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Abstract

We introduce and discuss basic concepts from the emerging area of geometric higher category theory. The
exposition aims to be brief and informative but mathematically as self-contained as possible (some familiarity
with higher category theory is presumed). Several small exercises, with web-linked solutions, have been
included, and plenty of open questions as well as future research directions in the area are discussed.
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Introduction

While the term “geometric higher category” is new, its underlying idea is not: coherences in higher structures
can be derived from (stratified) manifold topology. This idea is central to the cobordism hypothesis (and to the
relation of manifold singularities and dualizability structures as previously discussed on the n-Café), as well as
to many other parts of modern Quantum Topology. So far, however, this close relation of manifold theory and
higher category theory hasn’t been fully worked out—the theory of geometric higher categories aims to change
that, and my goal is to explain the “how” in a series of nine short stories.

After a short introduction (story 1), the first part of the series (story 2 to 6) will explore howmanifold stratifications
can be made to work in directed space. In doing so, we will essentially spell out what are the ‘local models’ of
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geometric higher categories. In the second part of the series (story 7 to 9), we will then revisit the same ideas
from a global perspective.

Contribution. Themain contribution of this work is to give a unified account of theweb of concepts surrounding
geometric higher categories. Essentially all of the definitions, theorems and ideas presented here have already
appeared elsewhere in either articles, online notes, or people’s heads. An honest attempt was made to improve
presentation and accessibility of many of these notions (see conclusion for further remarks).

Comments. Originally, this text was envisioned to be a blog post and so in most parts it is written in a rather
chatty style. In fact, a (shortened and condensed but much more colorfully illustrated) version of this document
did appear as a blog post here—it might be worth reading that article first, and then returning here (and skipping
story 1 below).

1 What is “geometric” about geometric higher categories?

I would like to argue that there is a useful categorization of models of higher structures into three categories, but
really I will only give one good example of this. The absence of other examples, however, can be taken as a
problem that needs to be addressed, and as one of the motivations for studying geometric higher categories! The
three categories of models that I want to consider are “geometric”, “topological” and “combinatorial” models of
higher structures. Really, depending on your taste, different adjectives could have been chosen for these categories:
for instance, in place of “combinatorial”, maybe you find that the adjectives “categorical” or “algebraic” are
more applicable for what is to follow; and in place of “geometric”, maybe saying “manifold-stratified” would
have been more descriptive. As a further aside, note that I prefer to think of manifolds as being smooth (at least
for the purposes of examples and illustrations). In fact, in the presence of framings, smooth manifolds become
‘equivalent’ to piecewise-linear manifolds, and this will later allow us to formally recover smoothness in several
instances.

Let’s get to the promised example of how these three categories of models work and how they relate. We start
with the archetypical model of a type of higher structure: namely, with topological spaces. Unsurprisingly,
topological spaces fall firmly into the category of topological models. The type of higher structure modelled
by topological spaces deserves a name: we will refer to it as homotopy types. There is a second well-known
model for homotopy types, namely,∞-groupoids. Unlike spaces, whose theory is based on the continuum ℝn,
∞-groupoids are discrete structures whose data is captured by collections of morphisms in each dimension
k ∈ ℕ. This makes∞-groupoids a prime example of a ‘combinatorial’ (or, ‘algebraic’, or, ‘categorical’) model
of a higher structure. (I should point out that I am being vague about concrete definitions of the above named
‘models’; for instance, ‘spaces’ could be, more concretely, taken to mean CW complexes, and ∞-groupoids
could be taken to mean Kan complexes.) Despite being rather different in flavour, the higher theory (i.e. the
‘homotopy theory’) of topological spaces and the higher theory of∞-groupoids turn out to be equivalent. The
two models are related by two important constructions: we can pass from spaces to∞-groupoids by taking the
fundamental categories of spaces (usually referred as their ‘fundamental∞-groupoids’), and, conversely, we can
realize∞-groupoids as spaces.

Now the interesting part: what is the geometric counterpart to the above topological and combinatorial models? In
different words, how can we understand the homotopy theory of spaces in terms of a theory of manifold-stratified
structures? The answer is given by the theory of cobordisms, or more precisely, stratified cobordism. The most
well-known instance of how cobordisms and spaces relate in this sense is the classical Pontryagin theorem. The
theorem describes the isomorphism Ωf rm (ℝ

n) ≅ �n(Sn−m) between the cobordism group of smooth (normal)
framed m-manifolds in ℝn and the nth homotopy group of the (n − m)-sphere. The resulting relation between
smooth manifold theory and homotopy theory is incredibly ubiquitous in modern Algebraic Topology (and,
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relatedly, in Physics) but often implicitly so—in the words of Mike Hopkins, Pontryagin’s theorem itself marks
the point in time at which Algebraic Topology became ‘modern’.

Importantly for us, the theorem generalizes from spheres to arbitrary spaces (or, more precisely, CW complexes):
namely, the nth homotopy group of any space can be understood in terms of the framed stratified cobordisms group
of certain manifold stratifications of ℝn whose singularity types depend on X. The details of this generalization
are spelled out in [1, §VII], in a chapter titled “the geometry of CW complexes”, but really the basic idea of the
construction remains essentially the same (instead of working with regular points of the sphere Sn−m, we work
with regular ‘dual stratifications’ of CW complexes). To summarize, we can study the homotopy groups of spaces,
or, in combinatorial terms, the higher morphisms in∞-groupoids, by means of stratified cobordisms in ℝn. The
relation between the geometry of stratified cobordisms and the homotopy theory of spaces can be thought of as a
two-step process of ‘dualizing globalization’: this comprises dualization (which translates stratification data
back into cells as we will explain) and globalization (which, glues cells to obtain spaces, or, in combinatorial
terms, switches from the perspective of individual morphisms back to the ‘global’ category that these morphisms
define).

The main point I now want to make is that the trilogy of geometric, topological, and combinatorial models
exemplified above in the case of homotopy types should also extend to other types of higher structures. In
particular, (∞, 1)-categories and (∞, n)-categories should admit both topological models and geometric models—
however, these classes of models haven’t been much explored so far (remark: in the (∞, 1)-case, there is the
theory of d-spaces which I will count as an existing topological counterpart to (∞, 1)-categories even though
I’m unsure how much this relation has been formally explored). The situation is summarized in Table 1 below,
in which we have filled in precisely some of the missing entries for geometric and topological models of higher
structures: to indicate their conceptual nature, names of these models have been kept in quotes. At a first glance,
it seems like finding concrete definitions for these models would be a tall order: after all, the theory of stratified
cobordisms itself has its mathematical depths, and realizing the step from∞-groupoids (say, Kan complexes) to
concrete definitions of (∞, n)-categories is not necessarily an obvious one.

Now the revelation: in the course of this series of stories, I hope to convince you that the geometric models
of higher structures in fact get easier when passing to the directed setting of n- or (∞, n)-categories. More-
over, studying the undirected setting (i.e., in combinatorial terms, the case of higher structures with invertible
morphisms) from the perspective of directed geometric models provides a refined view on the computational
intricacies of invertibility as we will learn later.

Geometric Models Topological Models Combinatorial Models Higher structures

(stratified) cobordism spaces ∞-groupoids homotopy types

“1-directed cobordism” 1-directed spaces (∞, 1)-categories 1-directed types

⋮ ⋮ ⋮ ⋮

“n-directed cobordism”
manifold diagrams (dim ≤ n)
& tangle diagrams (dim > n)

“n-directed spaces” (∞, n)-categories n-directed types

“n-directed n-truncated cobordism”
manifold diagrams

“n-directed n-truncated spaces”
n-framed spaces

n-categories
geometric n-categories

n-directed n-types

dualization combinatorialization

Table 1: Categorizing models of higher structures (with “missing entries”, concrete definitions and derived notions)
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Of course, in order to be able to tell this story, we will discuss concrete notions that aim to realize precisely the
geometric models outlined above. The notions go by the names manifold diagrams resp. tangle diagrams (the
latter being the relevant notion in the undirected case). Both terms have been added to Table 1 in their respective
places (note that the (∞, n) case requires us to deal with manifold diagrams in and below dimension n, and with
tangle diagrams above dimension n). Importantly, note that I wrote that these notions ‘aim to realize’, instead of
just ‘realize’, the aforementioned geometric models. Indeed, how do we measure ‘correctness’ of our definitions
of manifold diagrams? Unfortunately, no reasonably-straight-forward benchmark for models of directed geometry
exists at this point (actually, the same was true for manifolds when they were discovered, but they were quickly
accepted due to their ubiquity in mathematics). Certainly, passing from geometry to combinatorics in Table 1,
a comparison to existing models of (∞, n)-categories would provide such a benchmark, but it also requires
substantial work (nonetheless, Lukas Heidemann is a PhD student at Oxford who is actively thinking about this
question at the time of this writing!). For today, instead of such comparisons, I would like to argue that the
geometric models of higher structures deserve your interest for the following set of more elementary reasons.

1. Simplicity and ubiquity. Firstly, the definitions of manifold and tangle diagrams are simultaneously simple and
expressive: both definitions succeed in encompassing large classes of known examples, including ordinary string
diagrams and surface diagrams, knot and surface-knot diagrams, as well as their respective moves (Reidemeister
move and ‘movie moves’), and smooth manifold singularities such as Arnold’s ADE singularities.

2. Trilogy of models. Secondly, and this is a central part of the story, both manifold and tangle diagrams have
canonical topological and combinatorial representations. This enables a powerful translation between all three
columns of Table 1: in the topological column this translation results in a local model of directed space termed
framed spaces, and in the combinatorial column it yields, you guessed it, geometric higher categories. In this
combinatorial model, higher-categorical coherences are then naturally related to stratified manifold isotopies!

3. Application. Thirdly and lastly, even without higher structures as our primary object of study, manifold and
tangle diagrams provide a new tool at the interface of combinatorial higher algebra and differential topology.
This leads to interesting questions such as the precise nature of the relation between diagram combinatorics and
differential singularities (which I will briefly return to later), and a potentially ’natural’ approach to combinatorial
encodings of smooth structures.

This completes my ramblings about geometric higher categories, about what makes them ‘geometric’, and about
why they might be interesting. In what follows, I shall try to explain parts of the above story in more mathematical
detail!

I Local models

2 Stratifications from a higher-categorical perspective

Just as the top-left entry of Table 1 reads ‘stratified cobordisms’, the theory of manifold and tangle diagrams will
require us to deal with not just manifolds but stratifications of manifolds. We therefore start the mathematical
part of this series by recalling a few facts about stratifications... from a higher-categorical perspective!

At a basic level, stratifications can be thought of as decompositions of topological spaces into disjoint subspaces
which are then referred to as ‘strata’. However, to a category theorist, one can easily convey much more detail
about what stratified spaces are: namely, they are a topological model for a type of higher structure which lives
‘between’ types (i.e. homotopy types) and 1-directed types. The correct set of analogies is summarized in Table 2,
which warrants a bit more explanation as follows. In the central column we list types of higher structures: in
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Directed base structure Higher structure Presentation

sets spaces ≃ “∞-sets” a.k.a.∞-groupoids “sets with w.e."

posets stratified spaces ≃ “∞-posets” posets with w.e.

categories 1-directed spaces ≃ ∞-categories categories with w.e.

Table 2: Locating stratifications in the landscape of higher structures

each case we do so by naming both a topological and a combinatorial model (terms are put in quotes if they
aren’t standard terminology). In the left column, we give the corresponding (combinatorial) structure obtained
after truncating all invertible morphisms: in other words, truncating∞-X’s to X’s in this way (where X could
stand for ‘set’, ‘poset’, ‘category’, or, more generally, (n, r)-category for n ≤ r ≤ n + 1) is to say that∞-X’s are
precisely the subclass of (∞,∞)-categories C whose r-truncations �≤rC are X’s such that the induced functor
C → �≤rC is conservative. Finally, the right column (which has been added only for completeness and may
otherwise be ignored) describes how we can use structures from the left column to present structures in the
middle column: here, a “set with weak equivalences” is a poset with weak equivalences in which each arrow is
marked as a weak equivalence. The analogies in Table 2 should be taken seriously (but not too seriously): many
constructions relating sets and spaces have analogs for posets and stratifications as we will now see.

Inspired by the above discussion, let us define stratifications ‘by analogy with spaces’ as follows. First, make
the redundant observation that a topological space is a topological space X together with a quotient map
f ∶ X → ℰ0X to a discrete space ℰ0X such that preimages of f are connected (of course, these conditions
on f force ℰ0X to simply be the set �0X of connected components of X). By analogy, a stratified space
is a topological space X together with a quotient map f ∶ X → ℰ0X to a Kolmogorov-Alexandroff space
ℰ0X whose preimages are connected. Recall, Kolmogorov-Alexandroff spaces are spaces in the image of the
fully-faithful embedding of posets into topological spaces (by declaring downward closed subset of a given poset
to be open; N.B.: another convention would be to choose upward closed subsets as open sets). On sets this
embedding maps to discrete spaces, and so our definition of stratifications generalizes that of topological spaces!

For a stratification (X, f ), we call f ∶ X → ℰ0X the characteristic map and the preimages of f the strata of
(X, f ) (of course, if a stratification (X, f ) is a space, then the map f is redundant and can be dropped from our
notation). Observe that f determines the strata, and, conversely, the strata determine the characteristic map f up
to changing cod(f ) = ℰ0X by a canonical poset isomorphism. We will say a stratification is finite if it has only
finitely many strata. For simplicity, let’s assume all our stratifications (and posets) to be finite by default! (At
least locally, i.e. in small neighborhoods, finiteness is usually a very reasonable assumption.)

As an aside, let me note that our definition of stratified spaces above differs slightly from the definition given by
Lurie in [2, App. A]: there, a stratification is defined simply as a space X with a continuous map f ∶ X → P
to some poset P (considered as an Alexandroff space). While the definitions are essentially interchangeable, I
much prefer the above definition. One reason is that an arbitrary choice for P can contain loads of additional data
that has nothing to with the decomposition of X into strata (this can get a bit in the way when defining maps for
instance): the situation becomes more pronounced in the case of spaces, in which the definition would specialize
to ‘a space is a space with a map to some set’—and this changes the definition of spaces by endowing them with
additional structure. A second reason has to do with fundamental categories... we will see it shortly.

