3.14 (Truss bundle maps). Given n-truss bundles q = {qi : Ti →
Ti−1}1≤i≤n and q′ = {q′i : T ′i → T ′i−1}1≤i≤n, an n-truss bundle map F : q → q′ is
a tower of poset maps Fi : Ti → T ′i that commute with all qi, q′i, and such that the
Fi restrict to 1-truss maps on fibers.

Convention 1.3.15 (Fixing the base). When working with maps F of bundles over the
same base B, we assume that F0 = idB (for both mesh and truss bundle maps).

Notation 1.3.16 (Mesh and truss categories). MeshBunn denotes the topologically
enriched category of n-mesh bundles and their maps, Meshn(B) its subcategory of
bundles over B, and Meshn its subcategory of n-meshes. Similarly, TrsBunn denotes
1-category of n-trusses bundles and their maps, Trsn(P ) its subcategory of bundles
over P , and Trsn its subcategory of n-trusses.

Remark 1.3.17 (Fundamental truss bundle functor). Note that any n-mesh bundle map
F : p→ p′ determines an n-truss bundle map ETrs p→ ETrs p′ by passing to entrance
path posets componentwise; we denote this map by ETrsF . This yields a topologically
enriched functor ETrs : Meshn(B)→ Trsn(EntrB) (see [DD21, §4.2.1]).

For the next observation, recall that we call a category ‘essentially gaunt’ if any two
isomorphic objects are isomorphic by a unique isomorphism.

Observation 1.3.18 (Essential gauntness of truss bundles). Truss bundle isomorphisms
F : q → q′ between n-truss bundles q, q′ over the same base (assumed to be fixed
by F ), are unique if they exist. By passing to any skeleton, we will replace all
isomorphisms q ∼= q′ of n-truss bundles by equalities q = q′.

Terminology 1.3.19 (Cellular and co-cellular n-truss bundle maps). An n-truss bundle
map F is called ‘cellular’, ‘cocellular’, or ‘balanced’ if each 1-truss bundle map Fi,
i > 0, is fiberwise so in the sense of Terminology 1.2.38. It is a ‘subtruss bundle’ (resp.
a ‘truss bundle isomorphism’) if firstly, each Fi, i > 0, is fiberwise so, and secondly,
F0 is a subposet (resp. a poset isomorphism). We similarly use the same terms
‘cellular’, ‘cocellular’, ‘balanced’, ‘submesh bundle’, and ‘mesh bundle isomorphism’
for mesh bundle maps F , whenever it applies to the fundamental n-truss bundle map
ETrsF .

Next, we recall the classification of n-truss and n-mesh bundles.

Definition 1.3.20 (n-Truss bordisms). The category of n-trusses and their
bordisms Tn is the category obtained by n times applying the functor T1(−) to the
terminal category ∗.
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As in the case n = 1 (see Observation 1.2.32), the category of n-truss bordisms Tn

is essentially gaunt. Consequently, passing to a skeleton, we may again consider
functors into Tn up to equality.

Observation 1.3.21 (Classification of n-truss bundles). n-Truss bundles over a poset
are classified by functors from the poset into Tn. To see this, consider the following
diagram, whose top row is an n-truss bundle q over P .

Tn Tn−1 Tn−2 · · · T1 T0 = P

∗ T1(∗) T2(∗) Tn−1(∗) Tn(∗)

qn qn−1 qn−2 q2 q1

χ1
q χ2

q χn−1
q χn

q

Just considering the top 1-truss bundle qn together with the ‘trivial labeling’ Tn → ∗,
we can apply Observation 1.2.48 to find a classifying functor χ1

q : Tn−1 → T1(∗). But
this classifying functor now provides a labeling for the 1-truss bundle qn−1 : Tn−1 →
Tn−2; thus, applying Observation 1.2.48 again, this T1(∗)-labeled bundle is now
classified by a functor χ2

q : Tn−2 → T(T1(∗)) = T2(∗). Continuing inductively and
defining χq := χnq , we see that n-truss bundles q over P (up to structure preserving
bundle isomorphism) are classified precisely by functors χq : P → Tn.

Lemma 1.3.22 (Classification of n-mesh bundles). Bundle isomorphism classes of
closed (or open) n-mesh bundles with base stratification B bijectively correspond to
functors Entr(B)→ Tn. The correspondence maps p 7→ χETrs(p).

We remark that the assumption that bundles are closed resp. open is used as it
simplifies the types of cellular subrefinements one encounters.

Proof of Lemma 1.3.22. Follows from [DD21, Prop. 4.2.22] and [DD21, Obs. 4.2.68].

Remark 1.3.23 (The 1-constructible case). Analogous to Note 1.2.36, the above lemma
generalizes to the 1-constructible case: bundle isomorphisms classes of 1-constructible
n-mesh bundles over a (not necessarily 0-truncated) base stratifications B correspond
to functors from the entrance path ∞-category Entr(B) into the 1-category Tn.

1.3.2 Labelings and stratifications.

Labelings and stratifications of n-trusses. We now endow n-truss bundles with
labelings and stratifications. Again, our definitions equally apply to the case of
‘non-bundled’ trusses and meshes and we will not separately spell out either of these
special cases.

Definition 1.3.24 (Labeled truss bundles). Let C be a category. A C-labeled
n-truss bundle (q, f) over P is an ‘underlying’ n-truss bundle q over P , together
with a ‘labeling’ functor f : Tot q → C.
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Observation 1.3.25 (Classification of labeled n-truss bundles). C-labeled n-truss
bundles are classified by the category Tn(C) of ‘C-labeled n-truss bordisms’ obtained
by n times applying the functor T1(−) to the category C. This uses the same
argument as Observation 1.3.21, but with the category C in place of ∗.

Definition 1.3.26 (Stratified n-truss bundles). A stratified n-truss bundle (q, f)
over a poset P is a labeled n-truss bundle over P such that
(1) f stratifies the poset Tot q (in the sense of Remark 1.2.50),
(2) the map f : Tot q → Entr(f) factors through q>0 : Tot q → P by a map

Entr(f)→ P (where q>0 is the composite qn ◦ qn−1 ◦ ... ◦ q1).

Note, condition (2) in the preceding definition guarantees that strata of (Tot q, f)
live in the fibers of q>0 : Tot q → P .

Remark 1.3.27 (Trivial stratifications). Every n-truss bundle q is trivially stratified
(q, f), by defining f : Tot q → ∗ to be the unique map to the terminal poset ∗.

Definition 1.3.28 (Stratified maps). Given two stratified n-truss bundles (q, f) and
(q′, f ′), a stratified map F : (q, f)→ (q′, f ′) is a truss bundle map F : q → q′ whose
top component Fn : Tot q → Tot q′ factors through f and f ′ by a (necessarily unique)
map Entr(F ) : Entr(f)→ Entr(f ′), that is, f ′ ◦ Fn = Entr(F ) ◦ f .

Terminology 1.3.29 (Stratified isomorphism). A stratified map F : (q, f)→ (q′, f) of
two stratified n-truss bundles (q, f), (q′, f ′) over the same base P (where F0 = idP ,
see Convention 1.3.15) is called a ‘stratified isomorphism’ if F : q → q′ is a truss
bundle isomorphism (see Terminology 1.3.19) and Entr(F ) is a poset isomorphism.

Observation 1.3.30 (Essential gauntness of stratified truss bundles). Stratified truss
bundle isomorphisms over a fixed base are unique if they exist. Thus, without harm
we can pass to a skeleton, and work with equality (q, f) = (q′, f ′) in place of stratified
isomorphisms (q, f) ∼= (q′, f ′).

Terminology 1.3.31 (Stratified subtrusses). A stratified map F : (q, f)→ (q′, f ′) of
stratified n-truss bundles is called a ‘stratified subtruss bundle’ if F : q → q′ is a
subtruss bundle (see Terminology 1.3.19) and Entr(F ) is conservative.5

Remark 1.3.32 (Stratified truss bundle pullback). Given a stratified n-truss bundle
(q, f) over P , and a map F : Q → P , then (q, f) pulls back to a stratified n-truss
bundle F ∗(q, f) ≡ (F ∗q, F ∗f) (formally, we first define the labeled truss bundle (S, g)
by the classifying map χ(q,f) ◦ F , and then set F ∗q = S and F ∗f = char(g), see
Remark 1.2.53). If F is a subposet inclusion Q ↪→ P , then we also write (q, f)|Q ≡
(q|Q, f |Q) for this pullback. (Note (q, f)|Q ↪→ (q, f) is a stratified subtruss.)

Let us now discuss the corresponding definitions for meshes. Recall a strict
coarsening is a coarsening of stratified spaces that is an identity on underlying
topological spaces.

5This last condition mirrors the fact that substratifications are conservative maps on entrance
path posets, see Recollection 1.1.7.
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Definition 1.3.33 (Stratified n-mesh bundles). A stratified n-mesh bundle (p, f)
an n-mesh bundle p together with a strict coarsening Tot p→ f to a stratification
f .

Note we may equivalently think of stratified mesh bundles as tuples (p, f) where p is
a mesh bundle and (Entr(Tot p), f) is a stratified poset (see Remark 1.2.51). This
yields the following relation of stratified trusses and meshes.

Remark 1.3.34 (Relating stratified n-truss and n-mesh bundles). Consider a stratified
n-mesh bundle (p, f) over B, and a stratified n-truss bundle (q, g) over Entr(B).
If q = ETrs p and if there is (a necessarily unique) isomorphism Entr(g) ∼= Entr(f)
that commutes with g, f and Tot q ∼= Entr(Tot p), then we call (q, g) a ‘stratified
fundamental truss bundle’ of (p, f), and conversely, say (p, f) is a ‘stratified classifying
mesh bundle’ of (q, g).

Notation 1.3.35 (Stratified fundamental n-truss bundles). Stratified fundamental
n-truss bundles of stratified n-mesh bundles (p, f) are essentially unique, and we
denote them by ETrs(p, f).

Notation 1.3.36 (Stratified classifying n-mesh bundles). Stratified classifying n-meshes
bundles of stratified n-truss bundles (q, g) are unique up to contractible choice (this
will follow from Corollary 1.4.9, at least for open/closed bundles), and we denote
them by CMsh(q, g).

Definition 1.3.37 (Stratified mesh bundle maps). Given stratified mesh bundles
(p, f), (p′, f ′) a stratified map F : (p, f)→ (p′, f ′) is a mesh bundle map F : p→ p′

whose top component Fn : Tot p → Tot p′ descends along the strict coarsenings
Tot p→ f and Tot p′ → f ′ to a stratified map f → f ′.

Remark 1.3.38 (Fundamental stratified truss bundle maps). Note, the construction
of fundamental truss bundle maps (see Remark 1.3.17) carries over to the setting
stratified maps: any stratified map F : (p, f)→ (p′, f ′) determines a stratified map
of truss bundles ETrsF : ETrs(p, f)→ ETrs(p′, f ′).

We will be particularly interested in the following class of stratified maps.

Definition 1.3.39 (Mesh bundle coarsenings). Given stratified mesh bundles (p, f),
(p′, f ′) over the same base stratification B, a mesh bundle coarsening F : (p, f)→
(p′, f ′) is a stratified map whose top component is a coarsening Fn : Tot p→ Tot p′

that descends to a stratified homeomorphism f ∼= f ′. We call F a strict mesh bundle
coarsening if Fn is a strict coarsening and f = f ′.

Example 1.3.40 (Mesh coarsenings). If the base stratification is trivial, the notion
of mesh bundle coarsening specializes to that of ‘mesh coarsening’. An example of a
strict mesh coarsening of stratified 2-meshes is given in Fig. 1.11 (note that we omit
the depiction of the tower of 1-mesh bundles).
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f

M ′

coarsen

Figure 1.11: A mesh coarsening between stratified 2-meshes

The notion of mesh coarsenings, in turn, has the following combinatorial counterpart.

Definition 1.3.41 (Truss bundle coarsenings). A stratified map F : (q, f)→ (q′, f ′)
of stratified truss bundles is called a truss bundle coarsening if there is a ‘classi-
fying’ mesh bundle coarsening G such that F = ETrsG.

The definition also has a purely combinatorial phrasing, as follows.

Alternative Definition 1.3.42 (Truss bundle coarsenings, combinatorially). A
stratified map F : (q, f) → (q′, f ′) is a truss bundle coarsening if Entr(F ) is an
isomorphism and the underlying truss bundle map F : q → q′ is a surjective cocellular
map such that Fi, i > 0, preserves dimensions of endpoints of all 1-truss fibers. (Note,
if q and q′ are open truss bundles this last condition becomes redundant as it is
implied by cocellularity.)

Note also that the definition equally applies in the (trivially stratified) case of truss
bundles, allowing us to speak of truss coarsenings F : q → q′.

Remark 1.3.43 (Relation of mesh and truss coarsenings). Given a stratified mesh
bundle (p, f) and with stratified fundamental truss bundle (q, g) = ETrs(p, f) then
strict mesh coarsenings (p, f)→ (p′, f ′) are in 1-to-1 correspondence with truss bundle
coarsenings (q, g)→ (q′, g′): the correspondence takes a strict mesh coarsening F to
the fundamental truss bundle map ETrsF .

1.3.3 Framing structures of n-meshes. Recall that, by definition, the underly-
ing manifolds of 1-meshes carry a framing. We defined n-meshes as towers of bundles
of 1-meshes. As a consequence, the underlying spaces of n-meshes too carry a type of
framing structure. In this section, we give a description of this structure as a special
case of a more general notion of ‘framed spaces’. Such framed spaces are modelled on
compact contractible ‘framed patches’ in standard framed Rn as follows. We recall
core notions from [DD21, App. A.3].

Terminology 1.3.44 (Framed patches). Inductively in n ∈ N, an ‘n-framed patch’
U ⊂ Rn is a non-empty subspace of Rn with the property that its projection πn(U)
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is an (n − 1)-framed patch, and such that πn : U → πn(U) has fibers of the form
[γ−(u), γ+(u)] for two continuous sections γ± : πn(U)→ U .

Terminology 1.3.45 (Framed maps and partial maps of patches). Given two n-framed
patches U and V , a *(partial) n-framed patch map* F : U → V is a (partial)
continuous map which descends along πn to a (partial) (n− 1)-framed patch map
Fn−1 : πn(U)→ πn(V ) such that mappings of fibers F : π−1n (x)→ π−1n (Fn−1(x)) are
monotone.

Example 1.3.46 (The closed n-cube). The standard example of an n-framed patch
is the closed n-cube In = [−1, 1]n ⊂ Rn. A (non-partial) map In → In is framed if
and only if it is locally framed.

Definition 1.3.47 (Framed spaces and their maps). Let X be a topological space.
Fix n ∈ N.

1. An n-framed chart (U, γ) in X is an embedding γ : U ↪→ Rn of a subspace
U ⊂ X whose image im(γ) is an n-framed patch.

2. Two n-framed charts (U, γ), (V, ρ) in X are compatible if ρ ◦ γ−1 : U → V is a
locally framed (partial) map.

An n-framed space is a space X together with an ‘atlas’ A of compatible n-framed
charts {(Ui, γi)} such that {Ui} are a locally finite cover of X.

Example 1.3.48 (Non-compact framed standard space). Standard Rn has a standard
framing with charts [−l, l]n ⊂ Rn, l ∈ N. Similarly, the open n-cube In = (−1, 1)n has
a standard framing with charts [−1 + 1

l , 1−
1
l ]
n ⊂ In ⊂ Rn. Framed maps Rn → Rn

(resp. In → In) are precisely maps that factor through the standard projections
Rn = Ri × Rn−i → Ri. Note that Rn and In are framed homeomorphic.

An n-framed space (X,A) is said to be ‘flat framed’ if it admits a framed embedding
γ : X ↪→ Rn) into standard framed Rn whose image is an n-framed patch. In this
case, (X,A) is framed homeomorphic to (X, {(X, γ)}). Note that the image of any
framed embedding of a flat framed space (X,A) into Rn is a patch. Since we will, in
fact, only need to work with flat framed spaces (X,A), we usually say a ‘chart of X’
to mean an framed embedding γ : X ↪→ Rn.

The next remark points out an important convention regarding the indexing of
coordinates when working with flat framed spaces.

Remark 1.3.49 (Categorical directions of Rn). We refer to the (n− k)th coordinate of
Rn as its ‘kth categorical direction’. We usually label the coordinate axes of Rn by their
categorical directions: that is, we label the coordinate axes of Rn = (R×R× ...×R)
by (n, n− 1, . . . , 1). We also often use ‘k-arrows’ (arrows with k parallel lines) with
the convention that k-arrows point in the kth categorical direction. For n = 2 this
is illustrated in Fig. 1.12 on the right. The reason for this convention lies in the
‘categorical’ interpretation of framed space that we will discuss later in Section 2.4.
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Example 1.3.50 (Flat framed space). A space X with a 2-framed chart γ into R2

is shown in Fig. 1.12. The axes of R2 are labelled by categorical directions (that
is, the first coordinate axis is labeled with ‘2’, and the second with ‘1’). Grey lines
indicate the preimages of the projection π2 : R2 → R1 mapping (x1, x2) to x1. We
indicate the standard framing (e1, e2) of R2 by a grid of coordinate frames (e1 and e2
being the constant vector fields (1, 0) resp. (0, 1); to depict vectors we use k-arrows
as explained in Remark 1.3.49). We also show how these frames pull back to X.

R2 = R× R

2

1

γ
↪−−−−→

X

Figure 1.12: A flat framed space with a chart into standard framed euclidean space

Terminology 1.3.51 (Flat framed bundles). Given a ‘base’ space B, all notions from
Definition 1.3.47 have immediate analogs for the case of ‘bundles over B’: for this,
replace Rn with B ×Rn, and π>i : Ri ×Rn−i → Ri with B × π>i : B ×Ri ×Rn−i →
B × Ri, and require that F0 = idB for framed maps F . For instance, we speak of an
‘n-framed chart bundle (U, γ) over B’ to mean an embedding γ : U ↪→ B × Rn.
Terminology 1.3.52 (Framed stratified notions). We add the adjective ‘(flat) framed’
to standard notions of stratification theory to indicate that the underlying topological
spaces are flat framed spaces, and that the underlying maps are framed maps (this
similarly applies in the case of bundles).

The relevance of flat framed spaces (and their framed maps) to us here stems
from the next observations. These show that any n-mesh (and similarly, any n-mesh
bundle) has a canonical flat n-framing structure. We will refer to charts in this
canonical framing structure as the ‘coordinatizations’ of the n-mesh.

Observation 1.3.53 (Canonical framing structure of meshes and mesh bundles). Given
an n-mesh M = {pi : Mi → Mi−1}1≤i≤n, a ‘coordinatization’ is an embedding
γn : Mn ↪→ Rn, such that for all i, the composite projection p>i = pi+1 ◦ ... ◦ pn :
Mn → Mi factors through π>i ◦ γn : Mn → Ri by an embedding γi : Mi ↪→ Ri
and this embedding defines a coordinatizing embedding of the 1-mesh bundle pi
in the sense of Definition 1.2.8 (up to identifying Mi−1 ∼= im(γi−1) via γi−1). The
fact that coordinatizations of n-meshes exist can be seen as follows. Inductively,
construct a coordinatization γn−1 : Mn−1 ↪→ Rn−1 of the (n − 1)-mesh M = {pi :
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Mi → Mi−1}1≤i≤n−1. Pick a coordinatizing embedding Mn ↪→ Mn−1 × R for the
1-mesh bundle pn : Mn → Mn−1 and denote the mapping of this embedding by
x 7→ (pn(x), γ(x)). Set γn : Mn → Rn to map x 7→ (γn−1 ◦ pn(x), γ(x)). This
constructs a coordinatization γn of M as claimed. One can similarly define and
construct coordinatizations γn in B×Rn for n-mesh bundles over B. By construction,
all coordinatizations of a given n-mesh (resp. n-mesh bundle) are framed compatible
charts of Mn and thus define a flat framing structure.

Observation 1.3.54 (Mesh maps are framed). Equipping meshes (and similarly mesh
bundles) with their canonical framing structures, observe that all mesh maps are
framed maps in the sense of Definition 1.3.47.

We often prefer to work in coordinates instead of abstract topological spaces. For
instance, in Section 2 and Section 3 our main interest will lie with the open n-cube
(−1, 1)n with flat framing inherited from the standard framing of Rn.
Observation 1.3.55 (Coordinatizing open n-meshes). Any open n-mesh M has a
coordinatization γ : M ↪→ Rn whose image is the open cube In = (−1, 1)n ⊂ Rn.
Note 1.3.56 (On the notion of framing). The notion of ‘framing’ described in Defini-
tion 1.3.47 is not immediately recognizable as being related to the standard meaning
of the term. A relation is explained in combinatorial terms in [DD21, §1], and in more
classical terms in [DD21, App. A] where it is observed that the notion of framings
described here is related to a ‘metric-free’ generalization of orthonormal frames.

1.4 Combinatorializibility of meshes and tame stratifications

In this section we summarize results about the ‘combinatorializability of flat framed
stratified space’ from [DD21, §5]. We first discuss the equivalence of meshes and
trusses. We then add stratifications into the mix, showing that ‘tame’ stratifications
of flat framed space can be combinatorialized by so-called ‘normalized stratified
trusses’.

1.4.1 Combinatorialization of meshes. We begin by recalling that the funda-
mental truss functor is a weak equivalence between the ∞-category of meshes (resp.
mesh bundles) and the 1-category of trusses (resp. truss bundles). In [DD21], this is
proven in the following ‘closed-cellular’ and ‘open-cocellular’ cases.6

Notation 1.4.1 (Cellular and cocellular subcategories). Let M̄eshn (resp. M̊eshn)
denote the subcategory of Meshn of closed (resp. open) n-meshes with cellular (resp.
cocellular) maps. Similarly, let T̄rsn (resp. T̊rsn) denote the subcategory of Trsn of
closed (resp. open) n-trusses with cellular (resp. cocellular) maps.

Recall from Remark 1.3.17 that ETrs is a functor of topologically enriched categories.
6One reason for only considering these cases is, as explained in [DD21, §4.2], that they are

the easiest to handle for (∞, 1)-categorical proof methods (in the other cases one encounters
(∞, 2)-categories). Another reason is that these two cases will be the most meaningful to us.
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Theorem 1.4.2 (Equivalence of meshes and trusses, [DD21, Thm. 4.2.1]). The
functors ETrs : M̄eshn → T̄rsn and ETrs : M̊eshn → T̊rsn are weak equivalences of
∞-categories.

Remark 1.4.3 (The classifying mesh functor). Choosing a weak inverse to the functor
ETrs gives rise to a ‘classifying mesh’ functor CMsh : T̄rsn → M̄eshn (and similarly
CMsh : T̊rsn → M̊eshn). We discuss a concrete construction later in Remark 2.2.22.

Theorem 1.4.2 immediately generalizes to the case of labeled (or stratified) meshes
and trusses, since these structures are, by definition, in correspondence for meshes and
their fundamental trusses. We record this generalization in the case of stratification
structures (we add the prefix ‘Str’ to indicate the straight-forward ‘stratified’ analogues
of the categories from Notation 1.4.1).

Corollary 1.4.4 (Equivalence of stratified meshes and trusses). The functor ETrs
gives weak equivalences between StrM̄eshn and Str̄Trsn, resp. StrM̊eshn and Str̊Trsn.

As an application of Theorem 1.4.2, we discuss the geometric dualization of
meshes.