There are a few immediate (1-)categorical constructions that can be given. First, the category Strat of stratified
spaces consists of stratified spaces and stratified maps (X, f ) → (Y , g) which are maps X → Y that factor
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through the characteristic maps f and g by a (necessarily unique) map ℰ0(F ) ∶ ℰ0X → ℰ0Y . There is of course
a functor − ∶ Strat → Spaces that forgets stratifications and passes to the underlying space. There are also
functors ℰ0 ∶ Strat → Pos and ‖−‖ ∶ Pos → Strat which are the direct analogs of the classical ‘connected
components’ functor �0 ∶ Spaces → Set and the ‘discrete geometric realization’ functor |−| ∶ Set → Spaces
(more generally, we write |−| ∶ Pos → Spaces for the usual geometric realization of posets). The first functor
ℰ0 takes a stratification (X, f ) to the poset ℰ0X which we call the ‘fundamental poset’ of (X, f ) (as a warning:
this poset will also be denoted by ℰ0(X, f ), or ℰ0f , depending on the weather). The second functor ‖−‖ is
defined as follows: given a poset P , then its ‘stratified realization’ ‖P‖ is the stratified space with underlying
space |P |, ℰ0‖P‖ = P , and characteristic map f ∶ |P | → P mapping x↦ p if x lies in the interior of a simplex
with first vertex p.

In further analogy with the case of spaces, we can now consider fundamental categories of stratified spaces.
Given a space X its fundamental∞-groupoid is described by the simplicial set (Kan complex) with k-simplices
|[k]| → X (where [k] is the poset (0 → 1 → ... → k)). Given a stratification (X, f ), it would be natural to
instead consider the simplicial set consisting of k-simplices ‖[k]‖ → (X, f ) (indeed, observe that this recovers
the case of maps |[k]| → X if (X, f ) is a space). Lurie shows in [2, App. A] that in order for this simplicial
set to behave in the expected way (namely, as a higher compositional structure, or more concretely in this case,
as an instance of a quasi-category), our definition of stratified spaces needs to be amended! To say it more
drastically, our higher-categorically-inspired definition is missing an ingredient. And this ingredient is (drumroll)
... conicality.

Conicality is an ubiquitious feature when studying stratifications in the wild (for instance, all stratifications
in the image of ‖−‖ are conical), and it is quite easily defined as well. The definition will use the following
‘obvious’ notions of stratified neighborhoods, products and cones, which we briefly recall for completeness: a
neighborhood F ∶ (C, c) ↪ (A, a) is a stratified map such that F ∶ C ↪ A is an ordinary neighborhood and
strata of (C, c) are precisely the connected components of strata of (A, a) intersected with C; a product of two
stratifications is defined by (A, a) × (B, b) = (A × B, a × b); and a cone (Cone(A), cone(a)) of a stratification
(A, a) stratifies the topological cone Cone(A) = A × [0, 1)∕A × {0} by the stratum {0} (the ‘cone stratum’) and
the strata of the product (A, a) × (0, 1). With these notions at hand, we may now define: a stratification (X, f ) is
conical if it has, around each point x ∈ X, a stratified neighborhood isomorphic to Z × (Cone(L), cone(l)), with
x ∈ Z × {0}, where Z is some space and (L, l) some stratification (often referred to as a ‘link’ stratification).
Further constraints in the definition of conicality are possible: for instance, note that if we require Z to always
be ℝm for some m ∈ ℕ then all strata are topological manifolds!

To summarize, for conical stratifications (X, f ) we can construct their fundamental categories ℰ (X, f ) in a
natural way, namely, by considering the mappings ‖[k]‖ → (X, f ). Observe that there is a natural functor
ℰ (X, f )→ ℰ0(X, f ) which is conservative and exhibits ℰ0 as the truncation of ℰ in the sense of Table 2. Since
ℰ (X, f ) is also referred to as the entrance path∞-category of (X, f ), calling ℰ0(X, f ) the entrance path poset
is an obvious choice (N.B.: switch ‘entrance’ for ‘exit’ when working with dual conventions). Personally, for
its consistency with the general concept of fundamental categories (and in analogy with the term ‘fundamental
∞-groupoid’), I like speaking of the ‘fundamental∞-poset ℰ (X, f )’ resp. ‘fundamental poset ℰ0(X, f )’, which
we saw appear earlier already.

This almost completes our brief review of stratifications, except for one feature: duality. As we are only interested
in one simple case, we will keep things short: the dual stratification of ‖P‖ is ‖P op‖. Indeed, this recovers
the usual intuition of dual cell complexes in the sense of Poincaré duality. For instance, given a simplicial
complex K triangulating a PL manifold W , the face poset F (K) (which orders faces by inclusion) of K has
a dual F (K)op: while ‖F (K)op‖ recovers the triangulation K ofW , ‖F (K)‖ is the cell complex (in fact, the
regular cell complex) that dualizes this triangulation. (There is more too be said here: namely, regular cell
complexes bijectively correspond to so-called cellular posets... but let us not get distracted too much.)
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Mini-exercises 2.1 Draw a picture of the stratified space ‖[2]‖. Convince yourself that it is conical. Find a
non-conical stratification. Take a your favorite regular cell complex f (e.g. a pasting diagram), stratify it by
taking strata to be the individual cells, and compute its entrance path poset P ∶= ℰ0(f ). Show that ‖P‖ recovers
the regular cell complex f you started with. Compare this to ‖P op‖. (Link to Solutions)

3 Manifold and tangle diagrams

Recall from Table 1 that manifold diagrams ought to be some sort of directed version of stratified cobordisms.
We can now make this precise. The simple (and, in fact, quite accurate) slogan for this story will be: manifold n-
diagrams are compactly triangulable, conical stratifications of n-directed euclidean space. We are already familiar
with the notion of conical stratifications from the previous section, so the only two things that remain to be done
is to talk about n-directed space and to be a bit more explicit about what we mean by ‘compact triangulability’
for stratifications in directed euclidean space. Remark: in this section, all manifolds are topological manifolds
without boundary.

We will infuse our spaces with directions by means of framings: recall, classically, a framing is something akin
to a ‘choice of tangential directions’ at all points of a given space (usually a manifold, as otherwise it may be hard
to talk about ‘tangential directions’). Our use of the term ‘framing’ will be a somewhat non-standard variation
of this idea. For motivation, we start with the observation that given a real n-dimensional inner product space
V , the following two structures on V are equivalent: firstly, the choice of an orthonormal framing of V , i.e. an
ordered sequence (v1, v2, ..., vn) with ⟨vi, vj⟩ = �ij , and, secondly, a chain of linear surjections Vi → Vi−1 of
orientied i-dimensional Vi’s starting at Vn = V . A correspondence between these structures can be produced by
defining Vi = span(v1, ..., vi) with Vi → Vi−1 forgetting vi. To get a bit of intuition about what’s going on here,
let’s consider the following analogous and hopefully familiar situation: given a Riemannian manifoldM there is
a correspondence between (smooth) gradient vector fields onM and (smooth) functionsM → ℝ up to shifting
functions by a constant. (To ensure the analogy is clear: the vector field, where it is non-zero, plays the role of a
1-frame v1, whereas the corresponding functionM → ℝ plays the role of a linear surjection V → V1 of tangent
spaces at these points.) So why would we want to shift perspectives from vectors to surjections in this way? The
secret reason is that ‘orthonormality‘ ceases to exist in absence of inner products (or, in the given analogy, in
absence of Riemannian metrics), but the notion of linear surjections does not. Put differently, by basing our
notion of framings on surjections rather than vectors we can emulate some form of orthnormality even in the
absence of inner products (cf. [3, App. A]). Somehow, this is very important for the story of manifold diagrams.
Let’s go ahead and spell it out.

While it is possible to use the above idea to define framed spaces in quite some generality, following our slogan
in the beginning we will only be interested in the euclidean case (and this case is, unsurprisingly, in some sense a
‘local model’ for more general framed spaces). The standard n-framing of ℝn is the chain of oriented ℝ-fiber
bundles �i ∶ ℝi → ℝi−1 (1 ≤ i ≤ n) with �i defined to be the map that forgets the last coordinate of ℝi (and
fibers carry the standard orientation of ℝ after identifying ℝi = ℝi−1 × ℝ). When considering ℝn we tacitly
always think of it as ‘standard framed ℝn’ and, thus, we stop mentioning the standard framing as an explicit
structure all-together. Indeed, more important than defining the standard n-framing is to define the maps that
preserve it: a framed map F ∶ ℝn → ℝn is a map for which there exist (necessarily unique) maps Fj ∶ ℝj → ℝj

(0 ≤ j ≤ n) with Fn = F such that �i◦Fi = Fi−1◦�i with Fi preserving orientations of fibers of �i (here,
‘orientation preserving’ can be taken to mean strictly monotonous; another version of the definition asks for
non-strictly monotonous).
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Mini-exercises 3.1 For n = 1 and n = 2, write down a framed map ℝn → ℝn. Also write down a map that is
not framed. What about the case n = 3? Show that the space Autf r(ℝn) of framed automorphisms is contractible.
(Link to Solutions)

We may now combine framed and stratified notions: for instance, a framed stratified map (ℝn, f )→ (ℝn, g) is a
stratified map whose underlying map ℝn → ℝn is framed. Moreover, when working with products (ℝk, f ) ×
(ℝn−k, g) we will identitify ℝn ≅ ℝk ×ℝn−k in the standard way; and, when working with cone stratifications
(Cone(Sn−1), cone(l)), we will standard embed Sn−1 ↪ ℝn and identify Cone(Sn−1) ≅ ℝn by mapping (x ∈
Sn−1, � ∈ [0, 1)) to �

1−�x ∈ ℝn. (The resulting cone stratifications of ℝn could be called ‘ℝ>0-cones’: they are
precisely those stratifications in which the origin {0} ⊂ ℝn is its own stratum and all other strata are closed under
multiplication by a positive scalar.) With these conventions at hand, we may now also combine framedness and
conicality as follows: a stratification (ℝn, f ) is framed conical if each point x ∈ ℝn it has a framed stratified
neighborhood (framed) isomorphic to ℝk × (Cone(Sn−k−1), cone(l)) with x ∈ ℝk × {0}, where 0 ≤ k ≤ n and
(Sn−1, l) is some stratification. Compare this to our earlier definition of conicality—framed conicality is really
just a ‘framed’ version of conicality!

The last concept from our earlier slogan that needs to be addressed is the notion of compact triangulability
for stratifications of (standard framed) euclidean space. To begin, let me remark that imposing a compact
triangulability condition is a reasonable thing to do: indeed, in our earlier discussion of Pontryagin’s theorem we
similarly met cobordisms of manifolds embedded in ℝn that had ‘compact support’—‘compact triangulability’
should be thought of as a generalization of this situation (adapted to the setting of directed spaces). The condition
can be succinctly formulated by starting in the PL category: a compactly-defined triangulation K of ℝn is a
finite stratification of ℝn by open disks whose closures are the images of linear embeddings Δk × ℝl

≥0 ↪ ℝn

(k + l ≤ n). This now translates to the framed stratified case as follows: a stratification (ℝn, f ) is framed
compactly triangulable if it admits a framed stratified subdivision (ℝn, K) → (ℝn, f ) of f by a compactly-
defined triangulation K . (I believe the word subdivision is self-explanatory, but in case it is not: a stratified
subdivision is a stratified map whose underlying map is a homeomorphism.)

I most happy to tell you that we have now arrived at the central notion of this series (I am also very happy that
you are still reading). A manifold n-diagram is a stratification (ℝn, f ) that is both framed compactly triangulable
and framed conical. As simple as that! Now, let us think a bit about the consequences of this definition.

Mini-exercises 3.2 Consider the case n = 2. Observe the product stratification ℝ2 × (Cone(S−1), cone(l)) is
just ℝ2 (since S−1 = ∅ we find Cone(S−1) = {0} = ℝ0). Observe S0 only admits one stratification. Thus, there
is only one choice for the product stratification ℝ1 × (Cone(S0), cone(l)) of ℝ2. In contrast, observe that there
are many choices of cone stratifications (Cone(S1), cone(l)) of ℝ2. Combining these observations, draw some
pictures of manifold 2-diagrams and convince yourself that this case recovers ordinary string diagrams. What
about the case n = 3? Can you come up with an example of a framed conical stratification of ℝ3 that is not
framed compactly triangulable? (Link to Solutions)

Glancing back at Table 1, how can we describe undirected topological behaviour from the lens of directed
geometry? In the spirit of Pontryagin’s theorem and the cobordism hypothesis, the answer involves replacing
directed manifold strata by embedded cobordisms, a.k.a. tangles. This yields a variation of the definition of
manifold diagrams which we call tangle diagrams: intuitively, while manifold strata in a manifold diagrams must
respect the direction of the ambient directed euclidean space, strata in tangles can (in a controlled way) fail to do
so.

Let us briefly address the notion of tangle diagrams in more precise terms. To begin, note that any embedding of
a manifoldW ↪ X into a space X defines a stratification of X whose strata are the connected components of
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W and the connected components of the complements X ⧵W—any manifold embedding will be tacitly treated
as a stratification in this way. Note, given an embedding Sk ↪ X we can construct the manifold embedding
Cone(Sk ↪ X) = Cone(Sk) ↪ Cone(X) (since the topological cone construction is functorial). Combining
this, we define: an m-tangle n-diagram (m < n) is an m-manifold embeddingW ↪ ℝn that is framed compactly
triangulable, and, for all points x ∈ W , we may choose kx ∈ ℕ such that x has a framed stratified neighborhood
isomorphic to ℝkx × Cone(Sm−kx−1 ↪ Sn−kx−1) with x ∈ ℝkx × {0} and ky > kx for all y ∈ U ⧵ ℝkx × {0}.
(Technically, we also require choices of dimensions kx to be maximal: that is, the condition fails to hold for any
other choice k′x > kx.)

Some further explanation of the last condition in the definition is warranted, as it contains a novel idea when
compared to the earlier definition of manifold diagrams. First, note that the definition implicitly requires the kx’s
to be picked inductively in the descending order for kx = m,m − 1, ..., 0 for all x ∈ ℝn: indeed, we must have
picked all ky’s before kx in order for the last condition to make sense! In [4, §3] we called kx the ‘transversal
dimension’ ofW at x. Intuitively, when everything is smooth, you may think of this number as being the argmax
of the equation ℝkx ≅ ker(TxW → ℝkx)⟂ where TxW is the ‘tangent space at x’, and TxW → ℝkx is the linear
surjection induced by the standard projection ℝn → ℝkx which forgets the last (n − kx) coordinates (of course,
the complement ‘(−)⟂’ only makes sense if there would be a Riemannian metric!). Now, the last condition of the
definition of tangle diagrams says that tranversal dimensions can never spontaneously increase, and this can be
understood as a type of genericity condition. Let’s visualize it!

Mini-exercises 3.3 Draw examples and non-examples of 1-tangle 2-diagrams, 1-tangle 3-diagrams and 2-tangle
3-diagrams. Mark points of transversal dimension 1 and 0 (resp. 2, 1 and 0 for your 2-tangles). Convince
yourself that the Reidemeister moves are 2-tangle 4-diagrams (note, some are also manifold 4-diagrams!). (Link
to Solutions)

Now, you ask, wasn’t the passage from ‘cobordism’ to ‘stratified cobordism’ a central point of the earlier story
about geometric models of homotopy types? You are right. And similarly, one should consider stratified tangle
diagrams. But the idea is mostly parallel to the simpler case of ordinary tangle diagrams above: in place of
W ↪ X, one now works with manifold filtrationsWq ↪ Wq+1 ↪ ... ↪ Wq+r = X of X, whereWj ⧵Wj−1
is a (potentially empty) j-manifold embedded in X (q ≤ j ≤ q + r; when j = q, set Wq−1 to be empty). As
before, one observes that if a manifold filtration starts withWq = Sk then applying Cone(−) to it yields another
manifold filtration. This can be use to define stratified tangles analogous to the ordinary case. However, I haven’t
thought much about stratified tangle diagrams yet: most of the questions I have about the notion already appear
in the case of ordinary tangle diagrams. This in particular concerns the role of framed codimension-1 tangles
(where m = n−1) ... an intruiging case from which important classes of stratified tangles in higher-codimensions
naturally arise—we shall revisit it shortly.

Let me end by pointing out the formal relation between manifold diagrams and tangle diagrams. Any tangle
n-diagram has a universal (namely, coarsest) subdivision by a manifold n-diagram. This was shown in [4, Thm.
3.1.32]. The subdivision precisely partitions the tangle into strata of the same transversal dimension. You
may think of the subdiving manifold diagram as ‘detecting the critical points (and, more generally, critical
submanifolds)’ of the tangle diagram. It’s worth emphasizing that the fact that this works is rather remarkable
and owed to working in framed euclidean space: after all, we have made no explicit mention of smooth structure
(which is usually required in order to be able to talk about ‘critical points’) at all but instead formulated all of the
above definitions in terms of topological manifolds. To get a better feeling for what’s going on, let’s draw a few
examples.

Mini-exercises 3.4 For your earlier examples of tangle diagrams, find and draw the coarsest subdiving manifold
diagrams. (Link to Solutions)
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4 Combinatorialization theorems

We ended the last story with the cool observation that manifold diagrams can universally subdivide tangle
diagrams into their ‘critical submanifolds’. The deeper fact that can be used to formally prove this observation is
that there is a natural translation of manifold and tangle diagrams into certain purely combinatorial structures.
This ‘combinatorialization’ mechanism is rather special: in classical combinatorial topology we may associate,
say, to a compact PL manifold a large and computationally intractable class of combinatorial objects (say, the
class of all of compatible triangulations of the PL manifold), but there is usually no one canonical combinatorial
object (i.e. a single distinguished triangulation) to represent that manifold—in contrast, in the framed stratified
setting, canonical combinatorial representations emerge.

Let us set this translation in formal mathematical stone. We will need two pieces of terminology. Firstly, we
say that a conical stratification (X, f ) is a stratified 0-type if its fundamental ∞-poset ℰ (X, f ) is equivalent
to a poset (in other words, the canonical functor ℰ (X, f ) → ℰ0(X, f ) is an equivalence; in yet other words,
(X, f ) lies in the essential image of ‖−‖ considered as an ∞-functor into the ∞-category of stratifications).
Secondly, a stratified map F ∶ (X, f ) → Y is called a stratified fiber bundle, if for each x ∈ Y there exists a
neighborhood U of x over which F ∶ F−1(U ) → U factors as F−1(U ) ≅ U × (Z, ℎ) → U (the second map is
the obvious projection; (Z, ℎ) should be thought of as the ‘stratified fiber’ of the bundle). Similarly, a stratified
map F ∶ (X, f ) → (Y , g) (note that now the base is stratified too!) is called a stratified fiber bundle if it is so
over each stratum of (Y , g). We say a stratum of (X, f ) has ‘fiber dimension k’ if it is restricts in any fiber of F
to a k-manifold. Note, in this case, the fiber dimension is constant across all fibers that the stratum intersects.

The combinatorialization theorem reads as follows. Any manifold or tangle n-diagram (ℝn, f ) admits a canonical
(namely, coarsest) subdivision (ℝn,M)→ (ℝn, f ) by a stratified 0-typeM subject to the following two conditions:

(1) There exist (necessarily unique) stratified 0-types (ℝi,Mi) (1 ≤ i ≤ n) withMn =M , fitting into a tower of
stratified bundles pi ∶ (ℝi,Mi)→ (ℝi−1,Mi−1), whose underlying maps are the standard projections �i.

(2) Abbreviating the poset map ℰ0(pi) ∶ ℰ0(Mi) → ℰ0(Mi−1) by qi ∶ Ti → Ti−1, and denoting by fdim ∶ Ti →
{0, 1} the map that assigns fiber dimensions to strata, we require: (a) fdim induces a poset map Ti → [1]op,
(b) qi ∶ Ti → Ti−1 is exponentiable, (c) qi ∶ fdim−1(1) → Ti−1 is a fibration, (d) qi ∶ fdim−1(0) → Ti−1 is an
opfibration.

We briefly elaborate on the last condition. Recall, an exponentiable functor is a functor whose fibers over
morphisms in the image look like profunctors, a fibration has fibers over morphism that look like opposite
functors, and an opfibration has fibers over morphisms that look like functors. However, the situation is much
simpler than what these notions describe in full generality: morphism fibers in (b) are always automatically
Bool-enriched profunctors (since we are dealing with poset maps), and maps in both (c) and (d) always turn out
to be discrete (op)fibrations (can you see why? Hint: fibers too must be conical stratifications.).

We take a deep breath, and maybe re-read the theorem—why is this a combinatorialization theorem? It is so
because of fact that the stratified 0-types in the theorem can be fully reconstructed from their ‘fundamental
combinatorial data’. Before discussing this further, let us first give names to the objects appearing in the theorem.
An open n-meshM is a tower of stratified bundles pi ∶ (ℝi,Mi)→ (ℝi−1,Mi−1) (1 ≤ i ≤ n) of stratified 0-types
as in (1), such that the maps pi satisfy condition (2) above. Similarly, an open n-truss T is a tower of poset maps
qi ∶ Ti → Ti−1 (1 ≤ i ≤ n) whose fibers Fx = p−1i (x) are endowed with total orders called ‘orientation orders’,
for which there exists a ‘classifying mesh’M = {pi} with qi ≅ ℰ0(pi) such that orientations of fibers of pi are
compatible with orientation orders of fibers of qi. This makes it sound like trusses, supposedly combinatorial
objects, require meshes, framed stratified topological objects, in order to be defined. But this is not true: all the
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data of trusses can be defined in purely combinatorial terms. In fact, trusses have a rich combinatorial theory,
without any reference to topology, to which I devoted (way too) many pages in my PhD thesis (a more concise
treatment is [3, §2], and here is a blog post about trusses). This theory, however, is a separate story. (I will
remark that the adjective ‘open’ hints at the fact that there are yet more general notions of meshes and trusses; in
particular, we will meet ‘closed’ meshes and trusses in the next section!)

Mini-exercises 4.1 For n = 1, 2, unwind the above defintitions and give examples of (open) n-meshes and
n-trusses. Give an example of a 1-tangle 2-diagram which is not a stratified 0-type, find its coarsest subdividing
mesh and double-check that the latter is indeed a stratified 0-type. (Link to Solutions)

Meshes and trusses are equivalent in the following sense. Both meshes and trusses organize into categories by
defining morphisms to be maps of towers (parallel to our earlier definition of framed maps!). In the case of
trusses, this yields a 1-category (or, better yet, a 2-poset a.k.a. Pos-enriched category). In the case of meshes, it
yields a Top-enriched category (or, better yet, a Strat-enriched category) and this may therefore be understood
as an∞-category (or, better yet, an∞-2-poset). Modulo details of the categorical set-up, these categories of
trusses and meshes should now be equivalent: in [4, §4] we in particular show an∞-equivalence between the
1-category of open trusses and the∞-category of open meshes (in the 2022 version of the book, this was further
extended to include the case of mesh and truss bundles).

As a consequence of this equivalence, open meshes can be reconstructed from their fundamental trusses: the
functor that performs this reconstruction is called the ‘classifying mesh’ functor Msh, while its inverse is called
the ‘fundamental truss’ functor ℰTrs. Combined with our theorem above, this implies that manifold diagrams
(ℝn, f ) (and similarly tangle diagrams) can be represented by trusses T together with information about the
framed stratified subdivision (ℝn,Msh T )→ (ℝn, f ). But this last bit of information is, in fact, combinatorial
as well (up to framed homeomorphism). Indeed, this can be seen already in the non-framed case: any stratified
subdivision F ∶ (X, g) → (X, f ) is determined (up to homeomorphism of X) by the poset map ℰ0(F ). Thus,
in summary, framed stratified homeomorphism classes of manifold resp. tangle diagrams can be represented
by trusses together with poset maps which encode a stratified subdivision as just explained (these maps are
also referred to as ‘labelings’, or more precisely ‘(combinatorial) stratifications’, of the trusses). A full proof of
the combinatorialization theorem for the general case of framed compactly triangulable stratifications (which
manifold and tangle diagrams are then a special cases of) is given in [4, §5].

Let us end by mentioning a few direct consequences of the combinatorialization theorem. The first concerns
the re-emergence of PL and smooth structures. The fact that any manifold diagrams can, up to framed stratified
homeomorphism, be obtained by geometrically realizing a canonical labeled trusses can be easily seen to imply
that strata of the diagram carry canonical triangulations. Moreover, the framed conicality condition (which,
too, has a combinatorial counterpart) implies that this triangulation represents a PL manifold. Finally, this
PL manifold also carries a canonical tangential framing inherited from the ambient framed Euclidean space.
Together, this implies (by the equivalence of framed PL and framed DIFF) that any stratum in a manifold diagram
may be canonically regarded as a smooth manifold! The story of tangle diagrams is, at first, parallel, as all
tangle diagrams may be canonically triangulated. However, a priori, this triangulation need not represent a PL
manifold but only a weak PL manifold (meaning all links are homeomorphic to spheres, but not necessarily PL
homeomorphic; the two notions are equivalent if the smooth Poincaré conjecture in dimension 4 is true). Still,
more can be said about how tangle diagrams do encode smooth structures—we shall return to this matter in
story 6.

Another crucial point (and one that you may have already thought about) concerns boundaries. Aren’t tangles
usually considered as living in the closed cube, so that we can easily refer to the ‘in-going’ and ‘out-going’
boundaries, and ‘corners’ etc.? If we define tangles as manifolds embedded in ℝn, can we retrieve those beloved
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boundaries and corners somehow? It turns out we can, and universally so. Indeed, based on the combinatorial
theory of labeled trusses, one easily define compactifications as a universal construction (see [4, §2.2.3]). Porting
this combinatorial construction back to the framed topological setting, we find universal compactifications of
tangle (and similarly manifold) diagrams. Thus, the above notions, in fact, have analogs in terms of stratifications
of the closed n-cube!

A final important point concerns links. Readers familiar with the theory of conical stratifications will recognize
the statement ‘links are not well-defined’: it means that in our earlier definition of conical stratifications non-
homeomorphic choices for ‘links’ (L, l) at the same point x are possible. In the framed setting this problem
goes away fully (see [4, §2.3.4]): in a framed conical (and framed compactly triangulable) stratification there are
essentially unique choices for all links, and this, too, is a consequence of the combinatorialization theorem.

5 Dualizing globalization revisited

Let me briefly describe the passage from manifold diagrams to framed spaces in Table 1: earlier, we referred to
this as dualizing globalization. This will also foreshadow some of the ideas appearing in part II of this series.
First, we answer a different (but very much related) question, which may have been on your mind for a while
now: how do manifold diagrams actually relate to classical pasting diagrams? That’s an excellent question! A
rigorous answer can be given by combining framed topological thinking with the dualization of stratifications
that we met at the end of story 2.

Let’s get started. What is a ‘pasting diagram’ really? Well, it is a type of cell complex in which cells represent
morphisms (and, like morphisms, cells should be given a ‘direction’). Ignoring directions for a moment, an
immediate objection to this statement would be that the term ‘cell complexes’ is a bit vague (as Jim Davis pointed
out to us after uploading [3]) or, at least, it is much more general than we need it to be. Indeed, we can do
better: since morphisms always run between other morphisms (even though these may be identities), closures of
morphism cells will be unions of other morphism cells. In the absence of identities, these closures will be balls.
There is a topological term for this: regular cell complex. So a better thing to say would be that pasting diagrams
are (quotients of) regular cell complexes (where quotients should be thought of as degenerating identity cells).

A couple of years back I learned that regular cell complexes are really very nice. Indeed, we don’t need any
topology at all to understand them! This works as follows. Any cell complex (whether regular or not) can be
thought of as a stratification (X, f ) whose strata are the open cells of the complex. Consequently, given a cell
complex (X, f ), we can compute its fundamental poset ℰ0f . Regular cell complexes (X, f ) are exactly though
cell complexes such that (X, f ) ≅ ‖ℰ0f‖ by a stratified homeomorphism that is the identity on fundamental
posets. Two important observations follow from this: firstly, regular cell complex are stratified 0-types, and,
secondly, regular cell complexes are exactly those stratifications in the image of a certain class of posets 
under the functor ‖−‖. This class  is the class of so-called cellular posets, which can be described as follows:
a poset P is called cellular if, for all x ∈ P , the realization |

|

P>x|
|

is a sphere. (As an aside, cellular posets cannot
be algorithmically recognized among posets ... this will follow from the discussion in story 6.)