Definition 1.4.5 (Truss dualization functor). The truss dualization † : Trsn →
Trsn takes n-trusses T = {pi : Ti → Ti−1}1≤i≤n to their dual n-trusses T † = {p†i :

T op
i → T op

i−1}1≤i≤n (where p†i is the dual bundle of pi, see Definition 1.2.41), and truss
maps F : T → S to their dual truss maps F † : T † → S† whose mapping on objects
equals that of F .

Note that † restricts to an isomorphisms of categories † : T̄rsn ∼= T̊rsn. Together with
Theorem 1.4.2 this implies the following.

Corollary 1.4.6 (Dualization of n-meshes, [DD21, Cor. 4.2.4]). There is an ∞-
functor † : M̄eshn ' M̊eshn determined by requiring ETrs ◦ † = † ◦ ETrs. The functor
is a weak equivalence.

Example 1.4.7 (Dualization of n-meshes). We illustrate the action of dualization
of 2-meshes in an example in Fig. 1.13.

†

Figure 1.13: Dualization of 2-meshes
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Theorem 1.4.2 also generalizes to the case of mesh and truss bundles. (Our
previous Notation 1.4.1 for closed-cellular and open-cocellular meshes and trusses
generalizes to the case of bundles over a fixed base; notationally we indicate this by
adding ‘(B)’ for the base stratifications B of mesh bundles resp. ‘(P )’ for base posets
P of truss bundles.)

Theorem 1.4.8 (Equivalence of mesh bundles and truss bundles, [DD21, Thm.
4.2.2]). The functors ETrs : M̄eshn(B) → T̄rsn(EntrB) and ETrs : M̊eshn(B) →
T̊rsn(EntrB) are weak equivalences of ∞-categories.

As before, the theorem also carries over to the stratified case, directly generalizing
our previous Corollary 1.4.4 (with the evident notational changes for bundles).

Corollary 1.4.9 (Equivalence of stratified mesh and truss bundles). The functor
ETrs gives weak equivalences between StrM̄eshn(B) and Str̄Trsn(EntrB), resp. between
StrM̊eshn(B) and Str̊Trsn(EntrB).

Note 1.4.10 (The 1-constructible case, cf. [DD21, Rmk. 4.2.4]). Following the earlier
Note 1.2.36 and Remark 1.3.23, Theorem 1.4.8 has a yet further variation (with
essentially the same proof): the ∞-category of closed-cellular (resp. open-cocellular)
1-constructible n-mesh bundles over a (not necessarily 0-truncated) base stratification
B is weakly equivalent to corresponding category of n-truss bundles over the entrance
path ∞-category Entr(B) (here, an ‘n-truss bundle over an ∞-category C’ describes
the data of a functor C→ Tn, but we will omit a detailed discussion of the notion).

1.4.2 Tame stratifications and coarsest refining meshes. We now shift focus
to stratifications of flat framed spaces. More precisely, we are interested in those
stratifications that admit a framed refinement by a mesh in the following sense.

Terminology 1.4.11 (Mesh refinements). Given a stratification (X, f) of a flat n-
framed space (X, γ), a ‘mesh refinement’ of f by an n-mesh M is a framed strict
coarsening Mn → f , where Mn is the total stratification of M . We will denote mesh
refinements by writing M  f .

Note that any stratified mesh (M,f) yields a stratification f together with a mesh
refinement M  f . (And conversely, any mesh refinement M  f of a stratification
f defines a stratified mesh (M,f).)

Definition 1.4.12 (Tame stratifications). A tame stratification (X, f, γ) is a
stratification (X, f) of a flat framed space (X, γ) that has a mesh refinement.

Remark 1.4.13 (‘Tame’ vs. ‘flat framed’ stratifications). Tame stratifications of flat
framed spaces were simply called ‘flat framed stratifications’ in [DD21, §5]. For our
purposes here it will be useful to distinguish both ‘tame’ and ‘not necessarily tame’
stratifications of flat framed spaces.

To simplify notation, we will usually work with subspaces of Rn.
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Notation 1.4.14 (Working with subspaces). We henceforth drop framed charts γ from
our notation, and work with subspaces X ⊂ Rn instead. In particular, we abbreviate
tame stratifications (X, f, γ) by (X, f) or f .

Recall that a ‘framed stratified map’ is a stratified map whose underlying map is a
framed map of framed spaces (see Terminology 1.3.52).

Definition 1.4.15 (Tame framed stratified maps). A tame framed stratified
map F : (X, f)→ (Y, g) of tame stratifications is a framed stratified map such that
there exist mesh refinements M  f and M ′  f ′ (see Terminology 1.4.11) through
which F factors by an n-mesh map G : M →M ′, i.e. the following commutes

(X, f) (Y, f ′)

Mn M ′n

F

Gn .

A priori, a tame stratification can have many refining meshes. The next result
observes that there is in fact a canonical choice. The result plays a central role for
the combinatorializibility of tame stratifications.

Theorem 1.4.16 (Coarsest refining meshes, [DD21, Thm. 5.1.17]). Every tame
stratification f has a unique ‘coarsest refining mesh’ M  f , satisfying that any
other mesh refinement M ′  f factors through M  f by a unique strict n-mesh
coarsening M ′ →M .

The notion of ‘coarsest refining meshes’ has the following combinatorial counterpart.

Definition 1.4.17 (Normal forms). A stratified truss (T, f) is said to be in normal
form (or ‘normalized’) if any truss coarsening F : (T, f)→ (S, g) is an identity.

Observation 1.4.18 (Relation of normal forms to coarsest refining meshes). Consider
a stratified n-mesh (M,f) with stratified fundamental n-truss (T, g) = ETrs(M,f).
Using Remark 1.3.43, note (T, g) is in normal form iff M  f is the coarsest refining
mesh.

Corollary 1.4.19 (Normalization). Every stratified truss (T, f) has a unique truss
coarsening to a stratified truss in normal form, denoted (T, f)→ JT, fK.

Proof. Pick any stratified classifying mesh (M, g) ∼= CMsh(T, f) and use Theo-
rem 1.4.16 for the tame stratification g.

Let us briefly discuss a purely combinatorial approach to the existence of normal
forms. First, note that the notion of truss coarsenings can be straight-forwardly
generalized to deal with labelings in some category C.
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Terminology 1.4.20 (Truss coarsenings for labeled trusses). Given C-labeled trusses
(T, f) and (T ′, f ′), a ‘truss coarsening’ F : (T, f) → (T ′, f ′) is a truss coarsening
F : T → T ′ such that f ′ ◦ Fn = f commutes.

Corollary 1.4.19 now generalizes as follows.

Terminology 1.4.21 (Normalized labeled trusses). A C-labeled truss (T, f) is said to
be ‘normalized’ (or in ‘normal form’) if no non-identity coarsening applies to it.

Observation 1.4.22 (Existence of normal forms for labeled trusses). Any C-labeled
truss (T, f) has a unique coarsening (T, f) → JT, fK to a normalized labeled truss
JT, fK to which no non-identity coarsening applies. For open trusses T , this was
shown in [Dor18, Thm. 5.2.2.11], and the given proof applies to trusses as well. That
proof is purely combinatorial and does not rely on any results about meshes.

Further generalizations of Corollary 1.4.19 can be obtained, for instance, by weakening
the condition f ′◦Fn = f in Terminology 1.4.20 to hold only up to natural isomorphism;
or yet more generally, by considering labelings in higher categories.

Remark 1.4.23 (Normal forms are computable). Observe that normal forms are algo-
rithmically computable: indeed, we may simply search through all truss coarsenings
of a labeled n-truss (T, f) to find its normal form JT, fK.7

1.4.3 Tameness via piecewise-linearity. We briefly recall how to characterize
tameness in terms of ‘piecewise-linearity’.

Terminology 1.4.24 (Compact PL stratifications supported in Rn). A ‘compact sim-
plicial stratification’ (U,K) is a finite stratification of a subspace U of Rn in which
closures of strata are linearly embedded simplices. A ‘compact PL stratification’
(U, f) is a stratification f of a compact subspace U of Rn that has a refinement by
a

In the following, we assume all instances of U, V,W to be compact subspaces of Rn
which are framed patches (in the sense of Terminology 1.3.44).

Terminology 1.4.25 (Framed PL structures). Given a stratification (U, f), a ‘framed
triangulation’ of (U, f) is a framed stratified homeomorphism α : (U, f) ∼= (V, g) to a
PL stratification (V, g). Two framed triangulations α : (U, f) ∼= (V, g), β : (U, f) ∼=
(W,h) are ‘framed equivalent’ if there is a framed stratified PL homeomorphism

7There are more efficient algorithms to compute normal forms JT, fK: for instance, inductively
in descending level i, one can compute the normalized labeled 1-truss bundles J(qi, fi)K, where
pi : Ti → Ti−1 is the ith 1-truss bundle in T , the labeling fi is classifying functor χJqi+1,fi+1K,
and fn = f is the labeling of T . This computes the functor f0, which classifies JT, fK. The fact
that normal forms can be computed in this way follows from [Dor18, Lem. 5.2.2.8], but an explicit
description of the algorithm was omitted in loc.cit.. A related algorithm was recently described in
detail in [HRV22].
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ρ : (V, g) ∼= (W,h).8 A ‘framed PL structure’ on (U, f) is a framed equivalence class
of framed triangulations.

Note that any compact tame stratification (U, f) has a canonical framed PL structure
since f ∼= CMsh(NETrs f) (note, analogous to classifying stratifications of posets
having canonical PL structures, the classifying stratified mesh CMshT of any truss
T has canonical framed PL structure; see Remark 2.2.22 for further explanation, and
see [DD21, §4.2.4] for full details of the construction). In fact, this is the unique
framed PL structure of f as the next theorem records.

Theorem 1.4.26 (Uniqueness of framed PL structures, [DD21, Cor. 5.7]). All
compact tame stratifications (U, f) have unique framed PL structures. This structure
is represented by CMshNETrs f .

In contrast, classical topological stratifications and PL stratifications aren’t compatible
in this way, that is, a given topological stratification may have several inequivalent
PL structures or none at all.

In fact, PLness implies tameness.

Theorem 1.4.27 (PL implies tame). Any compact PL stratification (U, f) is tame.

Proof. This is a slight variation of [DD21, Prop. 5.8].

Note that the theorems in particular specialize to the case of the closed n-cube
U = In (see Example 1.3.46).

Remark 1.4.28 (Characterization of compact tameness). Together, the preceding two
theorems imply that a compact stratification (U, f) is tame if and only if it admits a
framed triangulation.

Remark 1.4.29 (PL implies tame for maps). Analogous to the proof of Observa-
tion 1.4.33 one shows that any PL map of PL stratifications (U, f)→ (V, g) is tame
(this also holds in the open case for tame PL stratifications on In as long as maps
can be made simplicial by finite triangulations).

Finally, we also record the following ‘unbounded, compactly-defined’ variations
of the above results. These slightly enhance the observations about tameness and
piecewise-linearity made in [DD21, Ch. 5].

Terminology 1.4.30 (Unbounded, compactly-defined PL stratification of Rn). A
‘compactly-defined simplicial stratification’ K of Rn is a finite stratification of Rn
by open disks whose closures are the images of linear embeddings ∆k × Rl≥0 ↪→ Rn
(where k + l ≤ n). A ‘compactly-defined PL stratification’ (Rn, f) is a stratification
f of a bounded subspace U of Rn that has a refinement by a compactly-defined
simplicial stratification.

8One may further require this to satisfy ρ ◦ α ' β up to a homotopy through framed stratified
maps (or even framed stratified homeomorphisms)—but the resulting notions of framed PL structures
are in fact all equivalent.
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Terminology 1.4.31 (Unbounded, compactly-defined PL structures). Given a strati-
fication (Rn, f), a ‘framed compactly-defined triangulation’ of (Rn, f) is a framed
stratified homeomorphism α : (Rn, f) ∼= (Rn, g) to a compactly-defined PL strat-
ification (Rn, g). Two framed triangulations α : (Rn, f) ∼= (Rn, g), β : (Rn, f) ∼=
(Rn, h) are ‘framed equivalent’ if there is a framed stratified PL homeomorphism
ρ : (Rn, g) ∼= (Rn, h). A ‘compactly-defined framed PL structure’ on (Rn, f) is a
framed equivalence class of framed triangulations.

Variations of the proofs of Observation 1.4.32 and Observation 1.4.33 yield the
following observations.

Observation 1.4.32 (Uniqueness of compactly-defined framed PL structures). All
tame stratifications (Rn, f) have unique framed PL structures. This structure can be
represented by CMshNETrs f (for an appropriate ‘Rn-linear’ definition of CMsh).

Observation 1.4.33 (Compactly-defined PL implies tame). Any compactly-defined
PL stratification (Rn, f) is tame.

Remark 1.4.34 (Characterization of tameness on Rn). Together, the preceding two
observations imply that a stratification (Rn, f) is tame if and only if it admits a
framed compactly-defined triangulation (in this case, abusing terminology a bit,
we also say that f admits a ‘framed compact triangulation’ or is ‘framed compact
triangulable’.

1.4.4 Combinatorialization of tame stratifications. The central ‘canonical
combinatorialization’ theorem for tame stratifications can now be stated as follows.

Theorem 1.4.35 (Combinatorialization of tame stratifications, [DD21, Thm. §5.0.4]).
Tame stratifications up to framed stratified homeomorphism are in 1-to-1 correspon-
dence with normalized stratified trusses.

Proof of Theorem 1.4.35. Given a tame stratification f , first construct its coarsest
refining mesh M  f . The normalized stratified truss corresponding to f is then
given by ETrs(M,f) (see Observation 1.4.18). Equivalently, this stratified truss is
obtained as the normal form JT, gK of the fundamental truss (T, g) = ETrs(M,f) of
any mesh refinement M  f .

Notation 1.4.36 (Combinatorialization of tame stratifications). Given a tame stratifi-
cation (X, f), we denote its coarsest refining mesh by Mf . We abbreviate ETrs(Mf , f)
simply by NETrs f (or by NETrs(X, f) if we want to make the underlying flat framed
space X explicit), and refer to it as the ‘normalized stratified fundamental truss’ of
f . Conversely, we also call f a ‘classifying tame stratification’ of NETrs f (or any
stratified truss isomorphic to it).

Example 1.4.37 (Combinatorializing tame stratifications). In Fig. 1.14 on the left
we depict a tame stratification f of the open 2-cube I2 = (−1, 1)2; to its right, we
depict its coarsest refining mesh Mf . On the further right, we depict the normalized
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stratified truss (T, g) = ETrs(Mf , f) consisting of a 2-truss T and the characteristic
poset map g = Entr(Mf → f) (we depict g by coloring images x and preimages
g−1(x) in the same color).

f

refines←−−−−

Mf T

g−−−−→

↓

↓

↓

↓

Entr(f)

Figure 1.14: Combinatorializing tame stratifications

Let us also briefly address how our discussion of tame stratification, coarsest
refining meshes, and normalized stratified trusses generalizes to the case of bundles.

Terminology 1.4.38 (Tame stratified bundles). Note that replacing meshes by mesh
bundles over a stratification B, and flat framed spaces by flat framed bundles over B
(see Terminology 1.3.51), one readily defines ‘tame stratified bundles’ f over B to be
stratified bundles (X, f)→ B with underlying bundle map X ⊂ B × Rn → B, such
that f can be strictly refined by some mesh bundle p over B; as before, we write this
refinement as p f .

Note, a mesh refinement p  f defines and is defined by a stratified mesh bundle
(p, f).

Terminology 1.4.39 (Normalized stratified truss bundles). On the combinatorial side,
the notion of normal forms carries over verbatim: a stratified truss bundles (q, f) is
‘normalized’ if no non-trivial truss bundle coarsening applies to it.

Theorem 1.4.40 (Coarsest refining mesh bundles, [DD21, Thm. 5.2.24]). Every
tame stratified bundle f has a ‘coarsest refining n-mesh bundle’ p f , such that any
other refining n-mesh bundle p′  f factors through p f by a strict n-mesh bundle
coarsening F : p′ → p.

Corollary 1.4.41 (Normalization for bundles). Every stratified truss bundle (q, f)
has a unique truss coarsening (q, f)→ Jq, fK to a normalized stratified truss bundle.

Theorem 1.4.42 ([DD21, Thm. 5.2.25]). Tame bundles over B up to framed stratified
homeomorphism are in 1-to-1 correspondence with normalized stratified trusses over
Entr(B).

Proof. Given a tame stratified bundle f over B, the corresponding normalized
stratified truss is constructed as ETrs(p, f) for the coarsest refining mesh bundle
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p f . Equivalently, this can be obtained as the normal form Jq, gK of the fundamental
truss (q, g) = ETrs(p, f) of any mesh bundle refinement p f .

Terminology 1.4.43 (Combinatorialization of tame stratified bundles). Given a tame
stratified bundle f , we denoted its coarsest refining mesh bundle by pf . As before,
we abbreviate ETrs(pf , f) by NETrs f , and speak of the ‘normalized fundamental
stratified truss bundle’ of f . Conversely, we also call f a ‘classifying tame stratified
bundle’ of NETrs f (and of any stratified truss bundle isomorphic to it).

2 Manifold diagrams

We give two definitions of manifold diagrams; one in more familiar geometric terms,
and one in purely combinatorial terms. Using our results about the combinatorial-
izability of tame stratifications in the previous section, we will deduce that these
definitions are equivalent. We use our construction of dualization functors in the
previous section to relate manifold diagrams to so-called ‘cell diagrams’, which can be
thought of as pasting diagrams of higher morphisms in the familiar higher categorical
sense.

2.1 Topological definition

2.1.1 Definition on the open cube. Giving a definition of manifold diagrams
in topological terms will require two ingredients: framed conicality and tameness.
It will be convenient to fix the following ‘framed background’ space for manifold
diagrams.

Notation 2.1.1 (Cubes). We denote by In the open n-cube (−1, 1)n in Rn, and by In

the closed n-cube [−1, 1]n in Rn (we consider both as flat n-framed spaces leaving
the inclusion γ into Rn implicit, see Definition 1.3.47). We write ∂In = In \ In for
the n-cube boundary.

Terminology 2.1.2 (Cubical links and cones). A ‘cubical link’ (or simply, a ‘link’) is a
stratification (∂In, l) of the n-cube boundary. We identify the open cone c(∂In) =
∂In × [0, 1)/∂In × {0} with the open cube In by mapping (x, λ) ∈ ∂In × [0, 1) to
λx ∈ In. Similarly we identify the closed cone c(∂In) with In. In particular, given a
link (∂Ik, l) we write (Ik, c(g)) for the open cone of l and (Ik, c(l)) for the closed cone
(see Recollection 1.1.12). We say l is a ‘tame’ link, if (In, c(l)) is a tame stratification
(which implies (In, c(l)) too is tame).

Recall ‘conical’ stratification require tubular neighborhoods of the form U×(c(L), c(l))
(see Recollection 1.1.13). Recall the notions of framed maps (see Definition 1.3.47),
and of tame framed stratified maps (see Definition 1.4.15).

Definition 2.1.3 (Framed conical stratifications). Given a stratification (In, f) and
a point x ∈ In we say f is (tame) framed conical at x if there is a (tame) link
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(∂In−k, lx) and a (tame) framed stratified neighborhood φ : Ik×(In−k, c(lx)) ↪→ (In, f)
such that x ∈ Ik × {0}, where 0 is the cone point of c(lx). We say (In, f) is (tame)
framed conical if it is (tame) framed conical at all x ∈ In.

We usually refer to the neighborhood φ in the preceding definition as a ‘framed
tubular neighborhood around x’.

Example 2.1.4 (Framed conicality condition). In the middle of Fig. 2.1 we depict a
tame stratification in I2 (we use Remark 1.3.49 to indicate the framing of I2). Note
that the ‘bifurcating’ line is a single stratum. The stratification is framed conical
at the blue point as shown, but it fails to be framed conical at the red ‘bifurcation’
point. Another illustration of the framed conicality condition was given earlier in
Fig. I.3.

∼= ×

Figure 2.1: Tame stratification with framed conical and non-conical points

We can now define manifold diagrams as follows.

Definition 2.1.5 (Manifold n-diagrams). A manifold n-diagram (In, f) is a tame
stratification of the open cube that is tame framed conical.

Remark 2.1.6 (Strata are manifolds endowed with local euclideanization). The framed
conicality condition guarantees the following. Strata in manifold n-diagrams are
k-manifolds (0 ≤ k ≤ n). Each k-manifold stratum M in a manifold n-diagram has a
local homeomorphism to Ik, obtained by restricting the projection In → Ik to M .

Example 2.1.7 (Manifold diagrams). A range of examples in dimensions n = 1,
2, and 3 were given in Fig. I.1. In Fig. 2.2 we give two examples in dimension 4,
illustrated by sampling at slices {ti}× I3 of the 4-cube I4 for ‘times’ ti ∈ I: small dots
are restriction of 1-manifold strata to these slices, while big dots represent 0-manifold
strata; the evolution of 1-manifold strata across time slices is indicated in color.

Non-Example 2.1.8 (Non-tame diagram). In Fig. 2.3 we depict a stratification in
dimension 3 that is not a manifold 3-diagram. Note that the given stratification
(I3, g) is framed conical, but is itself not tame—indeed, as shown its projection to
I2 has infinitely many intersections which cannot admit a mesh refinement (since
meshes are finite stratifications).
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t0 t1 t2 t3 t4

Figure 2.2: Manifold 4-diagrams

Figure 2.3: A non-tame diagram

We remark that is possible to weaken ‘tame framed conicality’ to ‘framed conicality’ in
the definition of manifold diagrams, without changing the class of tame stratifications
that are manifold diagrams.

Remark 2.1.9 (Weakening the tame framed conicality condition). Given a tame
stratification (In, f) which is framed conical, then it is also tame framed conical and
thus a manifold n-diagram. In other words, weakening Definition 2.1.5 by replacing
tame framed conicality by framed conicality yields and equivalent definition.9

The preceding remark can now be combined with our earlier Remark 1.4.34, to reach
the following alternative definition of manifold diagrams.

Alternative Definition 2.1.10 (Manifold n-diagrams, unbounded definition). An
(unbounded) manifold n-diagram (Rn, f) is a framed compactly triangulable strat-
ification of the open cube that is framed conical.

Both definitions yield the same class of stratifications under any framed identification
Rn ∼= (−1, 1)n. For our purposes here (in particular, for the relation of manifold
diagrams and the notion ‘compact manifold diagrams’ introduced in the next section

9A proof of this fact can be given by first observing that tubular neighborhoods can always be
chosen tame (by appropriately shrinking them), and then ensuring that their inclusion map must be
tame as well by using the ‘generalized key lemma’ in [DD21, Ch. 5].
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via a compactification operation) the first definition will turn out to be a bit more
convenient.

2.1.2 Definition on the closed cube. Instead of defining manifold diagrams
on the open cube In we may also consider manifold diagrams on the closed cube
In. As we will see, the two notions are (almost) in correspondence by a notion of
compactification.

Terminology 2.1.11 (Corner neighborhoods). Let P = {∅,−1,+1}, and recall that
I = (−1, 1) and I = [−1, 1]. For σ ∈ P, denote by Iσ the (open or half-open)
interval I ∪ σ (which is a subinterval of I). Now let σ = (σ1, σ2, ..., σk) ∈ Pk be
a P-valued k-tuple. Denote by Iσ the ‘σ-corner’ obtained as the k-fold product
Iσ1 × Iσ2 × ...× Iσk .

Definition 2.1.12 (Compact framed conical stratifications). A tame stratification
(In, f) is (tame) compact framed conical at x ∈ In if x has a (tame) framed
stratified neighborhood Iσ × (Ik, c(lx)) ↪→ (In, f) where σ ∈ Pn−k and x ∈ Iσ × {0}.
We say f is (tame) compact framed conical if it is so at all points x ∈ In.

Definition 2.1.13 (Compact manifold diagrams). A compact manifold n-diagram
(In, f) is a tame stratification of the closed cube that is tame compact framed coni-
cal.

The relation of the compact and ‘open’ definitions of manifold diagrams will be
addressed in Observation 2.3.10 and Observation 2.3.10.

Similar to our alternative definition in the case of the open cube, we re-phrase
our definition compact manifold diagrams by weakening ‘tame compact framed
conicality’ to ‘compact framed conicality’, and by characterizing tamess in terms of
triangulability.

Observation 2.1.14 (Framed compact conical triangulable stratifications are man-
ifold diagrams). By Remark 2.1.9 (which also applies in the compact case) and
by Remark 1.4.28 we arrive at following alternative definition of compact manifold
diagrams: a compact manifold n-diagram (In, f) is a PL stratification of the closed
cube that is compact framed conical.

It is reasonable to conjecture that compact manifold n-diagrams can approximate
general (not necessarily tame) stratifications as long as these stratifications are
compact framed conical.10

Conjecture 2.1.15 (Tame diagrams approximate all diagrams). Any compact framed
conical stratification (In, f) has an arbitrarily close approximation by a compact
manifold n-diagram.

10Here, a stratification (X, f) of a metric spaceX is said to be an ‘ε-close approximation’ of another
stratification (X, g), if the two stratifications are stratified homeomorphic by a self-homeomorphism
of X that moves points by at most the distance ε.
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As an example, consider the stratification in Fig. 2.3 (suitably compactified to a
stratification of I3): while it is compact framed conical, it is not tame itself; however,
it may be approximated with arbitrary precision by a compact manifold diagram that
resolves the infinite number of braid crossings by a finite number of such crossings.
Note that it is natural to state this conjecture in the compact case: in the open case,
non-tame stratifications may have ‘non-tame behavior at infinity’ which cannot be
tamely approximated, but this is automatically excluded in the compact case.

2.1.3 Links and structures of manifold strata. The framed conicality condi-
tion guarantuees that strata in (compact) manifold diagrams are, indeed, topological
manifold without boundary (resp. topological manifolds with boundary). We briefly
discuss a first set of central properties of these manifold strata. Our first observa-
tion concerns the choices of framed link stratifications in the definition of manifold
diagrams.

Remark 2.1.16 (Canonical choices of links). In the case of (classical) conical stratifica-
tions, one generally cannot speak of ‘the’ link of a stratum; that is, strata may have
several non-homeomorphic stratified links (see e.g. [Fri20, Eg. 2.3.6]). In contrast,
framed links around points in a manifold diagram can be canonically chosen: this will
follow from the combinatorialization of manifold diagrams and is further discussed in
Construction 2.3.12 and Remark 2.3.13.

In the case of manifold diagrams, the canonical PL structure of Observation 1.4.32
endows strata with PL manifold structures as the next observation shows. The
following terminological distinction may be useful to highlight.

Remark 2.1.17 (PL manifold structures). A ‘PL manifold structure’ on a space X is
a PL structure on X (i.e. a PL equivalence class of triangulations of X) such that, for
any triangulation in the structure, links of that triangulations are PL homeomorphic
to the PL standard sphere. A space X equipped with a PL manifold structure is
also called a PL manifold (in this case X is in particular a topological manifold.)
Equivalently, a PL manifold structure can be given by an atlas with PL transition
maps [Hud69, §3].

Observation 2.1.18 (Manifold diagrams have unique PL structures). By Obser-
vation 1.4.32, any manifold diagram (In, f) has a unique framed PL structure
(In, f) ∼= (In, fPL). This restricts on each stratum in fPL to the PL structure
of a (non-compact) PL manifold: indeed, a PL atlas can be constructed using
Remark 2.1.6.

Last but not least, we mention that strata in manifold diagrams can be endowed
with canonical smooth structures as well.

Remark 2.1.19 (Smooth structures on manifold diagram strata). Using Remark 2.1.6
and Observation 2.1.18, each k-manifold stratum M in a manifold n-diagram has
a local PL homeomorphism to Ik. The standard framing of Ik can now be pulled
back to a framing of the PL manifold M . Using classical smoothing theory [HM74]
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(the folklore result stating that ‘framed PL equals framed DIFF’), one can show that
strata are endowed with canonical smooth structures.

The more interesting, and harder, question concerns how smooth structures of
different strata interact (the task of defining ‘smooth conical stratified space’ with
good properties is difficult in general, see [AFT17b] for discussion); a version of this
question crops up naturally in the context of tangles and singularities, which we will
return to in Section 3.

2.2 Combinatorial definition

We give a purely combinatorial definition of manifold diagrams. As in the topological
case, the notion has both an ‘open’ and a ‘compact’ variation. We will relate the two
by a combinatorial process of compactification.

2.2.1 Neighborhoods, cones, and products for stratified trusses. A first
key observation is that topological operations (taking neighborhoods, cones, products,
etc.) have natural combinatorial counterparts. Recall the notion of subtrusses from
Terminology 1.3.19.

Definition 2.2.1 (Truss neighborhoods). Let T be an n-truss and x ∈ Tn an object of
its top poset. There is a unique subtruss T≤x ↪→ T , called the truss neighborhood
of x, whose top component T≤xn ↪→ Tn is the downward closure of x in Tn.

Recall the notion of stratified subtrusses from Terminology 1.3.31.

Definition 2.2.2 (Stratified truss neighborhoods). Let (T, f) be a stratified n-truss.
For any x ∈ Tn, there is a unique stratified subtruss (T≤x, f≤x) ↪→ (T, f) called the
stratified truss neighborhood of x.

Example 2.2.3 (Stratified truss neighborhoods). In Fig. 2.4 we depict two 2-trusses
T and S (note, we omit the bundles T2 → T1 → T0 resp. S2 → S1 → S0—in each
case these are determined by first projecting vertically). We select objects x ∈ T2
and y ∈ S2 as shown, and depict the resulting stratified subtrusses T≤x ↪→ T resp.
S≤y ↪→ S. Observe that the map Entr(g≤y) → Entr(g) is not a subposet inclusion.

Recall from Remark 1.3.5 that n-trusses T come with a map dim : Tn → [n]op.

Definition 2.2.4 (Cone trusses). A open cone n-truss T is an open n-truss whose
top poset Tn has a maximal element > ∈ Tn with dim(>) = 0 (which we call the
‘cone point’ of T ).

Definition 2.2.5 (Stratified cone trusses). A stratified open cone n-truss (T, f)
is a stratified n-truss whose underlying truss is an cone n-truss, and such that the
cone point is its own stratum (i.e. f−1 ◦ f(>) = {>}).
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f≤x

f

T≤x

Entr(f)

Entr(f≤x)

Entr(g)

Entr(g≤y)

g≤x

T

y

g
S

x

Figure 2.4: Stratified truss neighborhoods in 2-trusses

Example 2.2.6 (Cone trusses). In Fig. 2.5 we depict two stratified 2-trusses: both
have a maximal element > with dim(>) = 0, however, only the second example
stratifies {>} as its own stratum. Consequently, only the second stratified truss is a
stratified cone truss.

Figure 2.5: An example and a non-example of a cone truss

We state the next definition in the generality of labeled trusses (it certainly can be
specialized to the stratified case).

Definition 2.2.7 (Truss products). Let P be a poset and (T, l) a C-labeled k-truss.
Define the ‘poset-truss product’ P × (T, l) (equivalently written (P × T, P × l)) to
be the trivial C-labeled k-truss bundle over P whose fiber is (T, l). Now let S be an
m-truss bundle. The truss product S × (T, l) (also written (S × T, S × l)) is the
C-labeled (m+ k)-truss bundle over P obtained by concatenating Sm × T and S.

Note that for m = 0 truss products and poset-truss products coincide (recall from
Section 1.3.1 that 0-truss bundles are simply posets).

2.2.2 Defining open and compact combinatorial diagrams. We now give
definitions of combinatorial manifold diagrams. Recall the construction of normal
forms JT, fK of stratified trusses (T, f) from Definition 1.4.17 and Corollary 1.4.19 (it
is also worth recalling that normal forms can be constructed in purely combinatorial
terms, see Section 1.4.2).

Terminology 2.2.8 (The open cube truss). Define the ‘open 1-cube truss’ T̊1 to be the
open 1-truss with a single object. The ‘open k-cube truss’ T̊k is the k-truss obtained
as the k-fold product truss T̊1 × T̊1 × ...× T̊1.

52



Definition 2.2.9 (Combinatorially conical stratified trusses). A stratified n-truss
(T, f) is combinatorially conical at x ∈ Tn if the stratified truss neighborhood
around x normalizes to the product of an open truss cube and a stratified open cone
truss; that is, there is k ≤ n and a stratified open cone (n− k)-truss (Cx, cx) (called
the ‘cone at x’) such that

q
T≤x, f≤x

y
= T̊k × (Cx, cx).

If (T, f) is combinatorially conical at all x ∈ Tn then it is said to be combinatorially
conical.

Definition 2.2.10 (Combinatorial manifold diagrams). A combinatorial manifold
n-diagram (also called a ‘manifold diagram n-truss’) is a normalized open stratified
n-truss (T, f) that is combinatorially conical.

Example 2.2.11 (Combinatorial manifold 2-diagram). In Fig. 2.6 we depict a
stratified truss (T, f) that is a combinatorial manifold 2-diagram. To illustrate that
it satisfies the combinatorial conicality condition we picked an element x ∈ T2. To
the right of (T, f) we illustrate the neighborhood (T≤x, f≤x). On the right of that
neighborhood we illustrate the normalization

q
T≤x, f≤x

y
. This is of the required

form T̊k × (Cx, cx) for k = 1.

f

T
x

(T≤x, f≤x)
q
T≤x, f≤x

y

Figure 2.6: A combinatorial manifold 2-diagram, a neighborhood in it, and the
neighborhood’s normal form

Example 2.2.12 (Combinatorial manifold 3-diagram). In Fig. 2.7 we depict a
stratified truss (T, f) that is a combinatorial manifold 3-diagram. Note that for
simplicity we only depict ‘essential’ poset arrows: all other arrows can be generated
from essential arrows by composition.11 Let us verify the combinatorial conicality
condition at the shown element x ∈ T2. In Fig. 2.8 we illustrate the neighborhood
(T≤x, f≤x) around x. Underneath, we illustrate the normalization

q
T≤x, f≤x

y
. This

normalization is of the required form T̊k × (Cx, cx).
11One can give a precise description of essential arrows in trusses, see [DD21, Constr. 2.3.69].
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Entr(f)

f

x

T

Figure 2.7: A combinatorial manifold 3-diagram

q
T≤x, f≤x

y

normalize

(T≤x, f≤x)

Figure 2.8: Normalization of a neighborhood in a combinatorial manifold 3-diagram

Non-Example 2.2.13 (Failure of combinatorial conicality condition). The stratified
2-truss (T, f) shown on the left in the earlier Fig. 2.4 is not a combinatorial manifold
diagram: it fails the conicality condition at the indicated point x.

Combinatorial manifold diagrams stratify open trusses, and we consequently
sometimes refer them as ‘open’ combinatorial manifold diagrams. We now define
a notion of ‘compact’ combinatorial manifold diagram, which are combinatorial
analogues of our earlier topological definition of compact manifold diagrams.

Terminology 2.2.14 (Corner trusses). Define T̄1 = {− ← 0 → +} to be the unique
closed truss with 3 elements. Let P = {∅,−,+}. For σ ∈ P, denote by Tσ the
unique subtruss of T̄1 containing both 0 and σ. Now let σ = (σ1, σ2, ..., σk) ∈ Pk

be a P-valued k-vector. Denote by Tσ the ‘σ-corner truss’ obtained as the k-fold
product Tσ1 × Tσ2 × ...× Tσk . Note that for σ = (∅, ∅, ..., ∅) we have Tσ = T̊k.
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Definition 2.2.15 (Compact combinatorially conical stratified trusses). A stratified
n-truss (T, f) is compact combinatorially conical at x ∈ Tn if the stratified
truss neighborhood around x normalizes to the product of a corner truss and a
stratified open cone truss; that is, there is k ≤ n, σ ∈ Pk, and a stratified open cone
(n− k)-truss (Cx, cx) such that

q
T≤x, f≤x

y
= Tσ × (Cx, cx)

If (T, f) is combinatorially conical at all x ∈ Tn then it is said to be compact
combinatorially conical.

Definition 2.2.16 (Compact combinatorial manifold diagrams). A compact com-
binatorial manifold n-diagram (T, f) is a normalized closed stratified n-truss
that is compact combinatorially conical.

Example 2.2.17 (Compact combinatorial manifold diagrams). In Fig. 2.9 we depict a
compact combinatorial manifold 2-diagram (T, f) and, for chosen x, y ∈ Tn, illustrate
how stratified neighborhoods normalize to products of corner trusses and stratified
open cone trusses (note, for our choice of x, the neighborhood is already normalized).

(T, f)

x y

(T≤x, f≤x) =
q
T≤x, f≤x

y

(T≤y, f≤y)
q
T≤y, f≤y

y

f−→

f≤x

−−→

f≤y

−−→

normalize

f≤x

−−→

= T∅ × T+×

= T−× )

)(

(

Jf≤yK
−−−−→

Jf≤yK
−−−−→

Figure 2.9: A compact combinatorial manifold 2-diagram, and two neighborhoods in
it, together with their normal forms

2.2.3 Compactification. Let us now describe the formal relation of open and
compact combinatorial manifold diagrams. This is given by a process of cubical
compactification. The construction is based on the following topological intuition.
Given a stratification (In, f) of the open n-cube we may define a compactification
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simply as a extension (In, f) ↪→ (In, f̃) of that stratification to the closed n-cube.
However, such an extension f̃ may arbitrarily add new strata in addition to those in
f ; to further control f̃ , we usually require f̃ to ‘retract’ back into f : a ‘retractable’
compactification i : f ↪→ f̃ is a compactification such that there exists a framed
substratification r : f̃ ↪→ f and both Entr(r ◦ i) and Entr(i ◦ r) are identities. Our
notion of compactification describes the universal such retractable compactification,
which we will refer to as ‘cubical compactification’.

Terminology 2.2.18 (Retractable compactifications). Given a stratified n-truss (T, f),
a ‘retractable compactification’ is a pair of cocellular stratified n-truss maps i :
(T, f)� (T̃ , f̃) : r where T̃ is a closed stratified truss, i is a dense stratified subtruss
(‘dense’ meaning that the closure of in(Tn) is T̃n), and r ◦ i = id.

Definition 2.2.19 (Cubical compactifications of trusses). The cubical compact-
ification (T , f) of an stratified n-truss (T, f) is the retractable compactification
ci : (T, f)� (T , f) : cr with the following universal property: for any other retractable
compactification i : (T, f)� (T̃ , f̃) : r there exists a unique stratified truss bordism
R : (T , f) −7−→ (T̃ , f̃) (i.e. a morphism in Tn(Entr(f)), see Observation 1.3.25, or equiv-
alently an Entr(f)-labeled bundle over [1] such that R|0 = (T , f) and R|1 = (T̃ , f̃))
that on the images of ci resp. i restricts to an identity bordism id : (T, f) −7−→ (T, f).

The construction of cubical compactifications T on underlying trusses T is given in
[DD21, Constr. 4.2.57]. The stratified case described here adds to this the labeling
f determined as the composite f ◦ cr. Often we simply speak of ‘compactification’
instead of ‘cubical compactification’.

Example 2.2.20 (Retractable and cubical compactifications). Consider the stratified
truss (T, f) shown in the middle of Fig. 2.10: to its left, we depict its cubical
compactification (T , f), and to its right, we depict a retractable but non-cubical
compactification. One verifies that there is a unique stratified bordism T −7−→ T̃ that
restricts to an identity bordism on T .

T T̃

compactify
cubically
compactify
cubically

f̃f compactify
retractably

T

f

Figure 2.10: Cubical and non-cubical compactification of a stratified truss

Note that in the preceding example (T, f) is a combinatorial manifold diagram,
and (T , f) is a compact combinatorial manifold diagram. This observation holds in
general, as we shortly explain. We first make two remarks. Firstly, compactification
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has a ‘partial left inverse’. Secondly, it can be used in the construction of classifying
meshes.

Remark 2.2.21 (Interiors of closed stratified trusses). Given a closed truss T one
might want to define the ‘interior’ T ◦ of T to be a dense (see Terminology 2.2.18)
open subtruss of T . However, not all closed trusses T have dense open subtrusses T ◦

(if T does, then T ◦ is certainly unique, and we say T has a ‘constructible interior’):
consider for instance the fundamental truss of the closed 2-mesh in Fig. 2.11, which
fails to have a dense open subtruss.

↓

↓

Figure 2.11: A closed 2-mesh whose ‘interior’ does not define an open 2-mesh

Given a closed stratified truss (T, f) with constructible interior (of T ), we define
its ‘stratified interior’ truss (T ◦, f◦) to be the dense open stratified subtruss of (T, f).
Note that, given a open stratified truss (S, g), then (S, g) have constructible interior
and (S

◦
, g◦) = (S, g). The converse is generally not true: given a closed stratified

truss (T, g) with constructible interior, then (T ◦, f◦) = (T, f) need not hold (if it
holds, then we call (T, f) ‘interior-compactifying’).

Remark 2.2.22 (Compactification in the construction of classifying meshes). Given a
stratified n-truss (T, f), a classifying mesh (M, g) = CMsh(T, f) can be constructed
by first constructing the classifying stratification CStr T i (see Recollection 1.1.9), and
then defining Mi to be the constructible substratification of CStr T i determined on
entrance path posets by the inclusion Ti ↪→ T i (see Recollection 1.1.7); the mesh
bundles pi : Mi →Mi−1 are obtained by restricting the maps CStr (T i → T i−1), and
framings of fibers are induced canonically by the frame orders of fibers in T (the full
construction of M = CMshT is spelled out in [DD21, §4.2.4]). Note that M inherits
framed PL structure from CStr T . The coarsening Mn → g is determined on entrance
paths by f : Tn = EntrMn → Entr(f).

Remark 2.2.23 (Compactification for truss bundles). Note that our discussion imme-
diately carries over to the case of stratified truss bundles over a base poset P (for
unstratified truss bundles, see [DD21, Defn. 4.2.53ff]). This yields notions of ‘cubical
compactifications’ (q, f) of stratified open truss bundles (q, f), and of ‘interiors’
(q◦, f◦) of stratified closed truss bundles (q, f), if these exist. (We omit spelling out
these definitions, since they almost verbatim repeat our earlier discussion.)

We now specialize our discussion to the case of manifold diagrams.

Observation 2.2.24 (Relating of open and compact combinatorial diagrams via com-
pactification). We state the following observations (without proof).
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1. Given an open combinatorial manifold diagram (T, f), then its cubical compact-
ification (T , f) is a compact combinatorial manifold diagram with constructible
interior.

2. Conversely, not every compact combinatorial manifold diagram (T, f) has
constructible interior. However, if the a compact combinatorial manifold
diagram has constructible interior, then the interior is an open combinatorial
manifold diagram.

Therefore, compactification yields an 1-to-1 correspondence between open combinato-
rial manifold diagrams and interior-compactifying compact combinatorial manifold
diagrams (the inverse operation being given by the construction of interiors).

Examples of interior-compactifying and non-interior-compactifying compact manifold
diagrams with constructible interior are illustrated later in terms of (topological)
manifold diagrams in Fig. 2.15. While not all compact combinatorial diagrams are
interior-compactifying, it is possible to show that they are so ‘up to a (canonical)
perturbation’—in this sense, notions of open and compact combinatorial manifold
diagrams are closely related. Our focus will mostly lie on the open case, but com-
pactification proves to be a useful tool in many instances.

2.3 Equivalence of the definitions

We now compare our topological and combinatorial definitions of manifold diagrams.
The central result used in the comparison will be the correspondence of tame stratifi-
cations up to framed stratified homeomorphism with normalized stratified trusses
(see Section 1.4).

2.3.1 Translating products and cones. Before stating and proving the com-
parison, we will show that both products and cones can be faithfully translated from
their topological definitions into combinatorial ones.

Lemma 2.3.1 (Combinatorialization preserves products and cones). The construc-
tion of NETrs preserves products and cones as follows.

1. Given a tame stratification (In, f), then NETrs(Ik × f) = T̊k × NETrs f .
2. Given a tame link (∂In, l) then NETrs c(l) is an stratified open cone truss.

Proof. The first statement follows since each mesh refining Ik × f restricts on the
preimage x ∈ Ik under Ik × In → Ik to a mesh refining f . Thus Ik ×Mf (where Mf

is the coarsest refining mesh of f) must be the coarsest refining mesh of Ik × f .
For the second statement, first observe that ‘scaling’ λ : c(l) → c(l), which

on underlying spaces maps x 7→ λx with 0 < λ ≤ 1, is a framed stratified map.
Let (T, g) = NETrs c(l) and let x ∈ Tn correspond to the cone point 0 of c(l).
Then (T≤x, g≤x) ↪→ (T, g) has a classifying mesh map φ : (N, e) ↪→ (Mc(l), c(l)),
whose image is an open neighborhood around 0. For small λ, we get a tame
substratifications λ : c(l) ↪→ e (to see tameness, one can pass to appropriate PL
replacements and use that (In, c(l)) is assumed to be tame, cf. Remark 1.4.29).
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Since λ : c(l) ↪→ e is tame, pick mesh refinements L  c(l) and E  e such that
λ : (L, c(l)) ↪→ (E, e) is a stratified mesh map. Pass to trusses to obtain a stratified
truss map i = ETrsλ : ETrs(L, c(l)) ↪→ ETrs(E, e). Note, there is a truss coarsening
c : ETrs(E, e)→

q
T≤x, g≤x

y
. The composite c ◦ i uniquely factors as

ETrs(E, e)
q
T≤x, g≤x

y

ETrs(L, c(l)) (S, h)

i

c

where ‘�’ arrows are stratified coarsenings and ‘↪→’ arrows are open stratified
subtrusses (this can be shown by ‘(epi,mono)-factorizing’ the map c◦ i, see e.g. [DD21,
Lem. 2.3.101]). Since open cone trusses normalize to open cone trusses, observeq
T≤x, g≤x

y
is an open cone truss. But we must have (S, h) =

q
T≤x, g≤x

y
since

S ↪→ T contains the cone point in its image. Thus NETrs c(l) = (S, h) is an open
cone truss as claimed.

The converse of Lemma 2.3.1 is easier and we simply state it as an observation.

Observation 2.3.2 (Combinatorialization reflects products and cones). Given a strat-
ified n-truss (T, g) and a tame stratification f with NETrs f = T̊k × (T, g), then
f ∼= In × h where NETrsh = (T, g). Given a stratified cone n-truss (T, g) and a
tame stratification f with NETrs f = (T, g), then f ∼= c(l) for a tame link l. Both
statement can be seen from the explicit construction of classifying meshes of trusses
(see e.g. Remark 2.2.22).