So, back to our original question, how can we now relate manifold diagrams to classical pasting diagrams?
Using the combinatorialization theorem from the last section, this turns out to be a natural construction. Let’s
be concrete and consider a manifold n-diagram (ℝn, f ). We’ve seen that there exists a unique coarsest open
n-meshM = {pi ∶Mi →Mi−1} such that (ℝn,Mn) subdivides (ℝn, f ). We have also seen that this data can be
combinatorially encoded: namely, by an open n-truss T = {qi ∶ Ti → Ti−1} obtained by setting T = ℰTrs(M)
together with a labeling poset map g = ℰ0(Mn → f ) (whereMn → f is the stratified subdivision of f byMn).
This data can now be dualized!
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The dual truss of T is the tower of poset maps T † = {qopi ∶ T opi → T opi−1} (but with the same orientation orders
as before). The labeling also transfers: while l was a map Tn → ℰ0f , we obtain lop ∶ T opn → ℰ0f op as a
labeling for T †. What did we just do? By dualizing the (labeled) open truss T , we created a (labeled) closed truss
T †. While this truss does not represent an open mesh, it does represent the topological dual of an open mesh
which, you guessed it, is called a closed mesh. In fact, the ‘classifying closed mesh’M† = Msh(T †) of T †

can simply be constructed as the stratified fiber bundle tower consisting of realizations ‖qopi ‖ (plus compatible
fiber orientations). Everything you need to know now is: closed meshes turn out to be towers of maps of regular
cell complexes, in other words, T opi were cellular posets to begin with! Moreover, orientations of fibers in these
towers of maps encode ‘directions’ on cells in the cell complexes, so really, closed meshes are towers of ‘directed
regular cell complexes’ (or, in the terminology of [3], ‘framed regular cell complexes’).

We have almost arrived at a ‘classical’ notion of cellular pasting diagram. The last thing that is left to be done
is ‘quotienting out the degeneracies’ (but, in the exercises below we’ll also learn that this quotient forgets vital
information). The way this quotient works is encoded in the labeling map lop, and there’s a concise technical
way of defining it, which would, however, require us to dive more in the combinatorial theory of labeled trusses.
Instead, let’s describe a more intuitive approach. First, compose the characteristic map of the meshM†

n = ‖T opn ‖,
which is a map |

|

|

T opn
|

|

|

→ T opn , with the map lop, which is a map T opn → ℰ0f . One can show that this composite
is again a characteristic map (basically, because characteristic maps compose), and so we have just defined a
stratification (X, f †) on X = |

|

|

T opn
|

|

|

. This stratification is important, and in [4, §2.4] we call it a cell n-diagram
(it’s the ‘true dual’ notion of manifold n-diagrams). Still, (X, f †) won’t yet look like the type of pasting diagrams
that many of us are used to—for that, we still need to quotient the stratification further. To do so, framed
conicality re-enters the stage: after dualization, the fact that (ℝn, f ) was framed conical now guarantees that, for
closures x of cells x inM†

n , the substratification of (X, f
†) obtained by restricting to x will look like a product

stratification Z × (C, c) (where Z is a closed k-ball and (C, c) is a stratified closed l-ball whose interior is its
own stratum, with k + l ≤ n). The quotient map (X, f †) → (X̃, f̃ †) we seek is the map assembled from the
projections Z × (C, c)→ (C, c) for each closed cell x!

Phew, those last three paragraphs had a lot of symbols. It might be best to just see some worked out examples!

Mini-exercises 5.1 Translate previous examples of manifold diagrams into cellular pasting diagrams, by re-
tracing the following steps: (1) draw your manifold diagram (X, f ); (2) find your coarsest subdividing mesh;
(2b) remember the entrance path poset map of the subdivision; (3) dualize you mesh; (4) using the dual of the
poset map you remembered, find a stratification (X, f †) that your dualized mesh subdivides; (5) find the cell
closures that look like product stratifications and quotient them out; done! Can you find two different manifold
3-diagrams that have the same (quotiented) pasting diagram? Extra point: above we glossed a bit over the fact
that cells are directed... so do try to draw directions on all your cells. (Link to Solutions)

Finally, let’s briefly get back to the bigger topic at hand: dualizing globalization. As a matter of fact, the above
constitutes 96 percent of what I wanted to say on the topic. Indeed, we now understand dualization of manifold
diagrams to pasting diagrams. And globalization is easy: just glue together the directed cells that we just
described! Okay, let’s slow down a tiny bit. What have we really seen above? We’ve found a ‘intermediate notion’
of cell n-diagrams obtained by taking a closed mesh and then stratifying it in a certain way; this stratification was
then interpreted as a type of quotient map. This suggests a 2-step thinking process as follows. First, define your
building blocks to be the directed cells in closed n-meshes (these, in fact, have been introduced in [3] as ‘framed
regular cells’). Then, consider the quotient maps (cell-wise) as as attaching maps of such framed regular cells.
In summary, ‘framed spaces’ can be built by taking framed regular cells, and attaching them according to the
stratifications found in cell n-diagrams (or, dually, in manifold n-diagrams). Following precisely this procedure,
but in combinatorial rather then topological terms, will lead us to the notion of geometric computads in story 8.
But this is firmly part of the global story!
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6 How computable is invertibility?

There is a central difference between the notions of manifold diagrams and tangles diagrams, that many con-
structively inclined mathematicians will care about. Given a labeled n-truss, can you actually decide whether it
combinatorially represents a manifold n-diagram resp. an m-tangle n-diagram? And an equivalent question: can
there be an algorithm that lists all framed stratified homeomorphism classes of manifold n-diagrams resp. of
m-tangle n-diagrams? (Of course, such an algorithm would be allowed to run indefinitely.) For both questions,
the answer is YES in the case of manifold diagrams, but it is NO in the case of tangle diagrams as we will now
discuss.

Classical results by Markov and Novikov establish that there can be no algorithm that decides the question
of whether a given triangulated space K is an m-manifold, or even the simpler question of whether K is an
m-sphere (m > 4). The proof proceeds, of course, like any undecidability proof, by encoding another undecidable
problem: namely, if it would be possible to recognizes spheres, then it would be possible to decide whether
certain homology spheres are spheres, and in the fundamental groups of these homology spheres we can
encode undecidable word problems of finitely presented groups (see [6, §6.2 and §7.2]). This obstruction to
recognition and enumeration of manifolds persists if we work with embedded manifolds, even if we restrict their
codimension. Indeed, all homology m-spheres embed in Sm+1 (in the smooth case, this holds up to changing
smooth structures around a point) and this embedding partitions Sm+1 into two identical contractible components
(higher Mazur manifolds): in general, form > 4, no algorithm can distinguish such embeddings from the standard
embedding Sm ↪ Sm+1 as it would entail a comparison of fundamental groups. Moreover, nothing about these
observations is pathological (Mazur manifolds arise in dimension ≥ 4 since non-trivial knots do in dimension
≥ 3), and thus they cannot be easily circumvented by putting additional conditions. The undecidability must
therefore also transfer to our definition of tangle diagrams: recall, this required local neighborhoods of the form
ℝk × Cone(Sm−k−1 ↪ Sn−k−1), but, as we have just learned, we cannot recognize whether neighborhoods (no
matter their combinatorial presentation) are actually of this form.

Maybe you don’t find the above upsetting. After all, manifolds are just very complex objects (just like program
runtimes can be). But from the perspective of geometric higher categories we should be a bit upset: recall from
Table 1, we want to use tangles to understand morphisms in∞-groupoids—but what good is this approach if it
doesn’t let us easily work with the structure associated to an invertible morphism? Is it really impossible to have
a computer usefully enumerate the higher geometric structure of an invertible morphism? Alas, in a turn of fates,
I will now tell you that maybe there is some hope after all. This hope relies on two ideas: first, the passage to
smooth tangles, and, second, the hypothesis that generic smooth tangles may be classified analogous to results
from classical manifold singularity theory—importantly, both points appear to work best (or, better said, at least)
in codimension-1.

A priori, nothing in our framed topological definition of tangle diagramsmentions smooth structures—nonetheless,
we start our journey into the smooth realm by describing a conjecture which would firmly link the two set-ups.
For simplicity assume all manifolds to be compact (using the right flavor of ‘compactly triangulable’ would also
work). A ‘smooth tangle diagram’ is a tangle diagramW ↪ ℝn in which the embeddingW ↪ ℝn is a smooth
embedding (in particular,W itself is smooth). Given any tangle diagramW ↪ ℝn, a ‘framed smooth structure’
of the diagram is a framed stratified homeomorphism betweenW ↪ ℝn and a smooth tangle diagramW ′ ↪ ℝn.
A framed smooth structure onW ↪ ℝn in particular induces a smooth structure on the tangle manifoldW . We
may now state the ‘FR-DIFF’ conjecture as follows: given tangle diagrams, any two framed smooth structures
on the diagram induce diffeomorphic smooth structures on the tangle manifold (or, equivalently, if two smooth
tangle diagams are framed homeomorphic, then their tangle manifolds are diffeomorphic). The conjecture was
stated in [3]. Note that ‘FR-PL’, i.e. the PL manifold version of the conjecture, is true, and follows from what is
called the ‘framed Haupvermutung’ in [3, §5]. The smooth version would be quite remarkable if true: it would
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imply that we would have found a finite combinatorial representation for compact smooth structures (a feat that,
I believe, so far hasn’t yet been achieved!).

The FR-DIFF conjecture is motivated by the idea that ‘higher Morse-like decompositions leave no room for
exotic differential behaviour locally’. To illustrate this idea, I will outline a proof attempt of the conjecture (which
also highlights its tricky part). First, we observe that slices of an m-tangle n-diagramW ↪ ℝn, i.e. restrictions
to the fibers of ℝn → ℝ, are (as a consequence of our definition) themselves (m − 1)-tangle (n − 1)-diagrams
Wx ↪ ℝn−1

x except at finitely many critical points x ∈ ℝ. This allows us to argue inductively, since framed
homeomorphism in particular implies framed homeomorphism of slices (and unwinding this induction all the
way down to 0-tangles yields the sort of ‘higher Morse-like’ reasoning alluded to before). In the inductive
step, we want to extend diffeomorphisms of non-critical slices across critical points. In order to construct
this extension, recall links around critical points are (m − 1)-spheres and these are themselves described by
(appropriate gluings of) (m − 1)-tangle (n − 1)-diagrams; inductively, we may thus construct diffeomorphism
between these link spheres; all that remains to be done is to extend this diffeomorphism to a diffeomorphism of the
m-disk neighborhood of the critical point. This last part is tricky when m > 6: not every sphere diffeomorphism
extends to the disk—namely, those which are not pseudoisotopic to the identity do not. Thus, somehow implicit
in the conjecture is the claim that the inductive way in which we constructed the link sphere diffeomorphism
prevents these ‘exotic’ behaviours from appearing. (While I have some vague ideas on how to make this more
precise, let me also say that any expert help would certainly be greatly appreciated.)

If the conjecture turns out to be false (which is definitely a possibility), there is an important case to fall back to:
this is the case of tangle diagrams of codimension 1. Codimension 1 is special. It is the only codimension in
which framings are naturally a combinatorial structure: indeed, for any codimension-1 tangle diagramW ↪ ℝn

there is always a ℤ2-worth of choices of ‘compatible’ normal framings, corresponding to labeling the connected
components of ℝn ⧵W with signs ± such that no two regions of the same sign share a boundary. In the presence
of normal framings, classical smoothing theory once more tells us that PL and smooth structures are essentially
the same thing. Therefore, since the FR-PL conjecture holds one can derive the FR-DIFF conjecture as well
in the case of framed codimension-1 tangle diagrams. It will turn out that the framed codimension-1 case is
important for many reasons (in particular, for the story of invertibility, as we will get back to in a moment), so
now is the time to draw some examples.

Mini-exercises 6.1 Draw smooth m-tangles in dimension m + 1 = 1, 2, 3. Draw the two possible choices of
normal framings. In each case, pass to subdividing manifold diagrams. Observe that m-strata in your manifold
diagrams come with two types of framings. (Can you formally distinguish them? Consider the projection
ℝm+1 = ℝm × ℝ → ℝ.) Label these strata with f and f−1 accordingly: you have written down structural
equations for an invertible 1-morphism f . (Link to Solutions)

Here is another reason to care about codimension-1 tangles: they arise naturally from a comparison with classical
singularity theory. In classical singularity theory, in order to study the local behavior of ℝ-valued functions on
an m-manifoldW , one considers function germs f ∶ ℝm → ℝ with critical point at 0 and critical value 0. Then
origin-preserving diffeomorphism of ℝm act on the space of such germs which yields a stratification by orbits.
The codimension-0 strata recover the well-known quadratic normal forms of Morse functions. The locally finite
part of the stratification is Arnold’s famous ADE classification (with the usual quadratic function germs from
Morse theory being the ‘A1 strata’): the fundamental poset of this stratification is depicted in [7, Cor. 8.7] (up to
some signs that differ in the ℝ∕ℂ cases, and, depending on convention, up to arrow direction). But what do I
mean by the ‘locally finite part’? It turns out the stratification isn’t nice looking everywhere: Arnold also finds
a ‘locally uncountably-infinite’ part of the stratification, which appears starting in codimension 5 because of
jet space dimensions outgrowing general linear group dimensions—to some extent, the differential machinery
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breaks down at this point (several attempts for recovery were made, for instance, by considering actions by
homeomorphisms in place of diffeomorphisms).

In the locally finite part, however, the world is whole and the stratification of the germ space is even conical: for
codimension-k strata S, open neighborhoods look like Z × (Cone(L), cone(l)). Arnold describes these cones
{f} × (Cone(L), cone(l)) (f ∈ Z ⊂ S) by parametrizing them with so-called versal unfoldings f + F� (with
k-dimensional parameter space � ∈ ℝk). And these now relate back to our tangle diagrams: namely, given one
of Arnold’s unfoldings one can try to produce an (m + k)-tangle (m + k + 1)-diagram simply by considering the
parametrized graph Γf+F� ⊂ ℝk ×ℝm ×ℝ. Note that this is necessarily of codimension-1.

Mini-exercises 6.2 For m = 1, consider f (x) = x3 (this is a germ in the stratum A2, which is of codimension
1). Arnold gives us the unfolding f (x) + F�(x) = x3 + �x (so k = 1). Passing to the parametrized graph,
which 2-tangle in ℝk+m+1 = ℝ3 will be produced? Write down a few other 2-tangles which are framed stratified
homeomorphic to the one you just produced. (Link to Solutions)

The procedure provides a heuristic translation from Arnold’s ADE singularities into tangle diagrams (tested
up to the D4 singularity in [4, §3.4])—but, of course, we would want to see a formal explanation for what is
going on here! While such an explanation is missing as of yet, let me mention one direction of investigation: this
direction tries to first understand singularities from a purely framed-combinatorial perspective, without reference
to the differential machinery (which, as we saw, has its issues anyways). Here’s a very brief outline. First, we
need to know that notions of meshes and trusses naturally extend to definitions of bundles of meshes and trusses
(this is unsurprising since, after all, both notions are themselves defined in terms of bundles). Studying mesh
and truss bundles then also enables us to study tangle diagrams in bundles. This, in particular, allows us to
describe how tangle diagrams can be perturbed into one another. With sufficient care (and directly leveraging the
combinatorial set-up, e.g. by replacing polynomial degrees by some framed combinatorial invariant, such as truss
element count), we can define a notion of ‘perturbation-stable tangle germs’, which are those local neighborhoods
of critical points in tangle diagrams that cannot be perturbed into simpler such germs. The fact that, in low
dimensions, this combinatorial approach reproduces singularities from Arnold’s ADE list is remarkable.