2.3.2 Statement and proof of the equivalence. We start with the open case,
and later adapt our discussion to the compact case.

Theorem 2.3.3 (Combinatorialization of manifold diagrams). Framed stratified
homeomorphism classes of manifold n-diagrams are in 1-to-1 correspondence with
combinatorial manifold n-diagrams: the correspondence takes (In, f) to NETrs(In, f).

Remark 2.3.4 (A higher categorical classification). There are also higher versions of
this statement: for instance, the ∞-groupoid of manifold n-diagrams (modeled by
the topological category of manifold diagrams and framed stratified maps that have
weak inverses) is equivalent to the set of combinatorial manifold n-diagrams.

Proof of Theorem 2.3.3. By Theorem 1.4.35, mapping (In, f) to NETrs(In, f) injects
framed stratified homeomorphism classes of manifold diagrams (see Definition 2.1.5)
into the set of normalized stratified trusses. To prove the theorem we need to show
(1) that for each manifold diagram f , its fundamental stratified truss NETrs f is
combinatorially conical, and (2) that given a tame stratification f such that NETrs f
is a combinatorial manifold diagram, then f is framed transversal.

We first prove (1). Let (In, f) be a manifold diagram, denote by Mf the coarsest
refining mesh of f and set (T, g) := NETrs f . We want to show that (T, g) is a
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combinatorial manifold diagram. Take x ∈ Tn. Take any point z in the corresponding
stratum x of Mf . Choose a tame framed tubular neighborhood φ : Ik × c(lz) ↪→ f of
z (which exists because f is a manifold diagram). Since the neighborhood is tame,
there are mesh refinements N  Ik × c(lz) and M  f such that φ descends to
a stratified mesh map ψ : (N, e) → (M,f) (where we abbreviate e ≡ Ik × c(lz)).
Passing to trusses, this implies i = ETrsψ : ETrs(N, e) ↪→ ETrs(M,f) is a stratified
subtruss. We have a stratified coarsening c : (M,f)� JETrs(M,f)K = (T, g) since
(T, g) = ETrs(Mf , f) and Mf is the coarsest refining mesh of f . The composite c ◦ i
uniquely factors as

ETrs(M,f) (T, g)

ETrs(N, e) (S, h)

i

c

By uniqueness of normal forms observe NETrs e = JETrs(N, e)K = JS, hK. Since e is
a stratification of the form Ik × c(lz), and using Lemma 2.3.1, observe that NETrs e
is of the form T̊k × (C, c) where (C, c) is a stratified open cone truss. From this we
obtain the commutative diagram:

(S, h) T̊k × (C, c)

(T≤x, g≤x) (T̃≤x, g̃≤x)

Observe that the right-hand subtruss must be an equality since it contains the cone
point in its image. This verifies that (T, g) is a combinatorial manifold diagram as
claimed (see Definition 2.2.10).

It remains to show (2). Let (T, g) be a combinatorial manifold n-diagram, and
(In, f) a tame stratification with (T, g) = NETrs(In, f). We claim that (In, f) is tame
framed conical (and thus a manifold n-diagram). Denote by Mf the coarsest refining
mesh of f . Let z ∈ In. Then z lies in a stratum x of Mf

n. Since T = ETrsMf , consider
x as an element of Tn. Consider the neighborhood φ : T≤x ↪→ T around x. By our
choice of x, it is possible to choose the classifying submesh ψ : N ↪→ Mf of φ (i.e.
ETrsψ = φ) such that im(ψ) contains z. Coarsening this submesh by the stratified
coarsening Mf → f , ψ now becomes a neighborhood ψf : (In, e) ↪→ (In, f). Sinceq
T≤x, g≤x

y
is of the form T̊n× (Cx, cx), and since NETrs e =

q
T≤x, g≤x

y
, we can use

Observation 2.3.2 to see that ψf is in fact a tame framed tubular neighborhood as
required in Definition 2.1.5.

Terminology 2.3.5 (Fundamental and classifying diagrams). Given a manifold n-
diagram (In, f), we call NETrs(In, f) the ‘fundamental combinatorial manifold di-
agram’ of f . Conversely, we say (In, f) is a ‘classifying manifold diagram’ of
(T, g) = NETrs(In, f).
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Example 2.3.6 (Combinatorializing manifold 2-diagrams). In Fig. 2.12 on the left,
we depict (two) manifold 2-diagrams f ; to their right, we depict their coarsest
stratifying 2-mesh M . On the right, we depict the corresponding combinatorial
manifold 2-diagram (T, g) = ETrs(M,f).

f

f

M

M

refines

refines

T

T

g

g

Figure 2.12: Combinatorializations of manifold 2-diagrams

Example 2.3.7 (Combinatorializing a manifold 3-diagram). Consider the manifold
3-diagram (I3, f) shown on the left in Fig. 2.13. A refining 3-mesh of this diagram (up
to framed stratified homeomorphism) was given in Fig. I.2. On the right of Fig. 2.13
we depict the corresponding combinatorial manifold 3-diagram (T, g) = NETrs f (the
full 3-truss T3 → T2 → T1 was shown earlier in Fig. 2.7).

f

T

g

Figure 2.13: Combinatorialization of a manifold 3-diagram

2.3.3 The compact case. Analogous to the open case, compact manifold diagrams
and compact combinatorial manifold diagrams are related as follows.

Theorem 2.3.8 (Combinatorialization of compact manifold diagrams). Framed
stratified homeomorphism classes of compact manifold n-diagrams are in 1-to-1
correspondence with compact combinatorial manifold n-diagrams: the correspondence
takes (In, f) to NETrs(In, f).
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Proof. The proof of Theorem 2.3.3 carries over to the compact case almost verbatim
(with evident adjustments accounting for ‘corner neighborhoods’, see Terminol-
ogy 2.1.11 and Terminology 2.2.14).

Example 2.3.9 (Combinatorialization of a compact manifold diagrams). In Fig. 2.14
on the left we depict a compact manifold 2-diagram, together with its coarsest
refining mesh M . On the right we depict the corresponding stratified closed truss
(T, g) = ETrs(M,f) which is a compact combinatorial manifold 2-diagram.

f M T

g

Figure 2.14: Combinatorialization of a compact manifold diagram

Having ‘combinatorialized’ topological manifold diagrams, we may now describe
the relation of compact and open topological manifold diagrams using our combina-
torial construction of compactifications.

Observation 2.3.10 (Relation of open and compact manifold diagrams). Given a
compact manifold diagram (In, f), its ‘interior’ (In, f◦) is the substratification of f on
In ⊂ In. If (In, f◦) is is tame, then it is an open manifold diagram (and in this case
we say (In, f) has ‘constructible interior’). The converse operation is compactification.
Note first, given an open manifold diagram (In, f), it might not make sense to
‘compactify it on the nose’ since manifold strata of f in In need not continuously
extend to In—however, they always do so up to framed stratified homeomorphism.
Namely, we may define the ‘cubical compactification’ of f to be a compact manifold
diagram (In, f) (up to stratified homeomorphism) such that NETrs f = NETrs f (the
latter being the cubical compactification of NETrs f , see Observation 2.2.24). If a
compact manifold diagram cubically compactifies its interior in this way we say it is
‘interior-compactifying’.

Example 2.3.11 (Interior-compactifying diagrams). In Fig. 2.15 we depict two
compact topological manifold diagrams: the left does not cubically (and in fact,
neither retractably) compactify its interior while the right one does.

Figure 2.15: A non-interior-compactifying and an interior-compactifying diagram
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2.3.4 Canonicity of links. As an application of the preceding two theorems, we
observe that links in manifold diagrams can be canonically chosen and are well-defined
up to stratified homeomorphism (recall from Remark 2.1.16 that generally this need
not be the case in topological conical stratifications). We argue in the open case; the
compact case is analogous.

Construction 2.3.12 (Canonical links). Consider a manifold diagram (In, f) and
a stratum s of f . The canonical link links of s can be constructed as follows.
Set (T, g) := NETrs f . Take any x ∈ Tn with g(x) = s (using Entr(g) = Entr(f)).
Since (T, g) is a combinatorial manifold diagram, the normal form

q
T≤x, g≤x

y
is of

the form T̊k × (Cx, cx). Compactify (Cx, cx) and obtain the closed stratified mesh
(N, e) = CMsh(Cx, cx). Restrict the stratification (In, e) to ∂In to construct the
canonical link (∂In, links). Up to framed stratified homeomorphism, the construction
is independent of any choices made. One shows that each point z ∈ s has a framed
tubular neighborhood of the form Ik × c(links).

Remark 2.3.13 (All links are stratified homeomorphic). Given a manifold diagram
(In, f), a stratum s of f , and z ∈ s, pick any tame tubular neighborhood Ik × c(lz)
with tame link lz. One can show that c(lz) is a retractable compactification of c(lz) (in
the sense that ETrs c(lz) is a retractable compactification of ETrs c(lz)): a retraction
can be produced by down-scaling the closed cone (cf. the proof of Lemma 2.3.1(2)).
Using that NETrs c(lz) ∼= NETrs c(links), one can produce a stratified homeomorphism
between lz and links—thus all choices of links lz are stratified homeomorphic. However,
if c(lz) non-cubically compactifies its interior, there need not be a framed stratified
homeomorphism between the two. An example of this situation can be given by
topological analog of the retractable compactification in Fig. 2.10.

We end this section with the remark that more generally manifold diagrams can
be studied in bundles.

Remark 2.3.14 (Manifold diagram bundles). Just as tame stratifications can be
considered in bundles (see Terminology 1.4.38), so can manifold diagrams. We will
not spell this out here, but details are straight-forward to work out, and inspiration can
be taken from the (closely related) later discussion of tangle bundles in Section 3.

2.4 Cell diagrams

In this section we discuss the geometric duals of manifold diagrams: this will lead
us to a very general class of diagrams of directed cells. We discuss how they can
be thought of as ‘pasting diagram’ (where we use the term with its familiar, but
informal, meaning from higher category theory).

2.4.1 Topological and combinatorial definitions. Recall the duality of truss
and meshes (see Definition 1.4.5 and Corollary 1.4.6). This extends to the case of
stratified trusses and tame stratifications as follows.
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Definition 2.4.1 (Duality for stratified trusses). Given a stratified n-truss (T, f),
its dual stratified truss (T, g)† is the stratified n-truss (T †, f †) where f † := fop :
T op
n → Entr(f)op is the dual of f .

Definition 2.4.2 (Duality for tame stratifications). Given tame stratification (X, f)
and (Y, g) we say g is a dual of f if NETrs g = (NETrs f)†.

Applying this to the notion of manifold diagrams yields the following.

Definition 2.4.3 (Cell diagrams). A cell n-diagram (X, f) is a tame stratification
that is dual to a manifold n-diagram.

Example 2.4.4 (Cell diagrams). We illustrate four cell diagrams in the upper row
of Fig. 2.16. The third example illustrates that the underlying n-framed space X
of a cell n-diagram (X, f) need not be homeomorphic to the closed cube. Note,
the fourth example is a cell 3-diagram consisting of two 3-cells, glued together as
indicated to the right (note, the cells are 3-dimensional balls: we highlight this by
indicating a cross-sections of the respective cells). Underneath each cell diagram we
illustrate a dual manifold diagrams: in particular, the fourth example recovers our
earlier example of the braid homotopy.

Figure 2.16: Cell diagrams and their dual manifold diagrams

Observation 2.4.5 (Duality between manifold and cell diagrams). Framed stratified
homeomorphisms classes of manifold n-diagrams and cell n-diagrams correspond
bijectively by dualization.

One can similarly define combinatorial cell diagrams as those stratified trusses
that are dual to combinatorial manifold diagrams. We take a different path: based on
the observation that normalization is compatible with dualization (that is,

q
(T, g)†

y
=

JT, gK†), we dualize the condition of combinatorial conicality and use it to define
combinatorial cell diagrams.
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Terminology 2.4.6 (Stratified truss closures). Given a stratified n-truss (T, f), the
‘stratified truss closure’ (T≥x, f≥x) is the stratified subtruss of (T, f) whose support is
the upper closure T≥x of x. This is dual to the notion of ‘stratified truss neighborhoods’
from Definition 2.2.2.

Terminology 2.4.7 (Stratified facet truss). A ‘closed facet n-truss’ (T, f) is a closed
stratified n-truss with minimal element ⊥ in Tn such that dim(⊥) = n and {⊥} is its
own stratum. This is dual to the notion of ‘open cone trusses’ from Definition 2.2.4.

Terminology 2.4.8 (The truss point). The ‘closed 1-truss point’ T̄1 is the closed 1-truss
with one element. The ‘closed k-truss point’ T̄k is the closed k-truss obtained as the
k-fold product truss T̄1 × T̄1 × ...× T̄1. This is dual to the notion of ‘open k-truss
cube’ from Terminology 2.2.8 (note that (T̄k)† = T̊k).
Combinatorial conicality now dualizes to the following condition.

Definition 2.4.9 (Combinatorially facetal stratified trusses). A closed n-truss (T, f)
is combinatorially facetal at x ∈ Tn if the stratified truss closure of x normalizes
to a product of a truss point and a truss facet, that is, there is 0 ≤ k ≤ n and a
closed facet (n− k)-truss (Dx, dx) such that:

q
T≥x, f≥x

y
= T̄k × (Dx, dx).

We say (T, f) is combinatorially facetal if it is so at all x ∈ Tn.

Definition 2.4.10 (Combinatorial cell diagrams). A combinatorial cell n-diagram
(T, f) is a normalized closed stratified n-truss that is combinatorially facetal.

Remark 2.4.11 (A self-contained definition of cell diagrams). With enough care it
is equally possible to define (topological) cell diagrams in self-contained topological
terms, using an appropriate topological notions of ‘framed facetal’ tame stratification.

Observation 2.4.12 (Duality of combinatorial manifold and cell diagrams). A stratified
n-truss (T, f) is a combinatorial cell diagram if and only if its dual (T, f)† is a
combinatorial manifold diagram.

Observation 2.4.13 (Correspondence of cell diagram and combinatorial cell diagrams).
A tame stratification (X, f) is a cell n-diagram if and only if NETrs f is a combinatorial
cell n-diagram.

2.4.2 On the categorical meaning of cell diagrams. We briefly outline how
to think about cell diagrams in more familiar higher categorical terms, as ‘pasting
diagrams of higher morphisms’.

Terminology 2.4.14 (Non-degenerate and degenerate cells, and cell shapes). Consider
a combinatorial cell diagram (T, f), take an object x ∈ Tn with dim(x) = k. We
say x is a ‘non-degenerate k-cell’ in (T, f) if {x} is its own stratum in (T≤x, f≤x).
Otherwise we say x is a ‘degenerate k-cell’. The terminology similarly applies to cells
in the coarsest refining mesh of a topological cell diagram.
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Remark 2.4.15 (Relating cell diagrams to classical pasting diagrams). Cell diagrams
can be depicted as classical ‘point and arrow diagrams’ by replacing k-cells by k-
arrows if they are non-degenerate, and by ‘k-identities’ (i.e. headless k-arrows) if
they are degenerate. For our earlier examples in Fig. 2.16 this translation is given in
Fig. 2.17. (Here, a ‘k-arrow’ is drawn with k parallel lines, the exception being an
identity 1-arrow, which is drawn with 2 lines as ‘=’.)

Figure 2.17: Interpreting cell diagrams as pasting diagrams

The previous remark explains how to think of cell diagrams as diagrams of points
and arrows, and we may interpret these as traditional categorical pasting diagrams
in which arrows represent higher morphisms. Let us next comment on the type of
‘morphism shapes’ that can appear in such diagrams.

Terminology 2.4.16 (Framed cell shapes). A cell n-diagram (S, g) with minimal object
x ∈ Sn is called a ‘n-framed cell shape’.12

Note, every cell (T≤x, f≤x) in a cell diagram (T, f) normalizes to a framed cell shape.
Framed cell shapes generalize many other ‘categorical cell shapes’ in use, such as
globes, (directed) simplices, cubes, opetopes, etc.—however, in order to allow for
a ‘side-by-side’ comparison, framed cell shapes need to first be ‘quotiented’ by the
degenerate cells in their boundary: we illustrate this in Fig. 2.18, where the classical
shapes shown in the top row are obtained by quotienting along the identities in the
framed cell shapes shown in the bottom row. (We also schematically indicate how
this quotient acts on the framing of the underlying framed space.)

The central feature of cell diagrams that distinguishes them from existing notions
of pasting diagrams is that cell diagrams can record certain categorical coherences
(namely, by diagrams that are geometrically dual to isotopies of manifold diagrams,
such as the braid). This can be used to resolve classical problems of ‘strict computads’
not having a well-defined category of shapes: roughly speaking, when working with
‘strict’ shapes one encounters the problem that composing higher cells with degenerate
boundaries in pasting diagrams may lead to an ill-defined notion of cells in those
diagrams (see e.g. [Lei04, §7.6] [Hen17] [Had20]). In contrast, cell diagrams deal well
with degenerate boundaries in all dimensions (see e.g. the third example in Fig. 2.17).

12A ‘framed cell shape’ is different from a ‘framed regular cell’ as defined in [DD21, §1], due to
the additional stratification structure. Moreover, after removing degeneracies (i.e. after quotienting
it by the degenerate cells in the shape’s boundary) a framed cell shape need not be a regular cell.
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Figure 2.18: Comparison of common cell shapes and framed cell shapes

However, an in-depth discussion of this topic would lead beyond the scope of the
present paper.

3 Tame tangles

We introduce the notion of tame tangles, which are manifolds with corners that
are ‘transversally’ embedded in the framed n-cube. We show that tame tangles
may also be understood in purely combinatorial terms, which parallels the case
of manifold diagrams. (In fact, tame tangle and manifold diagrams are closely
related: tame tangles can be canonically refined to manifold diagrams by stratifying
the tangle manifold by the ‘loci of its critical points’ as we will explain.) Tame
tangles can naturally be studied in bundles, and this will lead us to definitions of
perturbations and perturbation stability of tame tangles. Locally, by studying the
perturbation stable ‘germs’ of tames tangles around a point, this gives rise to a theory
of singularities. We will end with a discussion of conjectures and directions for future
work.

3.1 Definitions

3.1.1 Topological definition. We define tame tangles as manifolds embedded in
In that satisfy a ‘framed transversality’ condition: the condition will ensure that ‘loci
of critical points’ are in general position with respect to the ambient framing.

Remark 3.1.1 (Embeddings as stratifications). Given an embedding f : W ↪→ X of a
closed subspace W in a topological space X, the embedding f defines a stratification
of the space X whose strata are the connected components of W and the connected
components of the complement X \W . Abusing notation we write f for the stratifi-
cation that this defines, and f : X → Entr(f) for the stratification’s characteristic
map. (Whenever we consider an embedding f : W ↪→ X as a stratification in this
way, we always tacitly assume the subspace W is closed in X.)

Recall that a tame stratification is a stratification of a flat framed space that can be
refined by a mesh (see Definition 1.4.12).
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Definition 3.1.2 (Tame embeddings). Given a flat framed space X, an embedding
f : W ↪→ X of topological spaces is called a tame embedding if it defines a tame
stratification of X.

Recall the notions of (tame) links and cones from Terminology 2.1.2.

Terminology 3.1.3 (Cones of embeddings). Given an embedded space f = (W ↪→ ∂In)
its ‘cone embedding’ ce(f) is the embedding of cones c(W ) ↪→ c(∂In) ∼= In. (Note W
can be empty, in which case c(W ) is a point.) One similarly defines the ‘closed’ cone
embedding ce(f).

Note well that cone embeddings ce(f) differ from stratified cones c(f) in that ce(f)
doesn’t have a separate cone point stratum; we illustrate the difference in Fig. 3.1.

f = (M ↪→ ∂I2) ce(f) c(f)

Figure 3.1: Cone embeddings vs stratified cones

Definition 3.1.4 (Framed transversality). Given an embedded m-manifold f =
(W ↪→ In), inductively define a notion of k-transversal points x of W as follows.
− If x ∈W has a tame framed stratified neighborhood of the form Im×(In−m, ce(l))

with l = (∅ ↪→ ∂In−k) the empty link, and x ∈ Im × 0, then we say x is an
m-transversal point of W .

− Now take k < m. Assume x is not j-transversal for any j > k. If x has a framed
stratified neighborhood of the form Ik×(In−k, ce(l)) for l a tame link of the form
l = (Sm−k−1 ↪→ ∂In−k), with x ∈ Ik × 0, and all y ∈ Ik × c(Sm−k−1) \ Ik × 0
being jy-transversal for jy > k, then x is a k-transversal point of W .

We say f is a tame framed transversal stratification if all points x ∈ W are
kx-transversal points of W for some 0 ≤ kx ≤ m.

Notation 3.1.5 (Transversal dimension). If f is k-transversal at x, we also call k the
‘transversal dimension’ of x and write k = tdim(x).

Terminology 3.1.6 (Regular and singular points). Given an embedded manifold
f = (W ↪→ In), and a point x ∈W with transversal dimension k we say x is ‘regular’
if k = dim(W ), and ‘singular’ if k = 0.

Example 3.1.7 (Transversality and non-transversality). In Fig. 3.2, for the 1-
manifold embedded in the 2-cube shown in the center, we indicate the transversal
dimension of three points on the manifold. The blue point is regular, the green
point is singular, while the red point fails to be transversal (while it does have a
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neighborhood of the form I0 × c(l) for l = (S0 ↪→ ∂I2), the condition that points
away from the cone stratum are k-transversal with k > 0 is not satisfied).

1-transversal

0-transversal

non-transversal∼= ×

Figure 3.2: Points of transversality and of non-transversality

The previous example illustrates that the inductive phrasing of framed transversality
is crucial. We will see later in Section 3.1.3 that the definition of framed transversality
ensures properties that are implicit in our earlier definition of framed conicality.

Definition 3.1.8 (Tame tangles). A tame m-tangle f = (W ↪→ In) is a tame
embedded m-manifold such that f is a tame framed transversal stratification.13

Example 3.1.9 (Tame tangles). Several tame tangles W ↪→ In are illustrated in
Fig. 3.3.

Figure 3.3: Tame tangles in dimension 2 and 3

Non-Example 3.1.10 (Tame tangles). The embedded manifold given in Fig. 3.2
does not define a tame tangle, since it fails the tame framed transversality condition.
The embedded manifold in Fig. 2.3 (thought of as an embedding of a manifold
consisting of two disconnected intervals) does not define a tame tangle, since it fails
to be a tame stratification.

13 As in the case of manifold diagrams (see Remark 2.1.9) an equivalent definition of tame tangles
can be obtained by replacing the condition of ‘tame framed transversality’ by ‘framed transversality’
(defined by omitting the adjective ‘tame’ throughout Definition 3.1.4)—it is sufficient to require the
stratification f itself to be tame.
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Remark 3.1.11 (Tangles with defects). By considering k-filtrations f of closed sub-
spaces W0 ↪→ W1 ↪→ ... ↪→ Wk ↪→ X in place of simple embeddings W ↪→ X the
preceding discussion can be generalized to define a notion of ‘tame tangles with
defects’.

Parallel to our earlier discussion of compact manifold diagrams, one may adapt
the definitions of tame tangles to the case of the closed n-cube In.