Certainly, a full understanding of the resulting ‘framed combinatorial theory of singularities’ is still lacking,
and [4] merely tries to put down a few basic strokes of how the subject could look like, while leaving much
room for further exploration and theory-building. The ultimate goal would be to achieve a full classification
of perturbation-stable codimension-1 tangle germs, analogous to the classification given by Arnold, and to
understand the relation between the two approaches (the hypothesis is, of course, that tangle germs also have an
ADE-like classification!). In doing so, at least one interesting thing needs to happen: the ‘locally uncountably-
infinite’ stratification encountered in classical differential singularity theory will have to disappear—indeed,
everything is countable to begin with in framed combinatorial singularity theory! This would be a central
advantage of the framed combinatorial approach.

Yet more interesting to us, as a result of such a hypothetical classification of stable tangle germs, we would
obtain a presentation of codimension-1 tangle diagrams: indeed, any codimension-1 tangle diagram would be,
up to perturbation, a composite of stable tangle germs. This would address the questions that this story started
with at least in codimension-1: indeed, we now find ourselves in the position to algorithmically enumerate all
‘stable’ tangle diagrams, simply by composing the tangle germs from our classification. (Of course, we cannot
make anything that was previously incomputable computable, but it is interesting to learn that, while we cannot
enumerate manifolds up to diffeomorphism (or homeomorphism), we might be able to enumerate stable tangles
up to framed homeomorphism!) Moreover, for the combinatorial purposes of geometric higher categories, a
classification of stable tangle germs would yield a workable structure for describing invertible 1-morphisms.
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We will end with a cliff-hanger. We saw that codimension-1 tangle diagrams had combinatorial (namely,
ℤ2-classified) normal framings, and that they behaved nicely with respect to smooth structure, and that they
had an important hypothetical relation to classical differential ADE singularities... but what about the other
codimensions? Can we come up with a finite list of ‘elementary’ singularities in higher codimensions as
well? Well, it gets certainly more difficult. You can still define perturbation-stability of tangle germs in higher
codimensions but you easily encounter infinities (for instance, in codimension-2, this is because there are infinitely
many non-equivalent knots, see [4, Rmk. 3.3.8]). There might, however, be a different natural approach to the
question. This starts with the observation that, for the purposes of studying invertible morphisms in geometric
higher categories, codimension-1 appears to be all we need: an invertible n-morphism is really just an invertible
1-morphism between (n−1)-morphisms. Geometrically, this corresponds to a stabilization of normal 1-framings
to n-framings: in fact, there’s a natural combinatorial construction that takes a conical manifold n-diagrams
(the ‘n-morphism’) and a framed codimension-1 k-tangle diagram (the ‘invertibility datum’) and produces an
manifold (n + k)-diagram by taking the ‘product’ of the tangle and the conical diagram, which is a sort of
‘stratified stabilization’ construction—we will return to this construction in story 8 in the context of describing
higher invertible morphisms in geometric computads. Still, we haven’t addressed the original question: where
are the elementary higher-codimension (non-stabilized) singularities hanging out? It turns out this question is
actually related to (minimal) invertible cell structures of Thom spectra... but this, finally, brings us into the realm
of global models.

II Global models

In this part of the series we will be concerned with the application of the geometric ideas from the first part
to the description of global phenomena in higher structures. While the preceding part was mostly based on
ideas that have already appeared in written form, in this part, in many places we will try to look beyond the
theory that has been formally developed (though still, most of the ideas aren’t conceptually new). In particular,
not only will we encounter many more open questions, but the expositional style will shift from ‘definitions
and theorems’ to ‘examples, illustrations and ideas’. This will somewhat culminate in the last story of the
series, story 9, which discusses a higher type theory of geometric computads. Secretly, it will not be me
telling you about type theory, it will be me asking you about it! Indeed, one hope of putting out this (unfinished)
material was to allow for experts to chime in and answer some of the open question about the ideas presented here.

7 Coherences as isotopies

Easing our way into the global study of higher structures, we will first recall a few basic but important intuitions.
The following question is our starting point: why, actually, are n-categories difficult? Well, the difficulty is
their weakness (pun intended). Indeed, there is, of course, the simpler notion of strict n-categories which is
more or less straight-forward to define in all dimensions n ∈ ℕ. While strict n-categories treat ‘deformations’ of
one pasting diagram into another as a strict equality between these pasting diagrams, (weak) n-categories aim
to keep track of all of these deformations (and the deformations between deformations, and so on) by higher
morphisms that are referred to as coherences. In the groupoidal case the resulting distinction can be quantified
by a concrete comparison: while the theory of n-groupoids (i.e. of n-categories in which all morphisms are
invertible) is equivalent to the homotopy theory of homotopy n-types, this fails to be the case for the theory of
strict n-groupoids. Of course, to many this is very old news. But, at some point in time the news weren’t old:
indeed, there was a paper in the 1990s that proved that strict higher groupoids could model homotopy types, and
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only several years later a mistake in that proof was pointed out. Legend has it that this mistake even played a role
in the later inception of homotopy type theory.

The mistake can be traced back to one of the simplest pasting diagram coherences, namely, the exchange of
two 2-morphisms: the exchange coherence is, in the case of degenerate 1-morphisms, exactly one half of the
usual Eckmann-Hilton argument. Indeed, by now it is folklore knowledge that ‘the exchange (or Eckmann-Hilton
argument) cannot be strictified without ending up with a less general theory of higher structures’. In contrast,
many coherences can be strictified. For instance, the theories of (weak) 2-categories and strict 2-categories are
equivalent, and so all the coherences you could possibly write down for 2-categories may, in fact, be replaced by
strict equalities. In 3-categories still many coherences can be strictified: one approach to ‘maximal strictification’
yields the notion of Gray categories. In essence, Gray categories are a notion of 3-categories in which the only
non-strictified coherence is the exchange. As it turns out, the theory of Gray categories can be shown to be
equivalent to that of other inceptions of (weak) 3-categories; in other words, complementing our earlier slogan,
‘the exchange is the only coherence you need for a fully general theory of 3-structures’.

At the same time that the above story became part of the community’s collective understanding of higher
structures, an idea emerged that there could be an easy organizational principle for the question of which
coherences could be strictified and which could not: this idea rooted in the relation between coherences and the
isotopy deformations of the ‘topological duals of pasting diagrams’ (the latter, of course, should be synonymous
with manifold diagrams!). But while the idea was there, definitions were lacking. I believe Todd Trimble was
one of the first to act on this by trying to develop a definition of surface diagrams that should precisely provide
the ‘geometric semantics’ for Gray categories (generalizing the case of string diagrams which provide geometric
semantics for strict 2-categories as described by Hotz and Joyal & Street). Under this interpretation, the exchange
(with degenerate 1-morphisms) would become the braid diagram which, indeed, is an isotopy of an embedding
of two points into ℝ2. Similarly, higher ‘essential’ coherences (i.e. those that should not be strictified) would
correspond to some sort of higher-dimensional isotopies—that, at least, was the vague idea.

Today, with the help of the tools that we previously introduced, we can be much less vague. Namely, using
the framed-combinatorial-topological machinery of manifold diagrams from story 3 and story 4 as well as the
dualization procedure described in story 5, we can not only make precise what we mean by ‘higher isotopies’,
but we can also rigorously translate such isotopies into laws for pasting diagrams. (Here and henceforth, ‘pasting
diagram’ means cell diagram in the sense of story 5; as we mentioned there, cell diagrams are the ‘better pasting
diagrams’ as they do not forget information in the way traditional pasting diagrams do.) We have already seen
one example of this in exercise 5.1, but let’s recall it here: in Figure 1 we depict, in the indicated order, (1) the
braid as a manifold 3-diagram, (2) its coarsest subdiving mesh, (3) the dual cell complex of that mesh, and (4)
the resulting exchange coherence as an equivalence of pasting diagrams.

Generalizing the braid example, the general notion of isotopy can be easily defined in framed-topological terms.
A manifold n-diagram (ℝn, f ) is a k-isotopy if all strata of f are of dimension greater or equal to k. In particular,
the braid is a 1-isotopy while, say, the Reidemeister III move is a 2-isotopy (see exercise 3.3). So a k-isotopy
should be thought of as an isotopy of (k − 1)-isotopies. Let’s think about a few more examples in the contexts of
braidings (in a moment, we will see some other examples as well).

Mini-exercises 7.1 Check that you understand how directed cells are attached in the cell 3-diagram dual to the
braid (see Figure 1 (3)). Note, that there are two braids (the ‘over-’ and ‘under-braid’), and no 2-isotopy relates
them (if boundaries remain fixed). This changes in codimension-3. Write down the two generic braidings of two
points in ℝ3, and construct an 2-isotopy between them (this is a manifold 5-diagram, so you may want to use
‘movies of movies’ depicted frame-by-frame). You have arrived at a coherence called the syllepsis! For fun: can
you imagine the attaching maps in the dual cell 5-diagram? (Link to Solutions)
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Figure 1: Steps in the formal translation of a braid isotopy into an exchange law of pasting diagrams.

My favorite example of the ‘coherences as isotopies’ principle are actually the categorical laws governing the
sequence: categories, functors, natural transformations, modifications, ... Sometimes, the kth element in this
sequence is also referred to as an (n − 2)-transfor, but let’s instead be verbose and call them ‘k-morphism in
nCat’, the (n + 1)-category of n-categories, for k ≤ n + 1. For concreteness, we start with the familiar case
n = 1, i.e. we consider the (strict!) 2-category of 1-categories, their functors, and their natural transformations.
The usual definitional laws of these objects, such as ‘functoriality’ and ‘naturality’, can now be recovered purely
from manifold diagrammatic composition and isotopy. Naturality is the more interesting case (functoriality is
merely a consequence of associativity of manifold diagram composition, can you see how?). Consider functors
Fi ∶ A → B, Gi ∶ B → C , and natural transformational � ∶ F1 → F2, � ∶ F2 → F3. Then the naturality law is
precisely the exchange coherence as shown in Figure 2. Note, we recover the usual form of the law (which, in
turn, implies the more general one) if we set A = 1 to be the terminal category, which then makes Fi objects and
� a morphism in the category B.

With the warm-up case done, let us continue onwards and upwards. Consider n = 2. Now, natural transformations
(or, more precisely, pseudo-natural transformations) not only gain additional coherence data, but they themselves
can be related by 3-morphisms, also called modifications. Their laws are described, e.g., here. But importantly,
as long as we remember the definition of isotopies, we don’t really need to remember these laws individually—we
can simply derive them! Instances of modification laws are derived in this way in Figure 3. The same figure also
shows an example of a yet higher law (as an isotopy) which will have to be satisfied by a 4-morphism in 3Cat.
Readers familiar with the protoypical example of Gray categories (namely, the category 2Cat of strict 2-cats,
strict 2-functors, pseudo-natutral transformations, modifications) will not be surprised by the pattern that we
are illustrating here. In effect, we are exactly following the aforementioned long-known geometric intuition for
describing higher-dimensional versions of Gray categories!

Manifold diagram isotopies, like manifold diagrams, are nicely computable in all dimensions: that is, without
much effort we can write a computer programme that enumerates all manifold isotopies (ordered, say, by the size
of their combinatorial representation). At this point you may say: great, we can just take manifold isotopies and
use them as pasting diagram laws in order to define our notion of n-categories. But this, of course, is not as easy
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Figure 3: Laws of higher morphisms in nCat.

as I made to sound: there are infinitely many isotopies in all dimensions n ≥ 3. And while you can list them all,
it is generally rather tedious to have to verify whether infinitely many laws are satisfied. A much better approach
would be to find a nice generating set for isotopies, that is, some dimension-wise finite set of elementary isotopies
such that any other isotopy can, up to higher isotopy, be written as a composite of only elementary ones (at least
up to some ‘shape-equivalence’ relation, which accounts for changing conical neighborhoods of the strata that
are being isotoped... but that’s a minor technicality which I will not expand upon). For instance, in the case of
tangle isotopies in dimension 3, the braid is the only elementary isotopy: this is illustrated in Figure 4 where
another isotopy, namely, the ‘triple braid’, is isotoped into a composite of three ordinary braids. Much work has
been done that indirectly relates to this question of finding elementary isotopies (e.g. on higher braid groups, or
the combinatorics of En algebras), and maybe our framed-combinatorial perturbation theory (see story 6) can be
leveraged to address the question to some extent... but no one has puzzled these ideas together yet!

8 Geometric computads

We ended the last story with the observation that distilling notions of n-categories from the geometry of manifold
diagrams may be not as straight-forward as one could hope for. In this section, we will consider a class of higher
structures for which all geometric coherence laws are always automatically satisified: namely, we will consider
free higher categories, also known as computads. The fact that defining free geometric higher categories is
exceedingly simple will be one of the fundamental observations on which story 9 will build.
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Figure 4: The triple braid is isotopic to a composite of three braids

We can jump straight to the definition. We will say a manifold k-diagram (ℝk, f ) is a stratum k-type if the
diagram is of the form (Cone(Sk−1), cone()f )), and we call (Sk−1, )f ) the type boundary of f . (Yes, we’ve seen
stratum types before! As a consequence of the framed conicality condition introduced in story 3, any k-stratum
in a manifold diagram locally looks like a product of ℝk and a stratum (n − k)-type, and we refer to this conical
diagram as the stratum’s type.) We can now define: a geometric n-computad is an [n]-graded set C together
with, for each c ∈ Ci, a stratum type (ℝi, fc) and a ‘labeling’ function lc ∶ ℰ0fc → C≤i with lc{0} = c, such
that k-strata s in fc have stratum type flc (s) and llc (s) factors through lc by the induced map ℰ0flc (s) → ℰ0fc . So,
in words, a computad C is a bunch of ‘i-morphisms’ (indexed by the sets Ci) for i ≤ n, and each morphism has a
stratum type whose boundary is consistently labeled in lower-dimensional morphisms.

Comparing to the classical notion of computad, we make an immediate and important observation about the
above definition. Classically, building computads is an inductive two-step process: namely, in the first step, we
attach a set of new generating morphisms whose boundaries (or ‘types’) are described by existing morphisms;
in the second step, we freely generate new morphisms from the newly attached generating morphisms (and
this prepares us to then attached yet more generating morphisms in the next inductive step). The process of
free generation is usually straight-forward for strict higher categories, but it can get harder for models of weak
categories: often, these weak models have existential conditions that guarantee the existence of coherences
(sometimes also referred to as ‘fillers’ or ‘contractions’), which means we must add all these coherences as
new morphisms while also adding new morphisms that compose existing morphisms, leading to an indefinite
process of generating new morphisms. In contrast, for geometric computads there is just one simple step that
does it all—boundaries of stratum types can expres all the needed composites and coherences without the need
to generate any new extra terms!

Importantly, you can also think about geometric computads topologically, or, rather, framed topologically. Recall
from story 5 that manifold k-diagrams dualize to cell k-diagrams, which can be canonically subdivided by closed
meshes (yielding a subdivision by directed cells which we called ‘framed regular cells’). As a special case of this,
stratum k-types dualize to ‘cell k-types’: these are are cell k-diagrams with a single (framed regular) k-cell and
all other cells are contained in the closure of that k-cell. Thus, a geometric computad is equivalent a collection
of morphisms with associated cell types. Using the quotient maps described in story 5 as attaching maps, we can
glue these cell types into a ‘framed cell complex’ |C|f r (i.e. a cell complex, in which each cell is the image of a
framed regular cell). We refer to this framed cell complex as the framed realization of the geometric computad
C . Let’s think about some examples!

Mini-exercises 8.1 Come up with a geometric 2-computadC with a single 0-morphism, and a single 2-morphism
such that the underlying space |C| of the framed realization |C|f r is the 2-sphere. Similarly, come up with a
minimal geometric 2-computad such that |C| is a torus. (Link to Solutions)
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While we will not do so here in any detail, it is easy to develop the theory of geometric computads a bit further,
and many basic definitions are quite straight-forward to come up with. For instance a k-morphism (ℝk, f ) in
an n-computad C , for any k ∈ ℕ(!), is of course a manifold diagram together with a labeling l ∶ ℰ0f → C≤k
such that k-strata s in f have stratum type fl(s) and ll(s) factors through l by the induced map ℰ0fl(s) → ℰ0f .
A functor F ∶ C → D of computads C and D will of course, for each c ∈ Ck, provide us with a k-morphism
F (c) of D which is suitably compatible with boundaries of morphisms (to make this ‘compatibility’ precise it is
easiest to pass to the dual world of cellular diagrams and work with stratified subdivisions, see here for a more
detailed treatment). One may further define a type of cylinder construction C × I on computads, which induces
a notion of ‘cylindrical transformations’ by considering functors � ∶ C × I → D (while we won’t spell out the
definition, think of these as natural transformations in which all components of the natural transformations below
dimension (n + 1) are isotopies). Together, these constructions amount to something like a directed Pontryagin
theorem! Why? Well, all we need (namely, dualization and globalization) is already built-into into our theory:
any functor C → D can be turned into into a dual stratification of |C|f r , simply by stratifying open cells c with
the manifold diagrams F (c), and any transformation � ∶ F ⇒ G similarly induces a ‘stratified cobordism’ (as a
stratification of |C × I|f r) between two such stratifications!

We will illustrate the close relation of the directed Pontryagin theorem with the classical theorem with several
examples in a moment. Importantly, to do so, we first need re-connect with an old friend (or foe?): invertibility.
More concretely, having understood how to attach a new morphism to a computads, let’s think about how to
attach a new invertible morphism f to computad. What do we expect from an invertible morphism f? Well, it
should have an ‘inverse’ morphism f−1, and then, surely, we should also have higher morphisms f◦f−1 ↔ id
and so on. As alluded to at the end of story 6, all this additional data carried by an invertible morphism can
be parametrized by framed codimension-1 tangles, or more precisely, by their ‘germs’: here, an m-germ is
an m-tangle diagram whose universal manifold diagram subdivision is a stratum typ (these subdivisions were
discussed in story 3). The slogan now is: given a morphism f and a framed codimension-1 germ t, there will be
a morphism ‘t̃(f )’ that is part of the invertibility data of f . (In fact, we could produce finite invertibility data by
working only with the ‘elementary’, i.e. perturbation-stable, germs... that is, if we could classify them; but, at
least in low dimensions we know how to do this, cf. [4, §3.3], and we will exploit this to keep things finite in
exercises and illustrations below.)

It isn’t hard to make the t̃(f )-construction precise, either topologically or combinatorially; we choose the
former for visual intuition (the latter is e.g. in [5, Constr. 9.1.3.1]). Let f be a stratum k-type, k > 0, and
let t = (W ↪ ℝm+1) be a framed codimension-1 m-germ. (More generally, the construction will work for
any framed codimension-1 tangle t! But focussing on germs is convenient for the purpose of morphism/cell
attachments.) Recall (cf. exercise 6.1), we can think of the framings combinatorially as a±-signing of components
of ℝm+1 ⧵W . Write f−, f0, and f+, for the slices of (ℝn, f ) → ℝ over −1, 0 resp. 1 ∈ ℝ (all of these will be
manifold (k − 1)-diagrams). Now define t(f ) to be the framed compactly triangulable stratification of ℝm+k for
which the projection ℝm+k = ℝm+1 × ℝk−1 → ℝm+1 induces a stratified bundle t(f ) → t with fibers f± over
±-components and f0 over the tangle manifoldW (technically, we also want to ensure fiber attachments f± → f
are those in f ). While t(f ) is, in fact, a stratified tangle, we can also create a manifold diagram from it: consider
the universal subdivision t̃ → t by a manifold diagram t̃, and pull back the above bundle t(f ) → t along this
subdivision—this yields a manifold diagram t̃(f ) (fibered over t̃). The new stratum type t̃(f ) is exactly one of
new morphism that we need to add to our computad in order to make the morphism f invertible. Let’s illustrate
this construction!

Mini-exercises 8.2 For k-morphisms in the two computads built in the previous exercise add invertibility data
up to and including in dimension k+2. Note that by turning newly added (k+2)-morphisms into strict equalities,
you will recover the usual 2-categorical data of an ‘adjoint equivalence’ of 1-morphisms. (Link to Solutions)
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Having an idea of how to attach invertible morphisms to a geometric computad, we can now give a few examples
of how the categorical Pontryagin theorem compares to the classical Pontryagin theorem (or rather, the stratified
version thereof which deals with general cell complexes, see [1]). I will speak of a groupoidal computad to
mean a geometric computad constructed by inductively attaching invertible morphisms, and I will distinguishing
between the generating morphisms and their invertibility data, which are morphisms that need to be attached
to ensure the generating morphisms are invertible (generating morphism together with their invertibility data
will be collectively referred to as a fat cell). Concretely, one may be interested in two processes: (1) given a
‘groupoidal’ computad (i.e. a geometric computad constructed by only attaching invertible morphisms) extract a
cell complex; and (2), given a cell complex we extract a computad from it. While we will make neither direction
precise here, both direction can be outlined as follows.

For a given computadC , process (1) is, in fact, relatively straight-forward, but there are two approaches: either, we
simply construct |C|f r which gives a ‘fattened’ version of the cell complex (we realize both generating morphisms
and their invertibility data), or, we realize only generating morphisms, ‘squishing’ invertibility data into attaching
maps. The latter approach is based on the observation that, for each generating k-morphism c in a groupoidal
computad, the stratum type fc is naturally a normal framed stratification by the following ‘t(f )f r-construction’.
First, form the unions fat(d) of strata in fc belonging to the same fat cell (for other generating morphisms d).
Now, starting from the earlier construction of t(fd), note, if t has normal framing �, then the stratumW × {0} of
t(fd) has (k − 1)-fold stabilized normal framing � ⊕ �k−1. These local choices of normal framings, assemble
into a global choice for normal framing for the stratum fat(d). As a result, fc and )fc become normal framed
stratifications. This can now be fed into the classical stratified Pontryagin theorem which produces the topological
cell attachment maps �c for the k-cell c we were seeking—here’s a one-sentence-description of these maps: the
attaching map �c ∶ Sk−1 → |

|

Ck−1|| pulls back the normal framed dual stratification of the cell complex |
|

Ck−1|| to
recover, after universal subdivision, the normal framed stratum type boundary (Sk−1, )fc) of c.

The converse process (2) is a bit more interesting—after all, we know plenty about cell complexes, but not so much
about geometric (or groupoidal geometric) computads, so it would be good if we could translate examples from
the former into the latter. This turns out to be more subtle, because of how normal framings work in groupoidal
computads: indeed, in groupoidal computad land, normal framings for types )fc of generating k-morphisms c
can be produced via the t(f )f r-construction, but this only outputs very specific ‘neatly’ stabilized normal framed
stratifications of the ‘directed sphere’ Sk−1 ↪ ℝk. In contrast, if we run the classical Pontryagin construction
for attaching maps �c ∶ Sk−1 → Xk, and identify Sk−1 with the directed sphere Sk−1 ↪ ℝk+1, then we might
end up with normal framed stratification )gc of the directed sphere that doesn’t look ‘neat’ at all. However,
usually (and conjecturally: always), we can find a neatly stabilized framing close by! That is, up to wiggling the
stratification gc a bit, and then passing to equivalent normal framings of its strata (this amounts to a changing the
framing by a continuous choice of rotations homotopic to the identity), we may turn a non-neatly-normal-framed
stratification (Sk−1 ↪ ℝk, )gc) into one with neat normal framing describing the type boundary (Sk−1, )fc) of
some computad morphism c. Instead of giving dry details, let’s work through this in an example of process (2)!

Consider the minimal cell complex of ℂP 2 as an example. The cell complex can be build in three stages, and
from this we will extract a groupoidal computad with three generating morphisms. The first stage is somewhat
trivial: our ℂP 2 cell complex has a single 0-cell constituting its 0-skeleton ℂP 20 (call that cell x), and so we give
our computad C a single 0-morphism (also called x). In the second stage, to build the 2-skeleton ℂP 22 , we attach
a 2-cell (call it e) to x by the unique attaching map �e ∶ )D2 → D0. Since the dual stratification of D0 is trivial,
pulling it back along �e yields the trivial stratification of )D2 = S1. There are several choices for making the
sphere directed, i.e. identifying S1 with the subpace S1 ↪ ℝ2, but no matter which choice we make we will
obtain a neat stratum type boundary. We then run our cone construction (Cone(S1), cone(S1)) to obtain a valid
stratum type (ℝ2, fe). We thus attach a 2-morphism e of stratum type fe to C . Importantly, we now also attach
all invertibility data for e! Parts of that data (up to dimension 4) is shown in Figure 5.
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Figure 5: The first two stages of building ℂP 2 as a groupoidal computad

We now enter the third and last stage. To complete the construction of ℂP 2 = ℂP 24 , we attach a 4-cell (call it ℎ)
by an attaching map �ℎ ∶ )D4 = S3 → ℂP 22 = S

2: this attaching map is the Hopf fibration. Pulling back the
normal framed dual stratification of ℂP 22 along �ℎ yields a stratification )gℎ of S3 consisting normal framed
embedded circle e ≡ �−1ℎ (e) (see the normal framed stratified tangle in Figure 6 (A), and note S3 ≅ ℝ3 ∪ {∞}).
An important feature of gℎ is the normal framing of the circle e rotates by 2� (when compared to the stabilized
standard normal framing of S1 ↪ ℝ2 ↪ ℝ3).

Time to translate the stratification )gℎ into a stratum type boundary! Identify the sphere with the directed sphere
S3 ↪ ℝ4. Up to some non-generic situations w.r.t. to the framing ofℝ4, we can subdivide and label )gℎ so that it
becomes an ‘admissible’ stratum type boundary for C (i.e. a morphism with that boundary can be attached to C).
Unfortunately, we may now run into the aforemention problem with normal framings! As an example, consider
(B) in Figure 6 which shows )f̃ℎ that would be a valid stratum type boundary for C; but once we reconstruct
the normal framing of the fat cell e, we realize that it differs from that of e in )gℎ! To resolve this, we need to
wiggle the stratification (S3 ↪ ℝ4, )gℎ) a little bit, then subdivide the wiggled stratification to a stratum type
boundary )fℎ in C , and then double check that this boundary correctly represents the normal framing of the fat
cell e. Finally, we attach ℎ with stratum type fℎ = cone()fℎ) to our computad C (together with invertibility data
for ℎ)! To double-check our construction, one may now verify that the realization of C≤5 (the truncation of C to
a 5-computad) has the same homotopy 4-type as ℂP 2 (you may use either the ‘fat’ or ‘slim’ realization).

While ℂP 2 is a great example to illustrate how to translate (and not to translate) attaching maps of classical cell
complexes into groupoidal computads, there are already a range of simpler examples that are very fun to play
around with. For instance, stopping after stage 2 in the preceding example you obtain a groupoidal computad
CS2 modelling the 2-sphere: you may then use manifold diagrammatic calculus to prove �3S2 ≅ ℤ (as long as
you believe they model homotopy types). This, and similar fun experiments, will, however, be left to the reader!

Let’s use the remaining space in this section to see one more example that relates to a deeper question posed in
story 6 about singularities in higher codimension as well as tangles with different tangential structures. For this
purpose we will model the Thom spaceMO(2) as a groupoidal computad. Recall, BO(2) can be modelled by the
limit Gr(2,∞) of the sequence of 2-plane Grassmannians Gr(2, n) ↪ Gr(2, n + 1). The tautological 2-plane
bundle 2(ℝ∞) → Gr(2,∞) is the associated 2-plane bundle of an O(2)-principal bundle EO(2) → BO(2).
Following the usual construction of Thom-spaces, this means MO(2) is the quotient of the corresponding
2-disk-bundle p ∶ D(∞(ℝ∞)) → BO(2) by the boundary )D(∞(ℝ∞)). From this, given a cell structure of
BO(2) with cells e ∶ Dk → BO(2), one can construct a cell structure ofMO(2) by pulling back along p to obtain
cells p∗e ∶ Dk ×D2 → D(∞(ℝ∞)) and post-composing with the quotient D(∞(ℝ∞)) → MO(2). (Note, the
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Figure 6: The last stage of building ℂP 2 as a groupoidal computad

quotiented subspace )D(∞(ℝ∞)) becomes the unique 0-cell ofMO(2).) So all we need is a cell structure for
BO(2)!