Remark 3.1.12 (Compact tame tangles). Replacing the open cube Ik by corner
neighborhoods Iσ (see Terminology 2.1.11) one readily defines a condition of tame
compact framed transversality (which requires neighborhoods of the form Iσ ×
(In−k, ce(l)), σ ∈ Pk). A compact tame m-tangle g = (W ↪→ In), where W is an
m-manifold, is a tame stratification that is tame compact framed transversal.

As a straight-forward generalization of Conjecture 2.1.15, we mention the following
conjecture which relates our tame notion of tangles with the following classical notions
of tangles.

Terminology 3.1.13 (Tangles). An ‘m-tangle’ is an embedded m-manifold f = (W ↪→
In). We say f is a PL (resp. smooth) m-tangle if it is a PL embedding of a PL
manifold (resp. a smooth embedding of a smooth manifold).

Remark 3.1.14 (Tangles with nice corners). Notions of m-tangles f = (W ↪→ In)
usually include conditions that guarantee that W is well-behaved with respect to the
corners of In. For instance, a ‘tangle with nice corners’ f can be obtained by requiring,
firstly, that im(f) ⊂ Im× In−m and secondly, that maps π>i : f → Ii (for 1 ≤ i ≤ m)
restrict on Ii−1×{±1} to trivial framed stratified bundles of lower dimensional tangles
with nice corners (with the latter notion being defined inductively). We usually need
not impose such extra conditions, since corner behavior is already taken care of by
enforcing compact framed transversality.

Conjecture 3.1.15 (Tame tangles approximate transversal tangles). Any compact
framed transversal m-tangle can be approximated by compact tame m-tangles.

The conjecture holds in the case of PL tangles (we will return to this point later in
Observation 3.1.44).

3.1.2 Combinatorial definition. Next, let us discuss the analogous combinatorial
definition of tangles. Recall, from Remark 1.2.50 that a poset P can be endowed
with a topology whose basic opens are the downward closures P≤x of its elements
x ∈ P . A subposet Q ↪→ P is called ‘closed’ if it is closed as a topological subspace;
equivalently, this means that for any x ∈ Q and y ∈ P with an arrow x→ y we have
y ∈ Q.

Remark 3.1.16 (Poset embeddings as stratifications). Paralleling the translation of
embeddings to stratifications in Remark 3.1.1, note that any embedding f : Q ↪→ P
of a closed subposet Q of P , determines a poset map θQ : P → [1]op (mapping
x ∈ P to 0 iff x ∈ Q) called the ‘indicator map’ of Q. From this we obtain
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a stratification (P, char(θQ)) of P by connected component splitting of θQ (see
Remark 1.2.51). Explicitly, strata of char(θQ) are the connected components of
Q and of P \ Q. Abusing notation, we also write f : P → Entr(f) in place of
char(θQ) : P → Entr(char(θQ)).

Given an n-truss T and a closed subposet f : Q ⊂ Tn, we write (T, f) for the stratified
truss whose labeling is obtained from f via the previous remark.

Terminology 3.1.17 (Poset spheres). A poset P ‘is an m-sphere’ if its classifying space
(i.e. the geometric realization of its nerve) is a topological m-sphere.

Recall the definition of cone trusses (see Definition 2.2.4); as before, we usually denote
maximal elements in total posets of cone trusses by >. The combinatorial analog of
the notion of tame framed transversality is given in the next definition.

Definition 3.1.18 (Combinatorial transversality). For fixed m < n, a stratified
open n-truss (T, f : Q ↪→ Tn) is said to be combinatorially m-dim k-transversal
at x ∈ Tn (k ≤ m) if there exists an open cone (n − k)-truss C with a subposet
D ↪→ Cn−k containing the cone point >, with D \> being an (m−k−1)-sphere, and

q
T≤x, f≤x

y
= T̊k × (C,D ↪→ Cn−k).

If all x ∈ Tn are kx-transversal points for some kx, then we say that (T, f) is
combinatorially m-dim transversal.

Observe that (C,D) is necessarily normalized in the preceding definition. Thus, since
C is assumed to be a cone truss, it follows that (C,D) is not a product itself (i.e. not
of the form Ii × (S, g) for i > 0).

Remark 3.1.19 (Comparison of combinatorial and tame framed transversality). We
point out two important differences between the definition of combinatorial transver-
sality above, and our earlier definition of tame framed transversality.
− In the definition of combinatorial transversality, we require an explicit ‘dimen-

sion’ parameterm, whereas in our earlier definition of tame framed transversality
this parameter was determined as the dimension of the embedded manifold.
(Morally, this roots in the fact that the subposet Q ↪→ Tn in general need
have an intrinsically definable notion of dimension; for instance Q could be a
singleton, but still describe a combinatorially m-dim k-transversal point.)

− Secondly, note that the definition of combinatorial transversality, unlike our
earlier definition of framed transversality, need not be phrased inductively (that
is, combinatorial k-transversality need to refer to the (l > k)-transversality
of neighboring points)—the required ‘filtration by transversality dimension’
instead follows from the underlying combinatorics of trusses.

Notation 3.1.20 (Transversal dimension, combinatorially). Given anm-dim transversal
stratified n-truss (T, f : Q ↪→ Tn), for x ∈ Q, we write k = tdim(x) if (T, f) is m-dim
k-transversal at x.
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Example 3.1.21 (Combinatorial transversality). In the middle of Fig. 3.4 we illus-
trate a stratified 2-truss (T, f : Q ↪→ T2) (corresponding to the tame stratification
given earlier in Fig. 3.2). The subposet Q is highlighted in gray. We mark three points
in T2 in blue, green and red respectively: the stratified truss (T, f) is combinatorially
2-transversal at the blue and green points, while it fails to be combinatorially transver-
sal at the red point (while the neighborhood around the red point is normalized and
of the form T̊0 × (C,W ↪→ C2), the stratified truss (C,W ↪→ C2) is not a cone truss;
the maximal element of C2 has dimension 1!).

normalize normalized but not of the

Q ↪→ T2

form T̊k × (C,D ↪→ Cn−k)

∼= T̊0 × (C,D ↪→ C2)

∼= T̊1 × (C,D ↪→ C1)

⇒ 1-dim 1-transversal

⇒ 1-dim 0-transversal

⇒ not transversal

Figure 3.4: A stratified truss with combinatorially transversal and non-transversal
points

Definition 3.1.22 (Tangle trusses). An m-tangle n-truss (T, f : Q ↪→ Tn), is a
normalized stratified open n-truss that is combinatorially m-dim transversal.

We also refer to tangle trusses as ‘combinatorial tangles’.

Example 3.1.23 (Tangle truss). The stratified truss depicted earlier in Fig. 1.14 is
a 1-tangle 2-truss.

Terminology 3.1.24 (Tangle truss manifolds). Given an m-tangle n-truss (T, f : Q ↪→
Tn) we call Q the ‘tangle truss manifold’ of (T, f).

Our arguments for the comparison of topological and combinatorial manifold
diagrams carry over to the following comparison of topological and combinatorial
tangles.

Theorem 3.1.25 (Combinatorializing tame tangles). Framed stratified homeomor-
phism classes of tame m-tangles in In are in 1-to-1 correspondence with m-tangle
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n-trusses, by taking tame tangles f = (W ↪→ In) to their fundamental stratified
trusses NETrs f .

Proof. The argument closely follows the proof of Theorem 2.3.3, and we therefore
only give a sketch proof here. Recall the framed transversality condition given in
Definition 3.1.4 resp. the combinatorial transversality condition in Definition 3.1.18.
Analogous to the proof of Theorem 2.3.3, we need to show (1) that for each tame m-
tangle f , its fundamental stratified truss NETrs f is combinatoriallym-dim transversal,
and (2) that given a tame stratification f such that NETrs f is an m-tangle truss,
then f is framed transversal. The only novelty is the verification of the inductive
condition in Definition 3.1.4 in step (2) (recall, the condition requires us to show that
k-transversal points have tubular neighborhoods in which all points away from the
cone stratum are j-transversal, for j > k): but this follows from the combinatorial
transversality condition satisfied by NETrs f , using the fact that stratified truss
coarsenings restricts to stratified subtrusses (note, any arrow x→ y in Tn, yields a
subtruss inclusion T≤y ↪→ T≤x of the respective truss neighborhoods).

We call NETrs f the ‘fundamental tangle truss’ of the tame tangle f and, conversely,
say f is a ‘classifying tame tangle’ of NETrs f .

Example 3.1.26 (Combinatorializing tame tangles). The tame stratification and its
combinatorialization shown earlier Fig. 1.14 is also an example of a tame tangle and
its combinatorialization. Another example can be constructed from the combinatori-
alization of the ‘braid’ manifold diagram in Fig. 2.13: indeed, we may consider this
diagram as a tame tangle whose tangle manifold is the union of the red and green
interval strata (similarly, its combinatorialization may be considered as tangle truss
whose tangle truss manifold is the union of the red and green poset strata).

Parallel to our earlier discussion of compact combinatorial manifold diagrams, we
may adapt the notion of combinatorial tangles to the case closed trusses.

Remark 3.1.27 (Compact tangle trusses). Replacing the open cube truss T̊k by
corner trusses Tσ (see Terminology 2.2.14) one readily defines a condition of com-
pact combinatorial m-dim transversality for stratified closed trusses (T, f)
(the condition requires truss neighborhoods to normalizes to products of the form
Tσ× (C,D ↪→ Cn−k) where C is a cone truss and D \> and is an (m−k−1)-sphere).
A compact m-tangle n-truss (T, f : Q ↪→ Tn), is a normalized stratified closed
n-truss that is compact combinatorially m-dim transversal.

Analogous to the case of manifold diagrams, definitions of open tangle trusses and
compact tangle trusses are related by cubical compactification (see Section 2.2.3).
Via the combinatorialization of tame tangles in Theorem 3.1.25, this compactification
construction also finds a topological counterpart.
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Remark 3.1.28 (Compactifying tangle trusses and tame tangles). Given an m-tangle
n-truss (T, f : Q ↪→ Tn) then its cubical compactification is a compact m-tangle n-
truss which will be denoted by (T , f : Q ↪→ Tn) (see Definition 2.2.19). Analogously,
given an m-tangle f = (W ↪→ In), its compactification is the compact tame tangle
f = (W ↪→ In) (defined up to framed stratified homeomorphism) constructed as the
classifying tangle of the cubical compactification NETrs f of the fundamental tangle
truss NETrs f . Note that a compact tame tangle (In, g) is the compactification of a
tame tangle if and only if NETrs g is ‘interior-compactifying’ (cf. Observation 2.3.10).

3.1.3 Refining tame tangles to manifold diagrams. The definition of tame
tangles is closely related to earlier definition of manifold diagrams. Indeed, as we now
explain, any tame tangle can be refined to a manifold diagram whose strata are the
components of the subspace of k-transversal points of the tame tangle (for all k ≥ 0).

Definition 3.1.29 (Transversal stratification of tangles). Given a tamem-tangle f =
(W ↪→ In), the transversal stratification (In, tstr(f)) of f is the stratification whose
strata are connected components of the subspaces tdim−1(k) ⊂W of k-transversal
points (see Notation 3.1.5), and the connected components of the complement In \W
of W .

Note that the transversal stratification of a tame tangle is a refinement of the tangle.

Example 3.1.30 (Transversal stratification of tangles). In Fig. 3.5 we depict two
tame tangles refined by their transversal stratifications.

refines refines

Figure 3.5: Transversal stratification of tangle

The definition can of course also be mirrored combinatorially.

Definition 3.1.31 (Combinatorial transversality stratification). Given a m-tangle
n-truss (T, f : Q ↪→ Tn), the transversal stratified truss (T, tstr(f)) (also written
tstr(T, f)) is the stratified n-truss whose strata are connected components of the
subposets tdim−1(k) and the connected components of the subposet Tn \ Q of Tn
(here, tdim is the combinatorial transversal dimension, see Notation 3.1.20).

Note that, if (T, g) = NETrs f for a tame tangle f , then (T, tstr(g)) = NETrs tstr(g).
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Theorem 3.1.32 (Tangles refine to manifold diagrams). Given a tame tangle f ,
then the transversal stratification tstr(f) of the tangle is a manifold diagram.

Proof. Equivalently, we may show that (T, tstr(g)) is a combinatorial manifold
diagram for any m-tangle n-truss (T, g). By definition of combinatorial mani-
fold diagrams we need to verify the combinatorial conicality condition for tstr(g).
Take x ∈ Tn. Since (T, g) is combinatorially transversal, we have

q
T≤x, g≤x

y
=

T̊k × (C,D ↪→ Cn−k). Observe, firstly, that
q
T≤x, tstr(g)≤x

y
= tstr(

q
T≤x, g≤x

y
),

secondly, that tstr(T̊k × (C,D ↪→ Cn−k)) = T̊k × tstr(C,D ↪→ Cn−k), and, thirdly,
that tstr(C,D ↪→ Cn−k) is a stratified cone truss (all three observations are left as an
exercise). Taken together these observations imply that (T, tstr(g)) is combinatorially
conical at x, which verifies the claim.

Observation 3.1.33 (Coarsest refining manifold diagram). Given a tame tangle f
then any refinement g → f by a manifold diagram g factors uniquely through the
refinement tstrf → f by a refinement g → tstrf . In this sense, tstrf is the coarsest
refining manifold diagram of a tame tangle.

An immediate upshot of the construction of the transversal stratification is the
following.

Observation 3.1.34 (Tangles canonically yield cell diagrams). Given a tame tangle f
we obtain a cell diagram tstrf †. Via Remark 2.4.15, this allows us to interpret tame
tangles as higher categorical diagrams of higher morphisms.

3.1.4 Cell structures of tame tangles. We now show that tame tangles have
canonical regular cell structures. Recall, a poset P is called cellular when for each
x ∈ P the strict upper closure P>x is a sphere (see Recollection 1.1.10).

Construction 3.1.35 (Canonical cell structures of tangles). Given a tame tangle
f = (W ↪→ In), construct its coarsest refining mesh Mf and its fundamental tangle
truss (T, g : Q ↪→ Tn) = NETrs f . Compactify the latter to obtain the closed stratified
truss (T , g : Q ↪→ Tn) (see Remark 3.1.28). For each x ∈ Tn, the strict upper closure
T
>x
n is a sphere (for instance, by [DD21, Lem. 3.2.1]). It follows that Tn is a cellular

poset, and its classifying mesh Mf ≡ CMshT gives a corresponding regular cell
complex Mf

n. Consider the constructible substratification cellf ↪→ Mf
n consisting

of those cells of Mf
n which lie in the subspace W ↪→ In. We refer to cellf as the

‘canonical cell structure of W ’ (note that W ← cellf ↪→ Mf
n is a cellular subrefinement

of W in the sense of Remark 1.1.20). We also define cellf := CStrQ, which cellulates
the compactification W of W (see Remark 3.1.28).

We can also construct the following dual cell structure.

Construction 3.1.36 (Canonical dual cell structures of tangles). Given a tame
tangle f = (W ↪→ In), construct its coarsest refining mesh Mf and its fundamental
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tangle truss (T, g : Q ↪→ Tn) = NETrs f as before. For each x ∈ Q, verify that Q<x

is a sphere.14 Thus Qop is a cellular poset. The classifying stratification CStrQop

will be written cell†f and called the ‘canonical dual cell structure’ of W . (Note, if W
has boundary then the classifying space |Qop| need not be homeomorphic to W ; but
there is always an inclusion |Qop| ↪→ W which is an homotopy equivalence, which
can be constructed by composing the identification |Qop| ∼= |Q| with the realization∣∣Q ↪→ Tn

∣∣, noting that
∣∣Tn∣∣ is the underlying space of CStr Tn ∼= Mf

n).

Example 3.1.37 (Cell and dual cell structures of tame tangles). We illustrate cell
and dual cell structures of tame tangles in Fig. 3.6: note that for the second example
(the torus) we only give the 1-skeleton together with a couple of 2-cells—the reader
will readily be able to fill in the rest of the 2-skeleton.

↪→

↪→

Figure 3.6: Canonical cell and dual cell structures of two tame tangles

Remark 3.1.38 (Non-existence of classical dual cell structures). In general, given a
cellular poset P whose classifying space is a closed manifold (i.e. compact without
boundary) then P op need not be a cellular poset. In contrast, if (T, f : Q ↪→ Tn) is a
combinatorial tangle, with the classifying space of Q being a closed manifold, then
the above constructions show that both Q and Qop are cellular posets. Moreover, in
the non-closed case, cellulations dualize up to compactification (that is, Q and Qop

are cellular).

3.1.5 PL structure and recognizability of tame tangles. We address three
foundational questions about our definition of tame tangles. Firstly, are tame tangle
manifolds (canonically) PL manifolds? Secondly, are PL tangles generically tame
tangles? And thirdly, given a tame stratification, can it be computably verified
whether it is a tame tangle? The answers will be ‘it depends on the smooth Poincaré
conjecture in dimension 4’, ‘yes’, and ‘no’ respectively.

14By definition of tangle trusses, (T≤x
n , g) normalizes to T̊k × (C,D) where D \ > is a sphere.

Thus D itself is a disk. Thus, the restriction of the projection T≤x
n → T

≤xk
k to Q gives a poset map

Q≤x → T
≤xk
k whose fibers are disks. The ‘base’ T≤xk

k of this bundle is a disk (by the dual version
of [DD21, Lem. 3.2.1]. Thus Q≤x is a disk itself. It follows that Q≤x \ x = Q<x is a sphere.
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Note, while tame tangles have been defined in purely topological terms, as in the
case of manifold diagrams, they carry canonical framed PL structure (as stratifications,
see Terminology 1.4.31). Indeed, this follows from Observation 1.4.32. Restricted to
tangle manifolds, this structure gives a PL structure but a priori not necessarily a
PL manifold structure (see Remark 2.1.17). In contrast to Observation 2.1.18, which
noted that strata in manifold diagrams are canonically PL manifolds, the question of
whether the canonical PL structure endows tangle manifolds with the structure of
PL manifolds is more subtle.

A standard way of producing triangulated topological manifolds that are not PL
manifolds uses the Edward—Cannon double suspension theorem [Can79]: namely,
given a triangulated non-trivial homology sphere H its double suspension Σ2H is
a triangulated topological sphere that is not a PL manifold. One could hope to
build a tame tangle by PL embedding Σ2H ↪→ In, which would yield a triangulated
tangle manifold that is not a PL manifold. However, no such embedding as the next
observation shows.

Terminology 3.1.39 (Weak PL manifolds). A PL structure is called a ‘weak PL
manifold structure’ if all its links are homeomorphic to spheres (but not necessarily
PL homeomorphic to the standard PL sphere as required in the definition of PL
manifold structures, see Remark 2.1.17).

While our construction of Σ2H yields a topological manifold with PL structure, it
this fails to be a weak PL manifold, since (any triangulation in) the constructed
PL structure contains links homeomorphic to ΣH (namely, the links around the
suspension points of Σ2H) and these links therefore fail to be homeomorphic to
spheres.

Observation 3.1.40 (Tame tangle manifolds are weak PL manifolds). The canonical
PL structures of (open or compact) tame m-tangles restrict to weak PL m-manifold
structures on tame tangle manifolds. (This can be shown for instance via the combi-
natorialization of tame tangles as tangle trusses, and the definition of combinatorial
transversality.)

Conjecture 3.1.41 (Tame tangle manifolds are PL manifolds). The canonical PL
structures of (open or compact) tame m-tangles restrict to PL m-manifold structures
on tame tangle manifolds.

The conjecture depends on the following fundamental open problem.

Remark 3.1.42 (PL Poincaré conjecture in dim 4). If m 6= 4, all PL m-spheres are
standard by the PL Poincaré conjecture [Buo03, §I.4]. In contrast, it is an open
problem whether non-standard PL 4-spheres exists, which is equivalent to the smooth
Poincaré conjecture in dimension 4 (SPC4), see [FGMW10]. Conjecture 3.1.41
is equivalent to SPC4: if no non-standard PL spheres exists than an inductive
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argument can be given to prove the conjecture, and conversely, if SPC4 is false then
a counterexample to the conjecture can be given.15

Observation 3.1.43 (Canonical PL and smooth structures of tame m-tangles, m ≤ 4).
The conjecture is true up to and including dimension 4 (a simpler proof can be
given in this case, since the Hauptvermutung holds in dimension k ≤ 3, see [Moi77],
which means that all triangulations of k-spheres are standard PL spheres; and thus
weak PL manifolds are PL manifolds in dimension ≤ 4). Moreover, since PL and
smooth structures are equivalent up to and including dimension 6 (see [HM74]),
tame m-tangles also carry canonical smooth structures on their tangle manifolds for
m ≤ 4.

We have just seen that potentially not all tame tangle manifolds are PL manifolds;
thus, a tame tangle may not necessarily be framed stratified homeomorphic to a
PL tangle (see Terminology 3.1.13). Conversely however, the next two observations
explain that PL tangles are ‘generically’ tame tangles, and that if PL tangles are
tame then their given PL structures coincide with their canonical PL structures as
tame tangles.

Observation 3.1.44 (PL tangles are generically tame tangles). Given a closed PL
tangle (i.e. a closed PL manifold that PL embeds into the open cube In), in order to
verify that it is a tame tangle it is sufficient to check that it is tame compact framed
transversal (this is analogous to Observation 2.1.14). Moreover, the transversality
condition can be regarded as a ‘genericity’ condition in the following sense: any
closed PL tangle given by an embedded simplicial complex W ↪→ In can be made
framed transversal by an arbitrarily small perturbation of the vertices of W . This
observation generalizes to the case of non-closed compact PL tangles W ↪→ In with
appropriate care on boundaries.

Observation 3.1.45 (Tame PL tangles carry the canonical PL structures). We refer
to a PL tangle that is a tame tangle as a ‘tame PL tangle’. Note, in a tame PL
tangle (W ↪→ In) the canonical PL structure of the tangle (see Observation 1.4.32)
restricts to the given PL structure of the PL manifold W . Moreover, given two tame
PL tangles (W ↪→ In) and (W ′ ↪→ In) that are framed stratified homeomorphic,
then they are framed stratified PL homeomorphic (this follows from the ‘flat framed
Hauptvermutung’, see [DD21, Cor. 5.0.7]). Restricting this homeomorphism to tangle
manifolds shows that the PL manifolds W and W ′ (with the PL structure given to
them as PL tangles) are PL homeomorphic. In particular, given a tame PL tangle
(W ↪→ In), the given PL structure of W coincides with the canonical PL structure of
the tame tangle restricted to W .

15If SPC4 turns out to be false, it may make sense to change the definition of tame tangles to
require links to be standard PL spheres, in order to ensure tangle manifolds carry canonical PL
manifold structures.
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Observation 3.1.46 (All PL structures appear as tame PL tangles). By Observa-
tion 3.1.44 and Observation 3.1.45 it follows that all PL m-manifolds W can be
realized as tame PL tangles W ↪→ In.

Unfortunately, checking the framed transversality of an arbitrary (non-PL) tangle,
or more generally of some given tame stratification, may not be easy, as follows.

Remark 3.1.47 (Unrecognizability of tame tangles). Given a tame stratification, we
cannot decide whether it is a tame tangle. Indeed, it is impossible to write an
algorithm that, given a simplicial complex K, decides whether |K| is a manifold
[Mar58] [VKF74] [Wei04] [Poo14], and this impossibility remains in place when trying
to check the framed transversality condition.