A cell structure of BO(2) is described by the (beautiful) theory of Schubert cells—a concise presentation of
the topic can found in Milnor’s and Stasheff’s book [8, §5]. This tells us that Gr(2, n) will have (i + j)-cells
ei,j for all i ≤ j ≤ n − 2, and how to attach them. To compute the 4-skeleton MO(2)4, me must compute the
2-skeleton BO(2)2, and for the latter it suffices to compute the 2-skeleton of Gr(2, 2 + 2) (which then lifts along
p ∶ 2(ℝ4)→ Gr(2, 4) to cells inMO(2)). So, in addition to the 0-cell ofMO(2) we fill find: a 2-cell p∗e0,0, a
3-cell e0,1, and two 4-cells e1,1 and e0,2. From here, it is not that hard to work out the (k + 1)-cell attachment
map of p∗ei,j , then to produce a normal framed stratification of Sk, then embed Sk ↪ ℝk+1, then to wiggle
that stratification a bit so that it becomes a neatly-normal-framed stratum type boundary, and then attach a new
morphism with that stratum type boundary to our computad! Up to the homotopically-irrelevant choices involved
in this process (such as the passage to directed spheres Sk ↪ ℝk+1), the resulting computad CMO(2) is shown in
Figure 7 (... I claim I made the nicest possible choices).
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Figure 7: A groupoidal geometric computad modelling MO(2)

So why is this example of an ‘MO(2) computad’ interesting? Let me first highlight that, of course, nothing
in the above discussion was special about dimension 2 (just that codimension-2 tangles are easier to visualize
than higher codimensions), and the discussion equally applies to MO(k) for any k. Yet more generally, we
could have replaced O(k) by some other structure group G(k) → O(k) (for instance, SO(k), or Spin(k), etc.).
The expectation is that by considering morphisms in the computad CMG(k) we should obtain a presentation for
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working with G-structured tangles: indeed, this is precisely what we would expect by analogy with the classical
Pontryagin (which states that ΩGm(ℝ

n) ≅ �nMG(n − m)). Crucially, in the case of Schubert cells for O(k), the
corresponding cells of the computad CMO(k) look themselves like tangle germs: we saw this in our example
of CMO(2) where generating 4-morphisms are not tangle germs (after merging all non-ambient strata into a
single manifold) but, in fact, they look very elementary (namely, they recover some of the ‘perturbation-stable’
codimension-2 tangle germs described in [4]). This suggests a potential link between elementary singularities in
higher codimensions and Schubert calculus via the directed Thom-Pontryagin construction; but how exactly this
link could work is ... a very open question!

Mini-exercises 8.3 All computads are 4-computads. Show that �3MO(2) = 0 by considering hom spaces in
CMO(2). Produce a 4-morphisms in CMO(2) that, after merging non-ambient strata, is an embedding of the Klein
bottle into ℝ4. Show that a similar 4-morphism cannot be produced in CS2 (the groupoidal computad of the
2-sphere). Extra question (dimension 5): Can you guess a 5-morphism with stratum type boundary representing
the attaching map of e0,3 in Gr(2, 5)? (Hint: look up the swallowtail singularity.) (Link to Solutions)

9 Towards geometric type theories

In story 7 we saw that isotopies in manifold diagrams could be used to think about higher-categorical coherences.
In particular, we saw how this applied to manifold diagrams in the ‘higher category of higher categories’ itself,
observing that isotopies could naturally describe laws satisfied by natural transformations, modifications, and
their higher analogs. In story 8, we then saw how our geometric-categorical framework made it very easy to
define freely generated structures: coherences and compositions were built into the notion of manifold diagram
so no ‘multi-step-inductive’ process was needed for the construction of these structures. We also saw examples
of how free higher structures with invertible morphisms (i.e. ‘groupoidal computads’) could model classical cell
complexes. Together, this may be summarized by the following slogan: manifold diagrams naturally describe
behaviour of both ‘small’ structures (such as finitely generated computads) and ‘big’ structures (such as the
higher category of higher categories). In this story, I want to take this slogan one step further by asking: can we
come up with a type theory of geometric computads, by describing the ‘internal logic of the geometric computad
of all geometric computads’? I do not aim to give a definitive answer to the question at all (at best, the answer
you’ll find here is a vague ‘maybe yes’). Instead, the goal is to inspire people to think about the question more.
Let me first tell two mini-stories (at a philosophical level of rigour) about why this could be an interesting task.

When first learning about mathematical foundations a student may reasonably ask: why exactly these rules?
Upon digging deeper the student finds that there are, in fact, many approaches to mathematical foundations;
while all of them work with some sort of ‘statements’ (or ‘formulas’, or ‘types’) and ‘inference rules’ for these
statements, their detailed workings can vary quite a lot. So maybe foundations are ‘arbitrary’? The student
cannot but observe that patterns seem to emerge. For instance, in predicate calculus we have quantifiers ∀∕∃,
and in dependent type theory we have dependent types Π∕Σ playing a similar role. Is this just a coincidence,
or are there, in fact, some deeper mechanisms at play that make these natural choices for foundational rules?
At this point, category theory comes to the student’s rescue: using category theory, many of these rules can be
interpreted as natural universal constructions. Phew, ‘universal’ sure does sound convincing! But it comes at a
price: the convincing was done using the rules of category theory (which talks, if you will, about categories,
functors and natural transformations, and, thus, about the 2-category of categories), and not by the ‘1-categorial’
rules of the mathematical foundations the student started with. So the student thinks: it doesn’t feel right that
there is a non-formalized meta-theory floating around in our heads, that we made use of in the construction
and/or verification of our formal foundations. Instead, shouldn’t we try to formalize that meta-theory directly? It
is at this point that we reach a ‘chicken-and-egg’ problem: even if we were to formally describe the ‘theory of
categories’, i.e. the internal logic of the 2-category of categories, our rule choices would surely implicitly make
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use of our intuition about the 3-category of 2-categories (or, at least, we’d have to refer to the latter to verify we
made natural choices). Thus, in our meta-theoretical endeavour we see ourselves being pushed to higher and
higher dimensions n: only in the limit n→∞, the pushing stops.

This relates to another problem (let us narrow our focus on type-theoretic foundations now). Apart from the
meta-theoretic chicken-and-egg problem of the previous paragraph, there is also the issue of type theories
containing models of themselves. Concretely, one usually finds a ‘type of types’  among the types of our
type theory. However, if we start from an n-theory of types (i.e. a theory of (n − 1)-types, which collectively
organize into an n-category), then  will be an (n − 1)-type itself; this necessarily involves forgetting some of
the structures of n-category of (n − 1)-types. For instance, for the 1-theory of sets (which are 0-types), the set
of (small) sets will have to forget about functions between sets, which are morphisms in the category of sets.
Thus, in order to fully talk about the n-theory ‘internally’ to the n-theory, we need to code up the structure that
we just forgot. For our example of set theory, we may encode the forgotten structure by considering a set of
functions (together with the rest of the structure of an internal category in sets). In contrast, when we let n→∞
be unbounded, we arrive at a sort of∞-theory of∞-types—a category of∞-types is again an∞-type, and so an
∞-type universe  need not forget any categorical structure! One more feature becomes natural when n→∞:
infinite universe hierarchies. In n-theories, universe hierarchies must end after (n + 1) steps; for example, the
category of sets contains a set of sets, which contains an ‘element of sets’ (i.e. an element corresponding to
the set of sets)—but an element is a structureless (−1)-type and the hierarchy ends at this points. In contrast,
the higher category of higher categories contains a small model of itself which is again a higher category; this
leads to an infinite hierarchy of universes ... ∶ i ∶ i+1 ∶ ... . In many modern type theories (despite being
1-theories, or (∞, 1)-theories) this is often added as an additional feature!

The preceeding two points may be summarized by the following two questions: (1) Can we directly formalize the
categorical principles floating in the back of our minds when we think about mathematical foundations? (2) Can
we come up with a type theory that naturally contains a full model of itself? As discussed, both questions may
lead us into the realm of unbounded higher categorical foundations, where I take ‘unbounded higher’ to mean
type dimensions n→∞. (I don’t write n = ∞ to highlight a small, but mainly philosophical subtlety here: while
unbounded higher categorical foundations should address all dimensions, all constructions in these foundations
would of course always take place in finite dimension, just that there’s no bound on that dimension.) At first
glance, constructing unbounded higher categorical foundations appears to be a horribly tedious task. But the
leading thesis in this story is precisely the opposite: while n-theories seem hard for large n, maybe∞-theories
are not that bad after all; and, yet more concretely, maybe the theory of geometric computads may provide a
natural approach the construction of such foundations. To substantiate this speculation a bit further, we will now
try and sketch how these foundations may look like, and then exemplify how one could work with them. Be
warned that the specification sketched below will leave several gaps (and we will later address these gaps, and
how to potentially fill them, in more detail). However, the incomplete sketch still serves an inspirational purpose:
it imagines a world in which Π∕Σ∕ℕ types are not part of the primary rules of our type theory, but in which such
types can be derived from a set of ‘more fundamental’ higher categorical principles.

In the outline below I will attempt to use type-theoretic notation with a few important changes which seem to be
necessitated by the manifold-diagrammatic set-up: (1) I will write f ∶ A to mean f is a k-morphism in the type
A for any dimension dim(f ) = k ∈ ℕ; (2) a k-morphism’s j-iterated domain )j−f = a and codomain )j+f = b
will be indicated by writing )jf ∶ a→ b (but this is not a typing statement; the type is f ∶ A!); (3) I may specify
some aspects of the inference rule with natural language (written in brackets); (4) contexts may contain not only
assumed variables but also boundary constraints, jointly written (x ∶ A | )x ∶ a→ b). (In general, I will not be
very careful about how contexts work: I use placeholder blobs ∙ to mean the ‘appropriate context’.) Keeping
these points in mind, we can organize our inference principles into three sections: ‘elementary constituents’,
‘construction principles’, and ‘equality principles’.
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1. Elementary constituents. Within the type of types, there are two elementary type constituents: a smaller
type of types and the point 1 (intuitively, the point is the basis from which all other structure is freely constructed;
this is analogous to say, the category of sets being the free cocompletion of the point, or, the ∞-category of
spaces being the free∞-cocompletion of the point).

(for i ∈ ℤ)
⊢ i ∶ i+1

(for i ∈ ℤ)
⊢ 1 ∶ i

(UNIV)

 and 1 together fulfil an important role: they enable us to translate between type-internal and type-external
perspectives on k-morphisms f ∶ A (intuitively, a k-morphism inside the type A ∶ i corresponds to a
(k + 1)-morphism inside i with k-iterated boundary 1 → A). Modulo details, we capture this as follows.

∙ ⊢ f ∶ A ∶ i (dim(f ) = k)
∙ ⊢ ext(f ) ∶ i ()kext(f ) ∶ 1 → A)

∙ ⊢ f ∶ i ()kf ∶ 1 → A)
∙ ⊢ int(f ) ∶ A ∶ i (dim(int(f )) = k)

(REFL)

What was left implicit in these rules is that ext and int will be compatible with compositions and boundaries as
well as being suitably inverse to one another (we will see examples of this). Note the rule in particular applies if
A = i−1, in which case it recovers the usual idea of ‘reflection’ between universes!

2. Construction principles. There are twomodi of introducing k-morphisms (k ≥ 0): assumption or definition.
Assumption, in computad-lingo, attaches a new k-morphism to a given computad. Assumptions are recorded by
context variables and may have boundary constraints.

∙ ⊢ a, b ∶ A ()a = )b)
∙ , (x ∶ A | )x = a→ b) ⊢ x ∶ A

∙ , x ∶ A ⊢ f (x) ∶ A ∙ ⊢ c ∶ A ()x = )c)
∙ ⊢ f [c∕x] ∶ A

(ASMN)

Note, on the left we allow a, b to be ‘(−1)-morphisms’, i.e. empty, in which case x is a 0-morphism of A. On the
right, we implicitely require x to be a ‘free’ variable (meaning a variable on which no other assumptions depend).

Definition, in contrast to assumption, describes a morphism that ‘should be in i anyways’. To make definitions
precise, we will use the principle of pattern matching which generalizes the principle of induction. Roughly
speaking, pattern matching defines a k-morphism f ∶ i by describing how the morphism translates a ‘complete
pattern’ of morphisms in the domain type )k−f = A into morphism of the codomain type )k+f = B. Here, a
‘complete pattern’ [A] for A is a finite subset of the rooted tree of constructions of z ∶ i with )jz ∶ 1 → A such
that any path from the root must eventually pass through a [A]. Crucially, we will need a higher-dimensional
version of pattern matching, as we deal not only with functors but also higher transformations. Definitions are
recorded in a separate memory.

∙ ⊢ a, b ∶ i ()a = )b)
∙ ⊢ f ∶ i (record def (f ) | )f ∶ a → b)

∙ ⊢ f ∶ i (def (f )) ∙ ⊢ c ∶ i (c ∶ 1 → A)
∙ ⊢ ev(f, c) ∶ i (c ∶ 1 → B)

(DEFN)

The above rules are schematic: on the left, for k = dim(a) = dim(b) and )k−1()a = )b) ∶ A → B, the term
def (f ) represents the data of a mapping from a complete pattern [A] of A to morphisms in B which is suitably
compatible with composition and the existing actions of a and b (we will give further details in our examples
and discussion below). On the right, the term ev(f, c) schematically represents the manifold-diagrammatic
evaluation of f on c based on the definition def (f ) assumed to be given. While the usage of pattern matching
here may be rather vague, the ‘ultimate’ benchmark for definition rules is canonicity: that is, however the notion
of definitions is formalized, it should not introduce any new morphisms in existing types.
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Besides assuming and defining morphisms, we may also compose them. We record this by the following rule.

∙ ⊢ f1, f2, ..., fk ∶ A (f1, .., fk composable)
∙ ⊢ diag(f1, f2, ..., fk) ∶ A

(COMP)

The rule is schematic: diag(...) represents a (labeled) manifold diagram whose constituent morphisms are those
in (...). This, of course, uses that manifold diagrams are combinatorially representable and that composability is
easily checked.

3. Equality principles. There are two modi of inferring equality: ‘equality by assumption’ and ‘equality by
definition’. The rule for the former may need no further explanation. For the latter, again, we may have to use
pattern matching to determine whether two morphisms are the same when evaluated on some complete pattern.

∙ ⊢ a, b ∶ A ()a = )b)
∙ , a = b ⊢ a = b

(ASMN-EQ) ∙ ⊢ f, g ∶ i (def (f ) = def (g))
∙ ⊢ f = g

(DEFN-EQ)

On the right, def (...) = def (...) schematically represents the aforementioned procedure of comparing two
morphisms by pattern matching (the rule is meant to trivially recover reflexivity f = f ). But there’s much
more that needs saying. To begin, we better explain what object a = b is in the first place: the equality of two
morphisms (whether inferred by assumption or by definition), like 1, should be thought of as a ‘structureless’
type meaning any variable x ∶ 1 should be irrelevant—I decided to omit adding rules for structurelessness in
this sketch (both for = and for 1). A final further omission concerns rules for the application of equality: the
bottomline is, if x = y is inferred, then x and y can be used interchangeably for essentially all purposes.

Examples. Before further discussing the omissions and shortcomings of the above specification outline (in
particular, the lack of details regarding reflection, definition, and equality), let us attempt to illustrate the
underlying ideas of these rules a bit more by working through some examples.

Based on the rules above, here’s an imaginary mathematical workflow in geometric type theory. By (UNIV) we
have a typei ∶ i+1 and thus by (ASMN) we can assume a 0-morphism ℕ ∶ i. We further assume morphisms
0 ∶ 1 → ℕ and s ∶ ℕ → ℕ (note: while 0, s ∶ i by (REFL) the 1-morphisms s◦...◦s◦0 in i can be thought
of as 0-morphisms in ℕ). We have assumed something, so now let’s define something. Define c1 ∶ i with
)c1 ∶ ℕ → i−1 by pattern matching on z ∶ i with )z ∶ 1 → ℕ. The ‘root’ pattern is just [z] itself (i.e., up
to (REFL), [z ∶ ℕ]). Inspecting our previous assumptions, z can also be derived either as z = 0 or, using the
(COMP) rule, as z = (s◦y) with )y ∶ 1 → ℕ, so another complete pattern would be [0, s◦y]. But let’s just use
the root pattern [z]: to z with )z ∶ 1 → ℕ we assign ext(1) with )ext(1) ∶ 1 → i−1 (the externalization of
1 ∶ i−1). This defines c1 by the mapping def (c1) = {z↦ ext(1)}. That’s our first definition! In the future, we
will often omit writing ext and int explicitly.

The bread and butter of dependent type theories are dependent types. How can we model these in geometric
type theory? For instance, how can we make an assumption of the form ‘x ∶ ΠℕF ’ for an ℕ-indexed type
family F ? Well, we easily can. To quickly create an ℕ-indexed type family, use (ASMN) to assume F ∶ i
with )F ∶ ℕ → i. Then the traditional assumption ‘x ∶ ΠℕF ’ is naturally modelled by the assumption
(x ∶ i | )x ∶ c1 → F ). Indeed, in categorical lingo, ‘ΠℕF ’ is the type of sections of the Grothendieck fibration
∫ F → ℕ; but sections are bundle maps from the trivial bundle ℕ → ℕ; so passing to classifying maps, sections
become natural transformation c1 → F ... note, these categorical considerations crucially rely on 2-categorical
structure (indeed, we learned 2-categories abstractly describe 1-theories!). Okay, now that we understandΠℕF as
the ‘subtype’ ofi consisting of morphisms with boundary c1 → F , how can we work with this? Well, whenever
we have x ∶ i | )x ∶ c1 → F and n ∶ i | )n ∶ 1 → ℕ, then there is an obvious composite ini using (COMP)

29

https://ncatlab.org/nlab/show/Grothendieck+fibration


yielding x(n) ∶ i | )2x(n) ∶ 1 → i−1 (the manifold-diagrammatic composite x(n) would traditionally be
called a ‘whiskering’). In this case, we can use (REFL) to internalize to obtain x(n) ∶ i−1 | )x(n) ∶ 1 → F◦n
(here, the computation of )x(n) uses that int preserves boundaries and is inverse to ext). Using (REFL) once
more, we produce a 0-morphism x(n) ∶ F (n) ≡ F◦n. We recover the elimination rule of ΠℕF ! And yet more
can be recovered, but we leave further experimentation to the reader.

What about the traditional Σ-type? Similarly, pretty easy. As before assume an ℕ-indexed type family F .
Instead of considering mappings into F we consider mappings from it. Using (ASMN) add a new 0-morphism
ΣℕF ∶ i−1, and, analogous to the definition of c1, use (DEFN) to define cΣℕF ∶ i to be the constant functor
)ΣℕF ∶ 1 → i−1 to ΣℕF . Now, using (ASMN) again, assume a 2-morphism in ∶ i | )in ∶ F → cΣℕF . I claim
the type ΣℕF thus introduced is a good way of representing the traditional Σ-type internal to geometric type
theory. One straight-forward check is to verify that, given n ∶ ℕ and w ∶ F (n) we can construct inn(w) ∶ ΣℕF .
Further experimentation is once more left to the reader. Observe that in contrast to the Π-business, for the
Σ-business new stuff needed to be introduced (but that is to be expected: ‘colimits need to be freely constructed’).
Note also, that neither for introducing Π nor Σ anything dependent on ℕ specifically; indeed, constant functors
can be also defined on free type variables X ∶ i.

Let’s turn to the more controversial topic of equality. Assume another set of morphisms ℕ′, 0′, s′ ∶ i with )0′ ∶
1 → ℕ′ and )s ∶ ℕ′ → ℕ′. How does that relate to our earlier ℕ? Using (DEFN) we define F ∶ i | ℕ → ℕ′; and
this time, we use the complete pattern [0, s◦y] exhibited earlier. We define def (F ) = {0 ↦ 0′, s◦y ↦ s′◦F (y)}.
(Note the definition is recursive, but this is okay for the purposes of pattern matching, since all instances of
0-morphisms in ℕ will have been constructed in finitely many steps.) We also define G ∶ i | ℕ → ℕ′ in
a symmetric fashion. Using (COMP) we obtain GF ∶ i | ℕ → ℕ. We want to use (DEFN-EQ) to show
that GF and idℕ are equal (as an aside: the existence of j-iterated identites follows from the (COMP) rule by
forming trivial manifold diagram (ℝk, f ) × ℝj). We use the same complete pattern [0, s◦y] as before. On
0, we evaluate GF (0) = 0 using the defintions of F and G, and thus GF (0) = id(0). On s◦y we evaluate
GF (s◦y) = s◦GF (y) = s◦id(y) = (s◦y) (where, as part of the ‘pattern matching process’, we allow ourselves to
use that, inductively on construction depth, we have GF (y) = id(y)). Symmetrically, we have FG = idℕ′ . Thus
together we have F ,G ∶ i, with )F ∶ ℕ ↔ ℕ′ ∶ )G and GF = id, FG = id. Replacing ℕ and ℕ′ by type
variables X and Y , we could call the target context (∙ ⊢ F ,G ∶ i, FG = idY , GF = idX) a ‘0-equivalence’.

What about 1-equivalences? Assume I, pt0, pt1, path0, path1 ∶ i with )ptj ∶ 1 → I and )pathj ∶ ptj → ptj+1.
Use (ASMN-EQ) to set pathj+1◦pathj = idptj (where indices are mod 2). Then, a high-level description of the
proof that 1 and I are ‘1-equivalent’, is the following: define functors F ,G ∶ i with boundaries 1 ↔ I by
mapping (in forward direction) constantly to 0 and (in backward direction) 0-morphisms to id1 (note this has
boundary 1 → 1 as required), and 1-morphisms to idid1 . Using (DEFN) again, we then define 2-morphisms
�, � ∶ i with )� ∶ GF → id1 resp. )� ∶ FG → idI by chosing the data of natural transformations (making
this choice goes beyond the traditional concept of ‘pattern matching’ and is enforced by the requirement of
canonicity... we address this central point below!!). Similarly to the previous paragraph, one shows that � and
� have on-the-nose inverse �−1 and �−1. Abstracting to type variables X and Y , we arrive at a target context
(∙ ⊢ F ,G, �, �−1, �, � ∶ i, ��−1 = ididX , �

−1� = idFG, ��−1 = ididY , �
−1� = idGF ) that could be reasonably

called a ‘1-equivalence’.

Mini-exercises 9.1 Given a type A ∶ i and an object a ∶ A (i.e. dim(a) = 0), how would you construct the
hom functor Hom(a,−)? (Link to Solutions)

Discussion. If I would have to name one single obstacle to making the above specification of geometric type
theory precise it would be this: the missing finite classification of elementary isotopies. Why? Because, while
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it is great that isotopies are automatically generated by manifold-diagrammatic composition (i.e. by (COMP)),
these automatically generated morphisms also make it hard to guarantuee canonicity (as required by (DEFN)).
Let’s illustrate this issue, picking up from the last example above. There, we wanted to define a 2-morphism
� ∶ i. Instead, let us assume such � (in fact, one way to think about (DEFN) is that it’s just (ASMN) with enough
(ASMN-EQ) to ensure no new terms are added anywhere else). Let’s see what composites we can form. Write
)� ∶ F → G and )F = )G ∶ C → D. Assume a, b, f ∶ i with )a = )b ∶ 1 → C and )f ∶ a → b. Then f
and �, both 2-morphisms in i, can be composed in an exchange diagram ef,�, exactly like that in Figure 2!
But now, by (REFL), we generated a new 2-morphism int(ef,�) ∶ A. In fact, the boundary of this morphism
(by compatibility of int with boundaries and compositions) is just )int(ef,�) ∶ �b◦F (f ) → G(f )◦�a, where
we abbreviated �x ∶= int(�◦x) and F (w) ∶= int(F◦w) resp. G(w) ∶= int(G◦w). But that’s great, our newly
assumed � automatically satisfies naturality! Yes, but it ‘freely’ does so by adding a new 2-morphism int(ef,�) to
A. This means, if we want to define � we need to equate this 2-morphism to something that already exists in A
(which is precisely what we did in our above example). The problem of course doesn’t end with naturality: in
order to guarantee canonicity in general, we need to understand all elementary higher isotopies, of which the
exchange is just the simplest example. This makes elementary isotopy classification an important question for
geometric type theory: I haven’t thought much about the problem myself, but I would be a bit surprised (given
the combinatorial theory at our disposal) if it couldn’t be solved with enough effort.

While the canonicity issue for isotopies may be the most pressing matter in making geometric type theory precise,
there are many other shortcomings in the above sketch. Let me briefly mention some (but definitely not all) of
these. A first glaring issue is that nothing was put in place to prevent later assumptions from corrupting earlier
definitions (simplest example: add an object to X after a functor F was defined on X; now the definition is
incomplete!). The way this is usually addressed is by asking the mathematician to first make all their assumptions
(‘axioms’) and then start working out definitions. But this is necessarily restrictive (see Goedel’s incompleteness),
and not very natural when thinking of assumptions as part of the process of free cocompletion of (why should
that process ever end?). Therefore, I like the mixed approach more even though it requires us to be careful about
the causality of constructions (a directedly related issue is with the substitution rule for (ASMN), which certainly
hasn’t yet found its final form either). Another, similarly glaring issue is with (ASMN-EQ): of course, you can
use it to trivialize your universe 1 =  and, personally, I don’t mind if you want to do that, but maybe some
restrictions to prevent this should be put in place. Maybe, avoiding this equality could be part of the formalization
of structurelessness of 1 (which should equate any k-morphism x ∶ 1 to ∗∶= int(idk1)) omitted in our sketch.
Finally, you may have raised an eyebrow when I started talking about ‘subtypes’ (x ∶ A | )x ∶ a → b), ...
aren’t these just hom types HomA(a, b) in disguise, and shouldn’t hom types be first-class types themselves?
Surprisingly, for geometric reasons (dimension shifts etc.), I don’t think that’d be very natural. Hom types are
certainly a kind of type, but second-class ones, i.e. they shouldn’t be directly plugged into the specified type
rules above. There’d still be many indirect ways you can work with hom types (and maybe these are ‘enough’).

There are surely many other things the working type theorist will find lacking or peculiar in this story (Q:
where is 0? A: absent. Q: what about (−)op? A: could be added. etc.) which I’ll leave mostly unaddressed.
Though two possible extensions may deserve a special mention. First, it could be natural to consider the universe
 as a symmetric monoidal computad. Higher symmetric monoidality can be easily expressed in manifold
diagrams (analogous to monoidal 1-categories finding semantics in string diagrams). But adding monoidality
also adds complexity (for instance, you’d expect contexts to interact with monoidality appropriately), which
somewhat goes against the goal of simplicity here. In a different direction, you could also add an internal notion
of invertibility. As we’ve learned from our discussion of tangle germs and groupoidal computads, there’s a
geometrically natural story to be told here (...but we’d need to understand elementary singularities!). Moreover,
having an internal notion of invertibility will be absolutely necessary in order to have any chance of ‘embedding’
existing lower-dimensional type theories which can talk about higher invertible morphisms (like HoTT).
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Conclusion and additional remarks

This series involved a wild mixed of topics including stratifications, directed spaces, combinatorial topology,
differential structures, computability questions spiced with homology spheres, singularity and higher Morse
theory, transfors and computads, homotopy group calculations, enumerative geometry, and, lastly, (some sort
of?) type theory. Geometric higher category theory is a place where all of these topics come together, which, I
think, makes it an exciting area of research. At the same time the area is very young and not that much has been
done or thought about. I hope that one thing achieved by this series of stories is that more people become aware
of the existince of the area, and that maybe some people even start to think about it!

Let me also collect some remarks that didn’t really fit anywhere in the main text. These mainly concern the
comparison of the material here with existing literature.

1. In [4] it was convenient to phrase the main definition of manifold diagrams in terms of tame stratifications
(the definition chosen here was given as an ‘alternative’, see [4, Def. 2.1.10]). These definitions are equivalently
since, firstly, in [3] it was shown that ‘finite triangulations’ are always tame (and the proof can be adapted to the
case of ‘compactly-defined triangulations’ considered here), and, secondly, any mesh has a compactly-defined
triangulation.

2. Note also that while in [4] (for the purposes for reducing the lengths of proofs) it was technically convenient to
assume links themselves to be tame, this is not necessary (see [4, Rmk. 2.1.9]).

3. While in [4] we spoke of ‘tame tangles’ here I called them ‘tangle diagrams’. The latter choice highlights the
proximity to manifold diagrams, while still distinguishing the notion from classical conceptions of tangles.

4. Another (ongoing) terminological issue: entrance path poset or fundamental poset? Entrance path truss or
fundamental truss? In general, I prefer ‘fundamental’. Nonetheless, I used the notion ℰ0 (in other places, this is
Entr or Exitop) to denote fundamental posets.

5. There is also question of arrow direction conventions. When you have a point p, and attach a k-cell c to that
point, then in the fundamental poset of the resulting stratification you could either have an arrow p→ c (‘exit’
convention) or c → x (‘entrance’ convention). I generally prefer the entrance convention, both for representing
the directions of attachments, and for the variance of classifying maps: if you have a discrete compact stratified
bundle than entrance convention arrows point in the direction of functional mappings of the fibers. In the literature
you mainly find the exit convention though.
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