This stands in contrast to the case of manifold diagrams (where it is possible to
algorithmically check the framed conicality condition) and a priori gives the notion of
tame tangle a less ‘computationally tractable’ feel. Several remedies are imaginable—
including, for instance, a tractable classification of perturbation stable singularities
of tangles (as discussed in the next sections) which would make at least the class of
perturbation stable tame tangles computationally tractable.

3.2 Tangle stability

We now discuss bundles of tangles, and notions of ‘perturbations’ and ‘paths’ of
tangles, which in turn lead to definitions of ‘stable’ tangles.

3.2.1 Tangle bundles. We give the basic definitions of stratified bundles of tame
tangles and tangle trusses. We also discuss a further strengthening of the notion,
which describes ‘fiber bundles’ of tame tangles.

Remark 3.2.1 (Stratified bundles from bundled embeddings). Given a stratification
B, a space X, and a closed subspace W ↪→ B × X, we obtain a stratification f
of X whose strata are the intersections of the connected components of W and its
complement with the preimages π−1(s) of strata s in B (where π is the projection
B ×X → B). We will speak of the ‘stratified bundle p = (W ↪→ B ×X)’ to refer to
the stratified bundle π : (B ×X, f)→ B.

Definition 3.2.2 (Tame tangle bundle). A tame m-tangle bundle p = (W ↪→
B × In) is a tame stratified bundle whose fibers are tame m-tangles.

The definition has the following combinatorial counterpart.

Notation 3.2.3 (Stratified truss bundles from bundled embeddings). Given a n-truss
bundle q over P , and a closed subposet Q ↪→ Tot q, we write (T, f : Q ↪→ Tot q)
for the stratified n-truss bundle whose strata are the intersections of the connected
components of Q and its complement with the preimages q−1>0(b) of elements b ∈ P
(where q>0 is the composite qn ◦ qn−1 ◦ ... ◦ q1).
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Definition 3.2.4 (Stratified bundles of tangle trusses). Given a poset P , a stratified
bundle of m-tangle n-trusses (q, f : Q ↪→ Tot q) over P is a stratified n-truss
bundle over P whose fibers (q|b, f |b) over objects b ∈ P are m-tangle n-trusses.

Recall from Theorem 1.4.42 the correspondence of tame stratified bundles and
normalized stratified truss bundles. Given a stratified bundle of tame m-tangles p
over B, then NETrs p is a stratified bundle of m-tangle trusses, which we refer to as
the ‘fundamental tangle truss bundle’ of p. Conversely, given a tangle truss bundle
q over EntrB such that q ∼= NETrs p, we say that p is a ‘classifying tame m-tangle
bundle’ of q. Both the notions of tangle truss bundles and of tame tangle bundles
further have ‘compact’ variations to which they relate by ‘compactification’, which is
analogous to the unbundled case discussed in Remark 3.1.12 and Remark 3.1.28 (note,
this uses cubical compactification for stratified truss bundles, see Remark 2.2.23).

Example 3.2.5 (Tame tangle bundles). We illustrate several tame tangle bundles in
Fig. 3.7. The first two examples are bundles of 0-tangles in dim 1 over the stratification
CStr [1]; the third example is a bundle of 1-tangles in dim 2 over the same stratification;
the fourth example is a bundle of 0-tangle in dim 2 over a cellulated circle; and the
last example is a bundle of 1-tangle in dim over a cellulated open interval. Passing
to the fundamental stratified truss bundle ETrs p yields corresponding examples of
tangle truss bundles.

↓

↓↓

↓

(1) (2) (3)

↓

(5)(4)

Figure 3.7: Stratified bundles of tame tangle

Non-Example 3.2.6 (Tame tangle bundles). In Fig. 3.8 we give two examples of
tame stratified bundles that fail to be tame tangle bundles: the first example fails
since the subspace W ↪→ B × I1 is not closed; the third example fails since the fiber
over the point stratum in the base stratification is not a tame tangle.
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↓↓

Figure 3.8: Non-examples of stratified bundles of tame tangle

Observe that, in Fig. 3.7, the first three examples of tame tangle bundles p =
(W ↪→ B × In) differ from the last two examples in that the latter bundles restrict to
a fiber bundles W → B while the former bundles do not. The property of being a
‘tangle fiber bundle’ in this sense is captured by the next definition.
Terminology 3.2.7 (Tangle disks). An m-tangle n-truss (T, f : Q ↪→ Tn) is called an
‘m-disk’ if the classifying space of the compactification Q of Q (see Remark 3.1.28) is
a closed m-disk.

Definition 3.2.8 (Fiber bundles of tangle trusses). A fiber bundle of m-tangle n-
trusses (q, f : Q ↪→ Tot q) over a poset P is a stratified bundle of m-tangle n-trusses
over P that satisfies the following ‘fiber transition condition’: fibers (q|c→b, f |c→b)
over arrows c → b in P satisfy, for x ∈ Q|b, that the ‘generic fiber’ (r|c, g|c) of the
lower closure (r, g) := (q|≤xc→b , f |

≤x
c→b) is an m-disk.

In parallel topological terms, we define the following.

Definition 3.2.9 (Fiber bundles of tame tangles). A fiber bundle of tame m-
tangles p = (W ↪→ B × In) is a tame tangle bundle whose normalized fundamental
tangle truss bundles NETrs p is a fiber bundle.

The core observation about the previous two definitions is that the fiber transition
condition guarantees that tame tangle fiber bundles (p,W ↪→ B × In) restrict to
topological fiber bundles W → B. We omit a proof of this observation.
Terminology 3.2.10 (Stratified bundles by default). We henceforth often refer to
‘stratified bundles’ of tames tangles (or tangle trusses) simply as ‘bundles’.

3.2.2 Paths of tangles. We introduce the notion of ‘paths’ of tangles: the notion
will be central for defining when singularities of tangles are equivalent. In a brief
excursion, we also sketch notions of ‘higher paths’, and how these form a ‘higher
groupoid’ of tangles.

In combinatorial terms, paths of tangles are tangle trusses, which are fiber bundles
over their 1-level projections. We make this precise as follows.
Notation 3.2.11 (Truncations). Given an n-truss T = {qi : Ti → Ti−1}1≤i≤n write
T>k for the (n− k)-truss bundle {qi : Ti → Ti−1}k<i≤n over the poset Tk, and T≤k
for the k-truss {qi : Ti → Ti−1}1≤i≤k.
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Terminology 3.2.12 (Fiber bundle trusses). An m-tangle n-truss (T, f : Q ↪→ Tn) is
said to be an ‘(n− k)-fiber bundle’ if the stratified (n− k)-truss bundle (T>k, f) over
the poset Tk is a fiber bundle of (m− k)-tangles. In this case, we denote (T, f) by
(T>k, f);T≤k.

Definition 3.2.13 (Paths of tangle trusses). A path (S, g) of m-tangle n-trusses
is a 1-fiber bundle (m+ 1)-tangle (n+ 1)-truss, that is, (S, g) of the form (p, g);U
where (p, g) is a fiber bundle of m-tangle n-trusses, and U is a 1-truss.

In topological terms, one analogously defines ‘paths of tame tangles’ to be a tame
tangles whose fundamental tangle truss is a path of tangle trusses.

Example 3.2.14 (Paths of tame tangles). The last example in Fig. 3.7 is (up to
endowing the base poset with a framing, making it a 1-mesh) is an example of a path
of tame tangles.

To describe composition of paths, the following notion of gluings will be needed
(note that construction of gluings we give here is more general than what is needed for
gluing paths; it will also allow us to glue ‘higher paths’ later on). Recall that we refer
to the (n−k)th coordinate of In as the ‘kth categorical direction’ (see Remark 1.3.49).
All trusses are assumed to be open.

Construction 3.2.15 (Sides and gluings along categorical directions). Consider a
stratified open n-truss (T, f). Denote by γi± : Ti ↪→ Ti+1 the section of the 1-truss
bundle pi+1 : Ti+1 → Ti in T , that maps x to the upper resp. lower endpoint of
the fiber p−1i (x). For 1 ≤ k ≤ n, the kth categorical upper resp. lower side
(∂±k T, ∂

±
k f) of T is the maximal stratified subtruss of (T, f) such that the image of

the inclusion (∂±k T )n−k+1 ↪→ Tn−k+1 equals the image of the section γn−k± . Given
another stratified n-truss (S, g) such that (∂+k T, ∂

+
k f) and (∂−k S, ∂

−
k g) both equal

the same stratified truss (W,h), their k-side gluing (T #k S, f #k g) (also written
as (T, f) #k (S, g)) is defined as the pushout of (T, f) ←↩ (W,h) ↪→ (S, h) (in the
category Str̊Trsn of stratified open trusses and their stratified cocellular maps).16

Example 3.2.16 (Gluings of stratified trusses). Let T and S be the (normalized)
stratified trusses shown in Fig. 3.10. To their right, we illustrate four possible gluings
of T and S along their 2-sides resp. along their 1-sides (the mutual side along which
we glue is encircled in blue).

Remark 3.2.17 (Topological gluings). The construction of gluings of course has
an immediate topological counterpart which can be obtained by passing back and
forth between topology and combinatorics using ETrs and CMsh (or else can also be
defined in purely topological terms). For example, the topological gluings of tame
stratification corresponding to the gluings of stratified trusses in Fig. 3.9 are shown
in Fig. 3.10.

16On underlying trusses, this colimit can be computed by level-wise pushouts of posets.
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T

S

T #2 S S #2 T T #1 S S #1 T

Figure 3.9: Gluings of stratified trusses T and S

f

g
f #2 g g #2 f f #1 g g #1 f

Figure 3.10: Gluings of tame stratifications f and g

Remark 3.2.18 (Gluings up to normalization). When working with normalized trusses,
sometimes sides do not coincide ‘on the nose’ but only up to stratified coarsening:
given normalized stratified n-trusses (T, f) and (S, g) we may write (T, f) #k (S, g)
to mean the gluing (T̃ , f̃) #k (S̃, g̃) if there are canonical (i.e. smallest) stratified
refinements (T̃ , f̃) resp. (S̃, g̃) of (T, f) resp. (S, g) for which the gluing is defined.

Construction 3.2.19 (Domains and codomains). Given a stratified n-truss (T, f)
where T = {qi : Ti → Ti−1}1≤i≤n, consider its nth categorical sides (∂±n T, ∂

±
n f) and

write ∂±n T = {∂±n qi : ∂±n Ti → ∂±n Ti−1}1≤i≤n. The domain ∂−(T, f) (or ‘source’) and
codomain ∂+(T, f) (or ‘target’) of (T, f) are the stratified (n− 1)-trusses and with
underlying trusses {∂±n qi : ∂±n Ti → ∂±n Ti−1}2≤i≤n and labeling ∂±n f . (In other words,
∂±(T, f) are obtained from (∂±n T, ∂

±
n f) by forgetting the first truss bundle ∂±n q1.)

Notation 3.2.20 (Function type notation). We denote a stratified n-truss (T, f)
together with its domain and codomain using ‘function type’ notation, writing
(T, f) : ∂−(T, f)→ ∂+(T, f).

In the case of paths, function type notation specializes as follows.

Terminology 3.2.21 (Start and end points of paths). Given a path (S, g) : (T, f)→
(T ′, f ′), we refer to its domain (T, f) also as its ‘start point’ and to its codomain
(T ′, f ′) as its ‘end point’.

Our construction of gluings can now be used to construct compositions of paths.

Observation 3.2.22 (Paths compose). Given two paths (S, g) : (T, f)→ (T ′, f ′) and
(S′, g′) : (T ′, f ′) → (T ′′, f ′′) of m-tangle n-trusses, we obtain a ‘composite’ path
(S, g) #n+1 (S′, g′)(T, f)→ (T ′′, f ′′) by gluing (see Construction 3.2.15).
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In fact, we may also describe ‘higher paths’ of tame tangles which organize into
the following construction of a ‘higher groupoid’ of tame tangles.

Remark 3.2.23 (The higher groupoid of tangles). A k-path of m-tangles n-trusses
(S, g) : (T, f)→ (Y ′, e′) is a k-fiber bundle (m+k)-tangle (n+k)-trusses. Thus (S, g)
is of the form (p, g);U for U an k-truss. (It may be convenient, but not necessary,
to also impose globularity: this requires (S, g) to be constant over the image of any
γi± : Ui ↪→ Ui+1.) Note that for k = 0, a k-path is simply an m-tangle n-truss,
and for k = 1, it is a path of m-tangle n-trusses. The collection of all k-paths of
m-tangle n-trusses will be referred to as the ‘higher groupoid of m-tangle n-trusses
(if globularity is imposed, this data organizes into a globular set [Lei04]).

Notions of compositions of k-paths can be easily defined by gluings. While this
definition of composition is strictly associative and unital, it turns out to not strictly
satisfy the interchange law. Thus the above data does not define a strict higher
groupoid, but exhibits some weakness. We consciously omit any further discussion of
the type of structure it defines,17 as we shall only need the notion of 1-paths.

A final useful notion is that of tangle coherences: these are paths that do not
contain singularities.

Definition 3.2.24 (Tangle coherences). A coherence of tame m-tangle (T, f) is
a path of tame m-tangles such the (m+ 1)-tangle (T, f) does not contain singular
points (see Terminology 3.1.6).

In fact, any tame (m+ 1)-tangle without singular points is automatically a path and
thus a coherence. The standard example of a coherence is the braid, which we saw
already in the introduction; more specifically, the braid is a 0-tangle 1-coherence. In
contrast, the path in Fig. 3.7(5) is not a coherence, as it contains singular points.
More generally, one may define a ‘k-coherence of tame m-tangles’ to be a k-path
without points of transversal dimension less than k. For instance, the Reidemeister
III move is a 0-tangle 2-coherence (see e.g. [DD21, Fig. I.6]).

The next remark summarizes the four notions defined in this and the previous
section.

Remark 3.2.25 (Summary of bundle and path notions). Conceptually, notions of
bundles and paths may be organized by ‘increasing specialization’ as follows.

• Bundles of tame tangles are stratified bundles whose fibers are tame tangles.
• Fiber bundles of tame tangle are bundles that are topological fiber bundles
when restricting to tangle manifolds in the total stratification.

• Paths are tame tangles whose projections to R are fiber bundles.
• Coherences of tangles are paths without singularities.

17The term ‘free associative higher category’ may be applicable; see [Dor18].
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3.2.3 Singularities, perturbation, and stability. Finally, we discuss tangle
singularities and define notions of ‘stability’ for them. Throughout this section we
freely make use of the correspondence between tame tangles and tangle trusses (resp.
tame tangle bundles and tangle truss bundles).

Definition 3.2.26 (Tangle singularities). An m-tangle n-truss (T, f) is called an
m-singularity if T is an open cone truss. (Note this implies tdim(>) = 0 where >
is the maximal object of Tn.) Similarly, a tame m-tangle (In, f) is an ‘m-singularity’
when NETrs f is an m-singularity.

Alternatively, a tame m-tangle is an m-singularity when it is the cone of a tame link
whose cone point has transversal dimension 0.

Example 3.2.27 (Basic tangles singularities). Up to ambient dimension 2 there are
finitely many tangle singularities as follows: there is a single 0-tangle singularities in
dimension 1 (also denoted by the symbol A0d

1 , or more simply, by pt); there are two
1-tangle singularities in dimension 2 (which together are denoted by the symbol A1d

1 ,
or more simply, by A1); finally there is also a single 0-tangle singularity in dimension
2 (also denoted by the symbol A0d

1 ⊕ ε). These singularities are shown in Fig. 3.11.

A0d
1 ≡ pt A1d

1 ≡ A1 A0d
1 ⊕ ε

Figure 3.11: Basic tangles singularities up to ambient dimension 2

Remark 3.2.28 (Normal singularities). Given an m-tangle n-truss (T, f) and x ∈ Tn,
by definition the neighborhood around x normalizes to a stratified truss of the form
T̊k× (C,D ↪→ Cn−k). The (m−k)-tangle (n−k)-truss (C,D ↪→ Cn−k) is an (m−k)-
singularity, called the ‘normal singularity’ at x. An illustration is given in Fig. 3.12.

x

normal singularity at x
1
2

3

Figure 3.12: A normal singularity at a point in a tangle manifold
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We will study the behavior of singularities under ‘perturbations’, which are a special
instance of tangle truss bundles over the 1-simplex, whose generic fiber ‘surjects’ onto
its special fiber as follows.

Definition 3.2.29 (Perturbations). A perturbation (q, f : Q ↪→ Tot q) of m-
tangle n-trusses is a m-tangle n-bundle over the 1-simplex [1]op = (0← 1), such
for each object x ∈ Q|0 in the tangle manifold of the ‘special fiber’ (q|0, f |0 : Q|0 ↪→
Tot q|0) there exists an object y ∈ Q|1 in the tangle manifold of the ‘generic fiber’
(q|1, f |1 : Q|1 ↪→ Tot q|1). Similarly, a perturbation of tame tangles is a tame
tangle bundle over the stratified 1-simplex CStr [1]op whose fundamental tangle truss
bundle is a perturbation.

Notation 3.2.30 (Perturbations). A perturbation (q, h) with special fiber (T, f) and
generic fiber (S, h) will be denoted by (q, h) : (T, f) ⇀ (S, h)

Example 3.2.31 (Perturbations). The first and third example in Fig. 3.7 are
perturbations of tame tangles, while the second example fails to be a perturbation
(as it is not ‘surjective’ on the tangle manifold in the special fiber).

Remark 3.2.32 (Fiber bundle perturbations). A ‘fiber bundle perturbation’ is a
perturbation that is a fiber bundle of tame tangles (in fact, in this case the surjectivity
condition is vacuous, as it is implied by fiber transition condition in Definition 3.2.8
of fiber bundles of tangle trusses).

Observation 3.2.33 (Perturbations compose). Given perturbations (p, f) : (T, g)→
(T ′, g′) and (p′, f ′) : (T ′, g′)→ (T ′′, g′′) there exists a unique tangle truss bundle (r, h)
over [2]op such that (r, h)|0←1 = (p, f) and (r, h)|1←2 = (p′, f ′).18 The restriction
of (r, h) to (0 ← 2) yields the composite perturbation (p, f) ∗ (p′, f ′) : (T, g) →
(T ′′, g′′).

Example 3.2.34 (Perturbations and composites of perturbations). Two (composable)
perturbations as well as their composite are shown in Fig. 3.13.

We turn to stability. The idea is as follows: a tangle singularity is stable if
and only if it cannot be perturbed into a tangle containing ‘strictly less complex’
singularities. The comparison of ‘complexity’ requires elaboration. While in the
setting of singularities of topological maps it may not be clear how to obtain an
appropriate measure complexity, a key innovation in the framed combinatorial-
topological setting is that we can immediately draw from combinatorial representations

18The bundle (r, h) over [2]op can be constructed as follows. Write f = (Q ↪→ Tot p) and
f ′ = (Q′ ↪→ Tot p′). We obtain [1]op-labeled bundles (p, θQ) and (p, θQ′) where θQ resp. θQ′ are
indicator maps of Q resp. Q′ (see Remark 3.1.16). Using Observation 1.3.25, we can compose their
classifying morphisms [1]op → Tn([1]op) to obtain a functor [2]op → Tn([1]op), and thus a [1]op-labeled
bundle (q, θR) over [2]op. From this one obtains the stratified truss bundle (r, h : θ−1

R (0) ↪→ Tot r).
One then shows that the conditions for (r, h) to be a tangle truss bundle (see Definition 3.2.2) are
satisfied since they are satisfied by (p, f) and (p′, f ′).
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p

↓ ↓ ↓

p′ p ∗ p′

Figure 3.13: Two perturbations and their composite

for this purpose. Maybe the simple measure of complexity of a poset P is its cardinality
#P .19

Definition 3.2.35 (Stability). An m-singularity (T, f : Q ↪→ Tn) is stable if there
exists no perturbation (T, f) ⇀ (S, g : W ↪→ Sn) such that for all x ∈ W we have
that #Q > #W≤x.

As an example, note that all singularities in Fig. 3.11 are stable—we will meet further
stable singularities in the next sections.

We define the following ‘path equivalence’ on singularities.

Definition 3.2.36 (F-equivalence). Stable singularities (T, f) and (S, g) are said to
be F-equivalent (or ‘framed isotopic’), written (T, f) 'F (S, g), if there is a path
(T, f)→ (S, f). An equivalence class of F-equivalent stable singularities is also called
an F-orbit.

Note that the path need not pass only through stable singularities, or even through
singularities; for instance, the last example in Fig. 3.7 is a path between A1 singularities
that passes through non-singularity tangles (note also that the path ‘loops’, i.e. it has
the same start and end point). A special case of F-equivalences are perturbations
(T, f) ⇀ (S, f) between stable singularities (indeed, any such perturbation may be
completed to a path over the open 1-truss (• → • ← •) by the identity perturbation
(S, f) = (S, f)).

When working with stable singularities up to F-equivalence we will be interested
in the ‘maximally perturbed’ representatives of F-orbits.

Definition 3.2.37 (Inductive stability). A stable singularity (T, f) is called induc-
tively stable if all perturbations (T, f) ⇀ (S, g) to another stable singularity (S, g)
are of the form [1]op × (T, f).

19The simplest is not always the best, and it seems premature to not expect revisions this
definition of complexity in the future.
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Roughly speaking, inductive stability asks not only for the singularity to be stable,
but also its link to be written in the most stable form. As an example consider the
perturbation between stable singularities in Fig. 3.14: this perturbs a singularity of
type A1 #1 A1 → id to a singularity of the form A1 #2 A1 → id (see Fig. 3.10 and
Fig. 3.11)—as we will see shortly, both are stable singularities, but only the latter
singularity is inductively stable.

⇀

↓

Figure 3.14: A perturbation from a stable, but not inductively stable singularity, to
an inductively stable singularity

The example may suggest to the reader that we should always work with inductive
stability to avoid non-generic behavior in links. However, stable, but not inductively
stable singularities do occur naturally as well, and may provide ‘condensed’ represen-
tatives of F-equivalence classes; we return to this in Example 3.4.12 in our discussion
of the classical D4 singularity.

We end this section with a remark about the notion of coherences, which in some
way is complementary to that of singularities.

Remark 3.2.38 (Stable coherences). Recall that a coherence is a path without singular
points (see Definition 3.2.24). There’s now a parallel story to the above which
addresses the question of ‘stable’ (or ‘elementary’) coherences. Namely, a stable
coherence is a coherence that cannot be perturbed into strictly less complex coherences.
We illustrate this with an example in Fig. 3.15: the triple braid is unstable since it
can be perturbed into three braids; in contrast, the braid itself is stable.

⇀

↓

Figure 3.15: Perturbing the triple braid into three (stable) braid coherences
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3.3 Stability in low dimensions

We discuss stable m-tangle singularities (In, f) for n ≤ 4, giving definitive answers
to the classification of such singularities for m < 3, and an indication for the case
m = 3.

3.3.1 Stable 2-tangle singularities in 3-space. As a warm-up, let us determine
the stable 2-singularities in codimension 1 (up to F-equivalence). We shall attempt
to present our discussion in intuitive geometric terms, and will therefore mainly
focus on tame tangles rather than tangle trusses—however, there’s a parallel, purely
combinatorial argument based on the combinatorics of tangle trusses. We will work
with all tame tangles up to framed stratified homeomorphisms (which, of course,
amounts to working with their corresponding fundamental tangle trusses). Recall
that we refer to the (n− k)th coordinate of In as its ‘kth categorical direction’.

Remark 3.3.1 (Reflections). The ‘reflection in kth categorical direction’ (or simply,
the ‘k-reflection’) of the n-cube In = (−1, 1)n is the map r : In → In that takes
(x1, ..., xn−k−1, xn−k, xn−k+1, ..., xn) to (x1, ..., xn−k−1,−xn−k, xn−k+1, ..., xn). Note
that if (In, f) is a tame stratification then so is (In, f ◦ r). On the combinatorial
side, note that NETrs(f ◦ r) is the stratified truss obtained from NETrs f by reversing
fibers frame orders in the kth 1-truss bundle. Observe that reflections map tame
tangles to tame tangles, and manifold diagrams to manifold diagrams.

Proposition 3.3.2 (Stable 2-tangle singularities in I3). Up to reflection and F-
equivalence, there are three stable 2-singularities in I3, namely, those depicted in
Fig. I.5.

Remark 3.3.3 (Naming and counting stable 2-tangle singularities). The three singular-
ities (and their respective reflections) in Fig. I.5 will be called ‘extrema’, ‘saddles’, and
‘cusps’ respectively. Symbolically, we also refer to extrema and saddles together as
the A2d

1 singularities, and to the cusps as the A2 singularities. Note that applying all
available reflections, in total there are eight F-equivalence classes of stable 2-tangle
singularities in I3.
Recall the notions of sides, gluings, domains, and codomains from Construction 3.2.15
and Construction 3.2.19 (and keep in mind we may tacitly refine trusses before we
glue them, see Remark 3.2.18). Translating between tame tangles and tangles trusses
via ETrs and CMsh we will freely use these notions in the topological context.

Remark 3.3.4 (Codimension 1 tangles in I1 and I2). A 0-tangle (I1, f) is a disjoint
union of i ∈ N points in the interval I1 and we abbreviate (I1, f) simply by i. Given
0-tangles i and j we may compose them by gluing: note that i #1 j = i + j (see
Construction 3.2.15). One dimension up, a 1-tangle (I2, f) is therefore of the form
f : i→ j (see Construction 3.2.19). Such a tangle will contain an arrangement of A1

singularities as illustrated in Fig. 3.16.
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6

Figure 3.16: A 1-tangle with six source and six target points

Notation 3.3.5 (Identities). Denote by idi the 1-tangle I1 × i : i→ i. This notation
similarly applies to general tame tangles f , namely, we write idf for I1×f : f → f .

Proof of Proposition 3.3.2. We will show, (1), that the three given singularities are
stable, and (2), that up to F-equivalence and reflections they are the only stable
singularities. The first statement follows by enumerating all 2-singularities s : f → g
which contain at most two A1 singularities in their link (i.e. in their source f and
target g taken together). Up to reflections, the enumeration is given in Fig. 3.17.

'F

Figure 3.17: Enumerating singularities whose link contains up to two A1 singularities

The first four singularities in this list are stable: indeed, one checks that none of
them can be perturbed into strictly less complex singularities. This in particular
includes the three singularities from Fig. I.5, and thus shows statement (1).

To see statement (2), first note that the fourth singularity in Fig. 3.17 is stable but
F-equivalent to the third, while the last two singularities in Fig. 3.17 are unstable:
the respective perturbations that witness this are given in Fig. 3.18. It remains
to show that any singularity s : f → g not in the list of Fig. 3.17 is unstable (in
particular, the link of s will contain at least three A1 singularities). We will do
so by showing that s can be perturbed into a tangle containing only A2d

1 and A2

singularities (all of which are strictly less complex than s).

⇀

↓

A2d
1 A2d

1

A2

⇀

↓

Figure 3.18: The simplest unstable 2-singularities and their perturbations
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We organize the argument into two steps. The first step will show that we
may assume the target to be trivial. The second step will construct the required
perturbation. As a running example we will consider the singularity s shown in
Fig. 3.19.

f

s

g

Figure 3.19: An unstable singularity s : f → g

Step 1: Moving g to the source. Denote by g−1 the 2-reflection of g. First, there is
a tangle µ : idj → g−1 #2 g given by applying A2d

1 singularities to generate the pairs
of A1 singularities in g−1 #2 g; second, there is a 2-tangle singularity s∪ : h → idi
whose source h := f #2 g

−1 is the 2-gluing of f and g−1, and whose target is the
identity on i strands; finally, these two tangles can be combined into a single tangle
µ ∗ s∪ : f → g given by the composite (idf #2 µ) #3 (s∪ #2 idg). For our choice of s
in Fig. 3.19, this is illustrated in Fig. 3.20.

f = f#2idj

idf#2µ

f#2g
−1#2g

s∪#2idg

idi#2g = g

A2d
1

s∪

A2d
1

A2d
1

Figure 3.20: A perturbation of s obtained by ‘bending’ the target into the source

Observe that there is a (unique) perturbation s ⇀ µ ∗ s∪ which restricts to
an identity on sources and targets. If we can construct a perturbation of s∪ into
a tangle containing only A2d

1 and A2 singularities (without changing the source
f #2 g

−1 #2 g or the target id), we can compose the perturbations to obtain the

91



required perturbation of s. Replacing s by s∪, we have thus reduced the proof to the
case where the target of s is idi.

Step 2: Inductively simplifying the source. To show s : h → id is unstable, we
first remove all wiggles from h as follows. Since the link of s is a 1-sphere, observe
that the source h is a union of line segments in the plane I2 (i.e. h cannot contain
1-spheres itself). Each such line segment contains a non-negative number of A1

singularities; if this number is greater than 1, then we can always find a pair of
consecutive A1 singularities to which we can apply an A2 singularity (at least after an
appropriate isotopy, that ensures these two singularities are ‘close by one another’).
The application of A2 singularities to ‘remove wiggles’ in this way is illustrated in
Fig. 3.21. As shown in the figure, removing wiggles inductively, produces a path
ω : h→ h̃ such that each line segment in h̃ contains at most one A1 singularity.

h := f #2 g
−1

ω

h̃

A2

A2

Figure 3.21: Removing wiggles from the source of s∪

If h̃ equals idi (which always holds if h has a single line segment), then we are
done: in this case, observe that there is a (unique) perturbation s ⇀ ω and this
perturbs s into a tangle containing A2d

1 and A2 singularities as claimed. Otherwise, we
continue. Note that h̃ has at least two line segments. Consider the two line segments
containing the first point in the source resp. target of h̃: the two segments are marked
in red resp. blue in the 1-tangle shown in the top-left of Fig. 3.22 (note the two
segments must be distinct since the link of s̃ is a 1-sphere S1). We can operate on

A2A2

A2d
1

A2d
1A2d

1

h̃

id3

τ

A2d
1

A2d
1

A2

h̃ : 3→ 3

Figure 3.22: Inductively removing remaining cups and caps

the two segments with one of the three operations shown on the right in Fig. 3.22
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(containing only A2d
1 and A2 singularities) to obtain a tangle h̃→ id1 #1 h̃

′; in fact,
applying such operations inductively (noting that h̃′ has fewer line segments than h̃),
we obtain a tangle τ : h̃→ id1 #1 ... #1 id1 = idi, as illustrated in Fig. 3.22. Observe
that there is a (unique) perturbation s ⇀ ω #3 τ which restricts to identities on
sources and targets. Since ω #3 τ only contains A2d

1 and A2 singularities this proves
the statement.

3.3.2 Stable 1-tangle singularities in 3-space. Recall, for m = 1 and n =
2 there are exactly two m-tangle singularities (In, f), namely those discussed in
Example 3.2.27. This situation ‘stabilizes’ to the case m = 1, n = 3 as the following
theorem records.

Proposition 3.3.6 (Stable 1-tangle singularities in dimension 3). Up to F-equivalence
and reflection, there is one stable 1-tangle singularity in I3: namely, the singularity
depicted (together with its reflection) in Fig. 3.23.

1
2

3

A1⊕ε

Figure 3.23: Stable 1-tangle singularities in dimension 3

Proof. Links of 1-tangle singularities are 0-spheres and thus consist of two points;
when working in dimension 3, these two points can either both lie in the source
2-cube or in the target 2-cube. Observe that there are two choices for the relative
positioning of these points: indeed, in addition to the singularities in Fig. 3.23 we
also find the singularities shown in Fig. 3.24. However, the latter singularities are
F-equivalent to the former two singularities which proves the statement.

1
2

3

Figure 3.24: Stable, but not inductively stable, 1-tangle singularities in dimension 3

Note that while the singularities in Fig. 3.24 are stable, they are not inductively
stable (as their link may be perturbed to a more generic form).
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3.3.3 Stable 2-tangle singularities in 4-space. The case of 2-tangle singulari-
ties (I4, f) is, similarly to the case of 1-tangle singularities in I3, a stabilization of the
case with one less codimension. That is, we obtain a first set of stable 2-tangle singu-
larities (I4, f) by stabilizing the singularities in Fig. I.5: the resulting singularities
are shown in Fig. 3.25.

1
2

3 4 4

4 4

4 4

A
2
d

1
⊕
ε

A
2
⊕
ε

Figure 3.25: Three stable 2-tangle singularities in dimension 4

However, codimension 2 again also brings new phenomena not present in codi-
mension 1. In this case, the ability to braid points in the plane provides the link of a
new singularity which trivializes the braid; this singularity is depicted in Fig. 3.26.

1
2

3 4 4

Figure 3.26: The braid trivializing singularity

Proposition 3.3.7 (Stable 2-tangle singularities in dimension 4). Up to reflection
and F-equivalence, there are four stable 2-singularities in I4, namely, those depicted
in Fig. 3.25 and Fig. 3.26.

Proof Outline. We outline the steps of the proof. The argument is analogous to
Proposition 3.3.2. First, one shows by enumerating all singularities up to the size of
the four singularities in Fig. 3.25 and Fig. 3.26, that these singularities are indeed
stable and cannot be perturbed into simpler singularities. Next, one shows that
all other singularities s : f → g are unstable. We may assume (analogous to the
argument in Proposition 3.3.2) that g = id. As an example, consider the singularity
shown in Fig. 3.27.

We will produce a perturbation s ⇀ ρ such that ρ only uses the four stable
singularities determined above. The perturbation ρ of s can be built in three steps
(for our example of s, the perturbation is shown in Fig. 3.28). In the first step, we
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4 4

Figure 3.27: An unstable 2-singularity in dimension 4

genericize the source f of s by a coherence f → f̃ (see Definition 3.2.24), such that
f̃ = (W ↪→ I3) has the following property: the projection π : I3 → I2 restricts to
projection W → I2 which has empty or singleton preimages except for isolated points
x ∈ I2, at which there is a framed neighborhood Ux such that W restricts on π−1(Ux)
to a braid. (In other words, f̃ doesn’t contain any other ‘wire crossings’ but braids.)
In the second step, we then delete all braids using the braid trivializing singularity.
In the third and final step, we remove circles using the second singularity in Fig. 3.25,
and then remove wiggles and simplify using the first and third singularity in Fig. 3.25
(this last part is analogous to the argument in Proposition 3.3.2). As a result we
have shown that s can be rewritten in terms of the four stable singularities, and is
thus unstable as required.

step 1−−−−→ step 2−−−−→ step 3−−−−→

genericize remove braids remove circles,
wiggles, and simplify

Figure 3.28: 3-step perturbation of an unstable 2-singularity in dimension 4

Remark 3.3.8 (Fiber-bundle-perturbation stable singularities). A different classifi-
cation of stable singularities than that of Proposition 3.3.7 would have been ob-
tained if we worked with ‘fiber bundle perturbations’ in place of ‘perturbations’ (see
Remark 3.2.32): indeed, for any isotopy class of knots in I3 we can produce an
F-equivalence class of fiber-bundle-perturbation stable singularities by taking the
cone of a (sufficiently simple) representative of that knot isotopy class. In particular,
there are infinitely many F-equivalence classes of fiber-bundle-perturbation stable
2-singularities in dimension 4.

Remark 3.3.9 (Stability for 3-tangle singularities in 4-space). We briefly also remark
on the case of 3-tangle singularities (I4, f). We claim that there are nine classes of
stable singularities in this case (up to reflections and F-equivalence) which can be
reasonably organized into five ‘types’ of singularities—these nine classes (and five
types) of singularities are illustrated later in Fig. 3.30.
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3.4 Smooth singularities
In this section we discuss the heuristic relation of tame tangle singularities and
classical smooth singularities. At the end of the section we make several conjectures
relating the framed topology of tame tangles to smooth structures on manifolds.

The relation between tame tangles singularities (or rather their corresponding
conical manifold diagrams) and classical smooth singularities we are going to put
forward isn’t conceptually new: it has been known and used as a vague idea for a
while [CKS96] [Bae06]. One of our goals in this section is to make this idea less vague.
As a first example of the idea, recall the stable 2-tangle singularities in dimension 3,
namely the ‘extrema’ and ‘saddle’ singularities A2d

1 and the ‘cusp’ singularities A2.
These are usually thought to have the following classical ‘counterparts’:

1. The counterpart of A2d
1 are the ‘Morse singularities’ f(x1, x2) = ±x21 ± x22,

2. The counterpart of A2 are the ‘Morse-Cerf singularities’ f(x1, u1) = ±x31±u1x1.
As we will discuss in this section, the underlying principle of this relation is to
translate classical smooth singularities into their (parametrized) graphs and consider
these graphs as tame tangles. Observations in low dimensions suggest that the
translation preserves stability—i.e. it translates stable classical smooth singularities
to stable tame tangle singularities.

The resulting relation between the two approaches is somewhat mysterious, since
their respective mathematical foundations are rather different. We will not give a
rigorous explanation of this relation; instead, we would like to suggest up the problem
of explaining it as an open challenge. Part of the importance of this question derives
from the study of dualizability data in higher category theory as we will explain (see
Note 3.4.15).

3.4.1 Recollections from smooth singularity theory. We start with a brief
recollection of classical singularity theory. Our main reference is the excellent modern
treatment in [MNB20]. The subject has its roots in seminal work by Milnor, Thom,
Mather, Arnold, Wall, and many others. In the following, all maps are assumed to
be smooth unless we indicate otherwise.

The rough set-up of classical singularity theory is as follows. We study the space
of map germs f : (Rm, 0) → (Rp, 0) (with critical point at 0 and critical value 0)
under the action of a group G: for p = 1, the common choice is to set G to be the
group R of origin-preserving diffeomorphisms acting on the domain (which is usually
called ‘right equivalence’); and, for p > 1, one common sets G = A, where A acting
by origin-preserving diffeomorphisms on both domain and codomain (which is usually
called ‘left-right equivalence’). For our purposes, we will usually assume p = 1 and
G = R (unless otherwise noted) but many of the ideas below hold for more general
choices of G.

Germs in the same G-orbit are said to be ‘G-equivalent’. One can define a notion
of tangent space T Gf and normal space T 1

Gf at f of the orbit Gf in the space map
germs (see e.g. [MNB20, §3.2], where this notational choice is explained as well). We
call f ‘G-finite’ if the dimension of the normal space T 1 Gf is finite (this dimension
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is also called the ‘G-codimension’). ‘G-determinacy’ of a germ f means that there is
a k <∞ such that any other germ g with the same k-jet as f is G-equivalent to f .
Mather showed that G-finiteness is equivalent to G-determinacy of f (see [MNB20,
Thm. 6.1]). (This is a core result in the classification of singularities since it allows
us to only inspect finitely many derivatives to determine G-finite G-orbits.) Given a
G-finite f , one moreover says that f is ‘G-simple’ if in a small neighborhood of f in
the space of germs we only find finitely many other G-orbits. The classification of
G-orbits for general values of m and p was of great interest and promise especially in
the 1980s and 1990s—however, activity has dampened over time, and many of the
remaining questions appear to be hard. A list of successful classifications is compiled
in [MNB20, §6.4]. Most prominently, one has the ADE classification of Arnold, which
classifies all R-simple R-orbits for m > 0 and p = 1. We list germs representing
these R-orbits below (in each case, the germs we have i ‘stem’ variables (x1, ..., xi),
as well as a quadratic term ±x2i+1 ± x2i+2 ± ...± x2m in the other variables which we
keep implicit).

1. Ak germs of the form xk+1
1 , k > 1.

2. D±k germs, form xk−11 ± x1x22, k > 3.
3. E6, E7, and E8 germs, of the form x31 + x42, x31 + x1x

3
2, and x31 + x52 respectively.

Observe that the above germs have at most two stem variables, and that for those
germs f with two stem variables the 3-jets j3f never vanish. Let us briefly sketch
why non-simple germs are to be expected in other ‘higher’ cases. Consider the space
of k-jets of germs (R2, 0) → (R, 0) in two variables at 0; the action of R on germs
descends to an action on this space by GL(R2). Now, if k ≤ 3, then there are
finitely many R-orbits in the space of k-jets in two variables, but for k > 3, there are
‘moduli’ of such orbits, i.e. all of the orbits have positive codimension (indeed, the
fiber J4(2, 1)→ J3(2, 1) has dimension 5, with basis x41, x31x2, x21x22, x1x32, x42, while
the group GL(R2) that is acting on it only has dimension 4). R-orbits of k-jets in
three variables we find moduli already when k = 3. Thus we encounter non-simple
R-orbits of germs when considering germs with vanishing 3-jets in two variables, or
vanishing 2-jets in three variables. Conversely, for germs of two variables that are
determined by their 3-jet, all R-orbits are R-simple and of codimension less than or
equal to 5, see [MNB20, Thm. 6.12]. (Thom’s original seven ‘elementary singularities’
exactly describe those orbits up to codimension 5, which are A2, A3, A4, A5, D

±
4 , D5,

and the ADE classification extends this to two infinite families Ak, Dk, observing
that they remain simple even in codimension higher than 5.) This dashes the hope
that finding a finite classification of singularities in codimensions k, for k > 5. The
issue has led mathematicians to consider right equivalence by homeomorphism in
place of diffeomorphisms, as discussed thoroughly in [DPW95] (however, this leads
to other difficulties with the classification problem of singularities; as the authors
loc.cit. note, “while Arnold finds a zoo of singularities, we find a bestiary”).

In contrast, in the framed combinatorial-topological setup of singularity theory
outlined in Section 3.2, the worry of encountering a ‘moduli of singularities’ is absent—
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since tangle singularities are combinatorially classifiable by tangle truss singularities
there are only countably many such singularities (up to framed homeomorphism),
and thus there can be, at most, countably many ‘F-orbits’ (i.e. F-equivalence classes,
see Definition 3.2.36).

3.4.2 From smooth to tame singularities. A priori, it seems rather implausible
that there should be any type of faithful relation between F-orbits of tame tangle
singularities (see Definition 3.2.36) and G-orbits of smooth map germs (as discussed
in the previous section). However, we will now illustrate that, while generally tame
tangles are ‘more flexible’ objects than smooth map germs, there seems to be a close
relation between the two deriving from the translation of G-simple G-orbits into
F-orbits given in Heuristic 3.4.2 below.

Remark 3.4.1 (Unfoldings). We recall one further notion from classical smooth
singularity theory. Let f : (Rm, 0) → (Rp, 0) be a smooth G-finite germ. An ‘l-
unfolding’ F of f is a smooth map F : (Rm × Rl, 0) → (Rp × Rl, 0) of the form
F (x, u) ≡ (fu(x), u) such that f0 = f . A ‘versal’ unfolding F is an unfolding of f from
which any other unfolding can be obtained by pullback (‘versal’ is the intersection of
‘universal’ and ‘transversal’, see [MNB20, §5]). The versal unfolding F is said to be
‘miniversal’ if l is minimal with respect to F being versal. Equivalently, the versal
unfolding F is miniversal if its derivatives (in the direction of its l parameters) form a
basis for the normal space of the orbit Gf in the space of germs (see [MNB20, Thm.
5.1]). We may thus think of miniversal unfoldings as ‘unfolding f in all directions
normal to the G-action’.

Heuristic 3.4.2 (Translation of G-simple G-orbits to F-orbits). Given a G-simple
G-orbit, we will construct corresponding tame tangle singularity (representing an
F-orbit). Assume the chosen orbit has codimension l. Pick a representative f of
the orbit, and a miniversal l-unfolding F (x, u) ≡ (fu(x), u) of f . In fact, for the
singularities of interest to us, there are usually polynomial ‘normal forms’ available
for both f and F .20 Examples of normal forms include the earlier representations
of the ADE singularities by simple polynomials. We assume to have chosen such
normal forms for both f and F (importantly, this choice will ensure that F looks
sufficiently generic for the next step of the heuristic). Denote by Γ̃f the u-parametrized
graph of the family of maps fu: this is the subspace of Rl × Rp × Rm consisting
of points (u, fu(x), x) where x ∈ Rm and u ∈ Rl. Here, the order of components
matters: the first l components describe the parameters u, the next n components
describe the values of fu, and the last m components the space of variables x. Set
Rn = Rl×Rp×Rm (in particular, n := l+ p+m). Let In be the open unit n-cube as
before. For an appropriate choice of framed embedding φ : In ↪→ Rn, the parametrized

20Further discussion of ‘normal forms’ can be found in [Arn72] [Arn76] [Ush84] [Wal84]—
ultimately, there doesn’t seem to be a formal definition of what a normal form is. Intuitively,
a normal form is a ‘simplest’ representative of an orbit, but there might be several such choices (and
if there are, then some might be more suitable than others for the heuristic).
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graph Γ̃f intersects the image of φ in a tame m-tangle singularity, which we denote
by φ−1Γ̃f ↪→ In—we illustrate this step in examples below. Keeping φ implicit, we
simply write Γ̃f for an (m+ l)-tangle singularity obtained from f in this way.

Example 3.4.3 (Translating extrema, saddles, cusps). We return to the examples
mentioned the beginning of Section 3.4. Set f(x1, x2) = x21 + x22, g(x1, x2) = x21 − x22,
and h(x1) = x31. While f and g are of codimension 0 (i.e. their orbits are open in
the space of germs), h is of codimension 1 and thus has a miniversal unfolding with
one parameter: we choose this to be the family hu1 = x31 − u1x1. The respective
(parametrized) graphs Γ̃f , Γ̃g, and Γ̃h are shown in the top row of Fig. 3.29. In
each case we implicitly pick a framed inclusion φ : I3 ↪→ R3 (note that the order of
coordinates is different in the last example compared to the first two); we mark the
intersection of ∂I3 and Γ̃ in green. Below each example, we illustrate the resulting
tangle singularity φ−1Γ̃. Note, that the heuristic outputs stable tangle singularities,
and in this sense it preserves stability for the given examples.

u1

x1

hu1 (x1)

x2

x1

g(x1, x2)

x2

x1

f(x1, x2)

1
2

3
1
2

3

1

2
3

Figure 3.29: Translating extrema, saddles and cusps into tangle singularities

Let us remark that we may use the heuristic to interpret classical smooth sin-
gularities as ‘higher algebraic relations’. Recall, tame m-tangles in codimension p
translate into cell (m+ p)-diagrams (see Observation 3.1.34); this translation takes
tame tangle singularities to cell n-diagrams with a single n-cell, which we can think
of as a morphisms relating its source and target. We may thus interpret classical
singularities as categorical ‘relators’.21

From now on, we focus on the case p = 1, that is, on map germs Rm → R.
In terms of tame tangles, this means we will restrict our attention to tame tangle

21Here, a terminology ‘relator’ hints at the categorification of the term ‘relation’, and follows the
usual terminological convention of adding the Latin suffix ‘-or’ when turning strict identities into
higher categorical morphisms.
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singularities in codimension 1. For this case, we now discuss a heuristic that describes
how higher tangle singularities can be constructed by extrapolation from a pattern
of ‘binary relators’.

Terminology 3.4.4 (Binary relators). Given tame tangles f and g, a ‘relator’ is a
tangle singularity s : f → g. We call s a ‘binary relator’ if g = id (resp. f = id)
and f (resp. g) comprises exactly two tangle singularities. We will also use the
terminology in a weaker, more conceptual sense, to mean that f (resp. g) contains
two ‘distinguished’ singularities that govern the overall structure of f (but f may
contain further singularities in addition to these two).

Example 3.4.5 (Binary relators). Recall the singularities A1,A
2d
1 and A2 from

Example 3.2.27 and Remark 3.3.3: these stable m-tangle singularities are binary
relators of stable (m− 1)-tangle singularities, as follows.
− A1 singularities relate composites of two point singularities to identities.
− A2d

1 singularities relate composites of two A1 singularities to identities.
− A2 singularities relate composites of two A1 singularities to identities, but note

that the way these two A1 singularities are composed differs from the A2d
1 case;

we will refer to this composition as an ‘A2-shape’ composition.

Heuristic 3.4.6 (Tangle singularities from binary algebraic relators). We want
to generalize the ‘binary relator’ structure observed in the previous example to
higher singularities. For this, we schematize the notation for singularities by the
following heuristic. We write X ⇔~k

Y to mean the ‘kind’ of m-tangle singularities
that relate binary composites of two Y singularities to identities, where composites
are in the ‘shape of’ the i-singularity X. The subscript ~k = (ki, ki−1, ...k1) is a
vector of descending indices of so-called ‘primary directions’: roughly speaking,
by identifying the categorical directions (n + 1, ki, ki−1, ...k1) of X ⇔~k

Y with the
categorical directions (i + 1, i, i − 1, ..., 1) of X will enable us to ‘see’ that X ⇔k Y
has the shape of X. Using this notation, we may for instance rewrite:
− A1 ≡ (A1 ⇔1 pt).
− A2d

1 ≡ (A1 ⇔2 A1).
− A2 ≡ (A2 ⇔(2,1) A1).

To further illustrate the notation, let us proceed to the next dimension: we construct
3-tangle singularities as binary relators for 2-tangle singularities. We find five kinds
of singularities (represented by a total of nine F-equivalence classes of singularities
up to reflections), which we illustrate in Fig. 3.30, and which we further describe
below.
− A1 ⇔3 A

2d
1 (also written A3d

1 ). This is a relator of two A2d
1 singularities, one the

3-reflection of the other. Its shape is A1: to see this more explicitly, intersect the
source with a line in 3-direction, which recovers the source of A1, see Fig. 3.31
for an illustration.
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Figure 3.30: Nine classes of 3-tangle singularities in dim 4, organized into five kinds

− A2 ⇔(3,2) A2d
1 (also written A2d

2 ).22 This a relator of two A2d
1 singularities

composed in shape of A2 in primary directions (3, 2). To see the A2-shape,
intersect the source with the (3, 2)-plane, to recover the source of the usual A2

singularity; see Fig. 3.31 for an illustration.
− A2 ⇔(3,1) A

2d
1 . This is a relator of two A2d

1 singularities composed in the shape
of A2 in primary direction (3, 1). To see the A2-shape, intersect the source with
the (3, 1)-plane, to recover the source of the usual A2 singularity; see Fig. 3.31
for an illustration.

− A1 ⇔3 A2. This is a relator of two A2 singularities, one the 3-reflection of the
other. The underlying A1 shape is exhibited in Fig. 3.31.

− A3 ⇔(3,2,1) A2 (also written simply A3. This relator takes two A2 singularities,
composed by in an A3-shape, and relates them to an identity. Note this is a
new shape appearing in this dimension, which (in this and higher dimensions)
only acts on other A2-shaped singularities.

22Here and elsewhere, the superscript ‘kd’ is meant to indicate that the singularity comes from a
classical germ with k variables; for example, we have Akd

1 = Γ̃f with f = x21 + x22 + ... + x2k, and
similarly Akd

2 = Γ̃g with g being the 1-parameter family x31 − u1x1 + x22 + ...+ x2k.
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− A1 ⇔2 A2. This is a relator of two A2 singularities. The underlying A1 shape is
illustrated again in Fig. 3.31.

A1

A2

1
2

3

1
2

3

1

2

1
2

3

1
2

3
1
2

3

1
2

3

Figure 3.31: Seeing A1 and A2 shapes in the sources of higher singularities

Several remarks are in order. Firstly, it is worth emphasizing again that the symbols
introduced here denote kinds of singularities, consisting of multiple F-equivalence
classes of as given (up to reflections) in Fig. 3.30. Secondly, not all possible ‘combina-
tions of symbols’ (including choices of primary directions ~k) yield valid singularities.
One can describe reasonable conditions for composite symbols to only describe actual
singularities (but this goes beyond the intended scope here). However, thirdly, even
with such rules in place, there are non-trivial interactions between relators, as the
next remark records.

Observation 3.4.7 (Relators interact). Fig. 3.30 illustrates the following important
point: the classes A2 ⇔(3,1) A2d

1 and A1 ⇔2 A2 in fact coincide: indeed, up to a
4-reflection, their given respective representatives are identical (and both contain both
a pair of A2d

1 singularities and a pair of A2 singularities, making them a ‘double binary
relator’ rather than a true binary relator in the sense of Terminology 3.4.4). Going
into yet higher dimensions one finds a plethora of such interactions between relators:
for instance, in Example 3.4.11 we will meet the ‘triple binary relator’ D3.

Terminology 3.4.8 (The D2 singularity class). Based on the previous observation,
we jointly denote the classes of singularities (A2 ⇔(3,1) A

2d
1 ) and (A1 ⇔2 A2) by D2.

Instead of the representatives given in Fig. 3.30, we usually represent singularities in
D2 by moving all nontrivial content into the source (resp. target), making the target
(resp. source) trivial: this is illustrated in Fig. 3.32. (In fact, strictly speaking, only
the representation in Fig. 3.32 is stable in the sense of our definition of stability;
however, both representations can be expressed in terms of one another and the other

102



classes of singularities—the idea for this translation is a higher dimensional version
of step 1 in the proof of Proposition 3.3.2.)

4 4

1
2

3

Figure 3.32: The D2 singularity class

The next remark serves to record in what way the set-up of tangles differs from
that of smooth map germs.

Remark 3.4.9 (Non-classical tangle singularities). The singularity orbit D2 has no
classical smooth counterpart in the sense of Heuristic 3.4.2: its source mixes 2-
variable Morse singularities with 1-parameter 1-variable Morse-Cerf singularities and
thus cannot be a graph of the form Γ̃f . This provides a sense of how tame tangle
singularities are ‘more flexible’ than classical smooth maps, and the resulting theory
of such singularities is finer.

3.4.3 The elliptic umbilic singularity as a tame tangle. Having seen how
Ak singularities are binary relators of Ak−1 singularities it is now natural to ask
about the second infinite series of singularities: do the ideas of Heuristic 3.4.2 and
Heuristic 3.4.6 still apply for Dk singularities, k ≥ 4? In the lowest dimension, namely,
for the D4 singularity (which in Thom’s classification is also known as the ‘elliptic
umbilic singularity’), the question is answered positively in this section. The insight
into the nature of the D4 singularity may be summarized as follows.

While the tame tangle singularity D4 corresponding to the classical D4 singularity is
stable, it is not inductively stable. It admits a perturbation to an inductively stable
singularity, which is a binary relator of D3 singularities (see Terminology 3.4.4).

In order to visualize the D3 and D4 singularities, the following notation will be helpful.

Notation 3.4.10 (Projecting 2-tangles). Going forward, we often depict 2-tangles in I3
by the projections of their ‘non-regular points’ (i.e. points of transversal dimension
< 2) along I3 → I2. This simplifies the depiction of higher tangles as well: for
instance, consider the first six 3-tangle examples from Fig. 3.30 and the 3-tangle
Fig. 3.32. In Fig. 3.33 below (ignoring colors for now), we re-illustrate these seven
3-tangles by only depicting projections of their non-regular points to I2. We usually
also add, in color, the deformation that happens in between any of the sampled
slices. Note that the notation is ambiguous: for instance, the first two examples now
notationally coincide while they were originally different (see Fig. 3.30). To remedy
this ambiguity we usually provide an ‘initial condition’ given by at least one full
picture of a 2-tangle in the 3-cube I3, which then determines the rest of the higher
tangle.
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Figure 3.33: Denoting 3-tangle singularities by their projections

Example 3.4.11 (The D3 relator). As a warm-up, let us illustrate the D3 relator.
In Fig. 3.34 we depict its source. The is a relator of an A2-shaped composite of
D2 singularities; we highlight the shape of (the source of) A2 by a dashed red line
in the blue plane, which spans the categorical directions 2 and 4. However, note
that this relator cross-interacts with several relators (just as the D2 singularity
itself was an interacting relator of both A2 singularities and of A2d

1 singularities).
Concretely, it is simultaneously also a A2 ⇔(3,1) A3d

1 relator and a A2 ⇔(3,1) A2d
2

relator—correspondingly, we observe binary occurrences of both A3d
1 and of A2d

2

singularities in the depicted source of D3. (D3 is the first example of such a ‘triple
binary relator’.)

2

3

4

4

4

4

initial condition

1
2

3

Figure 3.34: The source of the D3 relator

Example 3.4.12 (The D4 relator). The classicalD−4 germ is represented by x31−x1x22.
The codimension of this germ is 3, and a miniversal unfolding of D−4 can be given
the normal form x31− x2x21 + u1(x22 + x21)− u2x2− u3x1. Following Heuristic 3.4.2 we
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consider the parametrized graph Γ̃f in R2×R1×R3 = R6 of this unfolding. Choosing
an appropriate framed cube I6 ↪→ R6 around the origin, we obtain a tame tangle
singularity. As for the earlier Example 3.4.3 the process is straight-forward, but
requires a good visualization of the 5-manifold Γ̃f in R6. A more detailed description
of this process can be found in [Dor22b]. We will denote the resulting tame 5-tangle
singularity by (I6,D4). (Up to moving nontrivial content from its target to its source,
we can assume that D4 is of the form srcD4 → id.)

Preliminary work suggests that the source of D4 cannot be simplified in a sub-
stantive way; in other words, D4 appears to be stable. Importantly though, it is not
true that D4 is inductively stable (see Definition 3.2.37); that is, the source srcD4 of
D4 is not yet maximally generic. To obtain an inductively stable singularity we apply
any maximal perturbation D4 → D′4 between singularities—in fact, one can ensure in
this way that the source srcD′4 only contains stable 5-tangle singularities that follow
the schematic form of Heuristic 3.4.6. The resulting source of the singularity D′4,
simplified slightly up to F-equivalence, is depicted in Fig. 3.35. (The D′4 singularity
is the cone of the depicted source, see also Fig. 3.36.) In order to be able to interpret
the picture, note the following.
− The source srcD′4 of D′4 is a 4-tangle in dimension 5, (I5, srcD′4).
− Each row in the picture is a 3-tangle slice, which restricts (I5, srcD′4) to ‘times’
{ti} × I4. Each such slice is in turn depicted as explained in Notation 3.4.10:
thin colored lines representing evolution in the 4-direction (and we preserve the
color-coding of singularity classes from Fig. 3.33) and an ‘initial condition’ is
given for the middle picture in the first row (dashed line).

− The rows, read from top-to-bottom, together show the evolution of these
3-tangles in the 5-direction: thick color-lines keep track of how 3-tangle sin-
gularities evolve. Note that 4-tangle singularities occur (the source is not an
isotopy); a legend of these singularities is provided in the lower left.

− The legend uses symbols as introduced in Heuristic 3.4.6.

Remark 3.4.13 (Comparison of D4 to other sinuglaritiies). A schematic representation
of the D4 singularity is given on the left in Fig. 3.36. This extracts from the previous
Fig. 3.35 only the lines traced out by D2 and A2d

2 singularities (which further, up
to higher equivalence, can be closed up into ’loops’), and depicts the result in the
(5,4)-plane. We then extend this picture by taking a cone into the 6th categorical
direction. To the left, we contrast the D4 singularity with to other singularities:
the A1-shaped relator A1 ⇔5 D3, and the A3-shaped relator A3 ⇔(5,4,2) A2 of A2.
This visualizes how the ‘topology of composition’ in D4 differs from that of previous
singularities (in the Ak series).

This completes our brief empiric discussion of the relation of classical and tame tangle
singularities. We end this section with remarks about related ideas and further topics
of research.
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A1 ⇔4 A3d
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A1 ⇔4 D2

D3
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Figure 3.35: The perturbed source of the D4 singularity
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A3 ⇔(5,4,2) A2A1 ⇔5 D3

Figure 3.36: Qualitative comparison of D4 with other singularities in dimension 6

Note 3.4.14 (Drawing exotic PL 4-spheres). Recall our earlier discussion of PL
manifold structures of tame tangles and its relation to SPC4 (see Remark 3.1.42
and Observation 3.1.43). If there are exotic PL 4-spheres S̃4 then these PL embed
in I5 (where they bound exotic PL 5-disks); this is discussed in [CMP12] in the
smooth case, from which the PL case follows. By Observation 3.1.44, we can choose
a sufficiently generic such embedding, obtaining a tame 4-tangle S̃4 ↪→ I5. Thus, if
they exist, exotic PL 4-spheres can be represented by a picture like Fig. 3.35 (built
from suitably stable 4-tangle singularities in I5).
Note 3.4.15 (Invertibility and dualizability). The binary relators touched upon earlier
in Heuristic 3.4.6 are, of course, closely related to the structure of coherently invertible
(and coherently dualizable) objects in higher categories. This relation roots in the
generalized tangle hypothesis (TH), which provides a link between normal framed
tangles and dualizable objects (see [BD95]). In order to see how the TH applies to
our discussion here, we briefly sketch how tame tangle singularities can be endowed
with ‘normal framings’ (in fact, in the form of a combinatorial structure).

Let us first consider codimension-1 tame m-tangle singularities f = (W ↪→ Im+1).
The topological Schoenflies theorem [Bro60] shows that the link ∂W ↪→ ∂Im+1 of
f separates Sm ∼= ∂Im+1 into two m-disks. Thus, Im+1 \W has two (m + 1)-disk
components. A signing sgn of f labels one of these disks with ‘−’ and the other with
‘+’. For m = 0, signings thus distinguish two tame tangle singularities: the ‘positive’
point ∗ : − → + and ‘negative’ point ∗† : +→ −. In both cases, the tangle manifold
(which is merely a point) can be given a normal 1-frame that points into the adjacent
1-disk labeled by ‘+’. Via the TH, the singularity ∗† can be thought of as the dual of
∗† (both considered as objects in a monoidal higher category). For m > 0, we may
similarly endow signed m-tangle singularities (f, sgn) with a normal 1-frame which,
at any point of the tangle manifold, points into the ‘+’-labeled disk. Again via the
TH, we can think of (f, sgn) as a part of the dualizability structure of the dualizable
object ∗.

The idea extends to higher codimensions by stabilization. Namely, we can
stabilize any given signed codim-1 singularities (f, sgn) and its normal 1-frame to
a normal k-framed singularity (f ⊕ εk−1, sgn) in Im+k (by post-composing f with
the embedding Im+1 ∼= Im+1 × {0} ↪→ Im+k and adding the last (k − 1) unit vectors
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to the normal frame). This procedure produces certain very specific normal framed
m-tangle singularities in codim-k, and not all codim-k singularities can be obtained
in this way (for instance, the braid trivializing singularity cannot be obtained in this
way). Again, via the TH, we can think of the resulting normal k-framed m-tangle
singularities as expressing the dualizability structure of the dualizable object ∗⊕ εk−1
(in a ‘k-tuply monoidal’ higher category).

We remark that the relation between tame tangle singularities and dualizability
described in the preceding note, makes the classification of stable tame tangle
singularities an interesting problem: indeed, such a classification (together with a
classification of ‘stable coherences’, such as braids and their higher analogues, see
Remark 3.2.38) should provide the generating higher morphisms from which to build
homotopy groups and other homotopical behavior.

Note 3.4.16 (The case p > 1). Understanding stable tangle singularities for codi-
mension p > 1 goes beyond the ADE pattern. Such singularities appear naturally
for instance in the attachment maps of cells of Thom spectra other than the sphere
spectrum (see e.g. [Dor22a]). The classification of singularities remains a ‘very open’
problem in this general case (and classical work on the matter has been much sparser
than in the case p = 1—nonetheless, interesting results exist when replacing ‘left-right
equivalence’ by certain coarser equivalence relations [Giu83]).

3.4.4 Conjectures about the combinatorialization of smooth structures.
The close connection illustrated in previous sections between classical smooth sin-
gularities and framed combinatorial topology motivated us in [DD21, §5] to make
several conjectures regarding the ‘smooth behavior’ of tame stratifications. We here
recall and rephrase these conjectures in the context of manifold diagrams and tangles.
For simplicity, we will work with closed manifolds, i.e. compact manifolds without
boundary (though, with sufficient care, similar conjectures can be made for manifolds
with boundary as well). Recall the notion of smooth tangles from Terminology 3.1.13.
A ‘tame smooth tangle’ W ↪→ In is a smooth tangle that is a tame tangle (i.e. W
is a smooth manifold, and W ↪→ In a smooth embedding that is tame and framed
transversal). Our starting point is the following observation in low dimensions.

Observation 3.4.17 (Combinatorialization of smooth structures in dim ≤ 4). For
m ≤ 4, recall from Observation 3.1.43 that any tame m-tangle f : W ↪→ In carries
a canonical smooth manifold structure on its tangle manifold W (since this is true
in the PL case and since PL and smooth manifold structures are equivalent in
these dimensions). In fact, given any smooth manifold structure on a topological
m-manifold W , then there exists a tame tangle f : W ↪→ In whose canonical smooth
structure coincides with the given smooth structure on W (again, this follows since
it is true in the PL case, see Observation 3.1.46). Moreover, if f : W ↪→ In is a
tame smooth tangle and fPL = (WPL ↪→ In) a PL tangle that is framed stratified
homeomorphic to f , the framed stratified homeomorphism f ∼= fPL can be chosen to
be piecewise differentiable (by an argument analogous to the piecewise linear case, see
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Observation 3.1.45). In particular, there is a piecewise differentiable homeomorphism
W ∼= WPL, and, because the piecewise differentiable and the piecewise linear categories
are equivalent, this implies that the given smooth structure of W coincides with
the canonical smooth structure of f on W . The situation can be summarized as
follows: in dimensions m ≤ 4, framed stratified homeomorphism classes of tame
m-tangles f : W ↪→ In can be used to present any smooth structure on a given
topological manifold W (by endowing W with the canonical smooth structure of
f), and whenever W ↪→ In is smooth itself, then the canonical smooth structure is
simply the smooth structure of W .

In fact, general position arguments (analogous to the PL case in Observation 3.1.44)
should also apply in the smooth case to prove that all smooth structures of W can
be realized as tame smooth tangles W ↪→ In. While we will not attempt to prove this
here, we formally record the statement (for all dimensions m) in Conjecture 3.4.18
below.

Building on and generalizing the previous observation, our first conjecture is that
the tameness and framed transversality is generic property of smooth embeddings
W ↪→ In. (We endow mapping spaces with compact-open topology.)

Conjecture 3.4.18 (Smooth embeddings are generically tame tangles). Given a
closed smooth manifold W , the subspace of tame smooth tangles W ↪→ In is dense in
the space of all smooth embeddings W ↪→ In.

In the PL case this conjecture is true, and was discussed in Observation 3.1.44.
Moreover, if we endow the mapping space with a topology in which neighborhoods
keep differentials ‘close by’ (such as the Whitney C∞-topology), then it should be
possible to replace ‘dense’ by ‘open and dense’ in the conjecture.

While the preceding conjecture guarantees that for any (closed) smooth manifold
W there exists a tame smooth tangle W ↪→ In, we may conversely ask if the smooth
structure of W can be recovered from such a tangle. Let us assume for a moment
that all smooth disks Dn are standard (in reality, the question is open for n = 4 and
n = 5, and hinges again on SPC4). Then, given a tame smooth tangle W ↪→ In,
each point of W has a tame framed neighborhood which is a standard smooth disk.
In classical Morse theory, exotic smooth structures can arise from attachments of
standard disks if the attaching maps are themselves exotic. However, in the context
of tame tangles, such attachments are (by an inductive argument) standard gluings
along lower dimensional tame tangles. Inductively, exotic attachments can therefore
only happen on 0-tangles; but 0-tangles have no exotic structure. This motivates the
following conjecture.

Conjecture 3.4.19 (Framed homeomorphism of tame smooth tangles implies diffeo-
morphism). If two tame smooth tangles W ↪→ In and W ′ ↪→ In are framed stratified
homeomorphic, then W and W ′ are diffeomorphic.23

23Note that this conjecture isn’t ‘obviously equivalent’ to SPC4: indeed, the sketched argument
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Again, in the PL case this conjecture is true, and was discussed in Observation 3.1.45.
Note that a priori there are many tame smooth tangles W ↪→ In for a given

smooth manifold W ; any such choice may be thought of as a choice of ‘higher Morse
function’ on W . Different choices should be related, as the next conjecture suggests.
Recall the notion of framed isotopy from Definition 3.2.36. We say a framed isotopy
is smooth if it is smooth as a tame tangle.

Conjecture 3.4.20 (Smooth framed isotopy of tame smooth tangles implies diffeo-
morphism). Given smooth m-tame tangles f : W ↪→ In, f ′ : W ′ ↪→ In, if f and f ′

are smoothly framed isotopic then W and W ′ are diffeomorphic.

In the stable range n > 2m+ 1, the converse should hold as well (i.e. diffeomorphism
will imply the existence of a framed isotopy).

Finally, we turn to stable tame tangle singularities. First, note the previous
conjectures suggest that there is a distinction between ‘smooth’ and ‘non-smooth’
tangle singularities, that is, we do not expect all tangle singularities to be smoothable—
instead, non-smoothable examples of the following form should exist. Given an exotic
smooth k-sphere W (where k > 4) we can find a tame, framed transversal embedding
W ↪→ In by Conjecture 3.4.18. Then the cone on W embeds in In × I and defines a
tame tangle singularity. However, since exotic smooth spheres (above dimension 4)
do not bound smooth disks, and assuming Conjecture 3.4.19 holds true, this tangle
singularity itself cannot be smoothable. When considering stable singularities, one
would similarly expect the class of smooth stable m-tangle singularities to be a proper
subclass of the class of all stable m-tangle singularities for general m.

Recall, for the low-dimensional cases discussed in Section 3.3, we obtained classifi-
cations of stable tangle singularities up to F-equivalence that were ‘constructive’ (i.e.
we could explicitly construct and list all of the stable tangle singularity classes). In
fact, the lists we obtained were finite as well. Our final conjecture states that similar
classifications should be possible for singularities in all dimensions and codimensions.

Conjecture 3.4.21 (Classifications of stable tangle singularities is tractable). F-
equivalence classes of stable m-tangle singularities in codimension p are constructively
classifiable, and there are finitely many such classes for any pair (m, p).

would probably still work with the simpler assumption that smooth structures of exotic 5-disks are
determined by their boundary exotic 4-spheres.
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