
A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES

CHRISTOPH DORN

Abstract. We define a higher-dimensional analogue of the type of lists in a inductive-recursive
fashion. Lists elements will live in a “signature”. This signature can be understood as the

collection of generating morphisms of a higher sesquicategories (that is, a higher category without
the exchange law and its higher dimensional analogues). We further discuss a possible extension
of higher lists to “higher lists with duals”.

Contents

0. Introduction and Overview 1
1. Higher lists 2
1.1. 0-cells and 0-diagrams 5
1.2. k-cells and k-diagrams 9
2. Lists with duals 18
2.1. Compositionality 19
2.2. Duality 20
2.3. Unitarity 25

0. Introduction and Overview

One of the most basic inductive types is the type of lists list(C) with list elements of type C. It
can be defined with two constructors

l : list(C) := | id(0.1)

| cons(l, p) , p : C

where id means the empty list, and cons(l, p) glues an element p of type C to the already existing list
l. This definition for instance entails the natural numbers N ≡ list({ ∗ }) as lists of only one element
∗, or strings Γ∗ ≡ list(Γ) as lists of elements of some alphabet Γ. A main theme of this work will be
the task to find a reasonable and simple generalisation of this inductive concept in higher dimensions.

While the approach presented here is guided by certain geometric principles, in general there is
certainly no unique answer to fulfil the task of finding a definition of ‘higher lists’. For instance, a
well-known but quite different approach to ‘higher lists’ is that of indexed W -types also known as
indexed containers or polynomial functors: More precisely the definition uses the slice construction
on cartesian polynomial monads . It was shown in that the opetopic approach to higher categories
can be based on this construction. However, the opetopic approach does not support a symmetric
treatment of input and output. Indeed, the polynomial functor approach more accurately describes
what is often called higher trees (which can be regarded as a specific flavor of higher lists).

The present work arose from an attempt to ‘symmetrise’ the (polynomial functor approach of
the) opetopic framework. This framework was already implemented by the proof assistant opetopic
. The original ambition to look for such a symmetrised version of opetopic was the insight that
it would lead to a nice graphical representation for a multitude of logics ranging from classical,
non-linear, non-polarized to linear, intuitionistic, polarized with relevance to process calculi − this
representation will be the subject of future work. Especially the classical aspects of logic are not

Date: September 5, 2016.

1

2 CHRISTOPH DORN

in line with the asymmetric approach of opetopes: From a computational perspective, classical
logic treats values and continuations (or co-values) on equal footing (cf. Wadler’s dual calculus
) while on the intuitionistic side co-values are essentially absent (cf. the λ-calculus). Co-values
are also essentially absent from mainstream mathematical thinking, while in theoretical computer
science they are more well-known and used e.g. in the CPS translation . However, duality has
proven a powerful tool in mathematics propelled by the development of category theory and this
possibly means that the strong bias towards values in most mathematical foundations should be
re-thought. In fact, as pointed out on the n-Category Cafe there is a close connection between the
CPS translation and the Yoneda embedding. It shouldn’t come as a too big surprise then that
by taking ‘co-values and co-variables seriously’ we will arrive at a particularly nice formulation of
topics ranging from the Yoneda Lemma to Equipments.

In section 1 the formal definition of our approach to ‘higher lists’, which capture higher dimensional
behaviour of lists. In light of (0.2), the role of list (in dimension n) will be played by the type of
n-diagrams Dn, while the role of C in list(C) (in dimension n) will be played by the type of n-cells
Cn. In fact the definition of Dn will be of the form

d : Dn := | id(0.2)

| d .
c
p , p : C, P (d, c, p)

where d is an existing diagram and p gets glued to d as an additional list element: The central
difference to (0.2) is that we are not agnostic to where p is glued to d anymore, and this ‘position of
gluing’ is described by coordinates c. The condition P (d, c, p) will then express that corresponding
boundaries of d and p coincide so that the gluing can in fact take place.

The style in which the definition of Dn, Cn is presented in section 1 is inductive in n but also
inductive-recursive at each dimension: This means Dn, Cn are defined simultaneously with functions
on them, which are required to express P (d, c, p) in simple terms. It should also be noted that
both Dn, Cn are further dependent on an n-signature of type Sign, which will be defined as well in
the inductive process. The largest part of section 1 will be concerned with proving the inductive
hypotheses 1.10, proving correctness of the given definitions, and introducing conventions and tools
to work with them.

In section 2 we then go on to consider the following extensions of higher lists to ‘higher lists with
duals’, using the following three steps.

(i) Compositionality. Compositionality means to extend ‘higher lists’ to ‘higher lists of lists’,
i.e. lists can have lists as list elements, or conversely, lists compose to yield list elements.
Importantly, there will be a higher-dimensional witnesses of such compositions to keep track
of this process internally.

(ii) Duality. Duality means that we extend our consideration of list elements to that of co-
elements: Intuitively, while elements are resources or ‘values’, co-elements can be thought
of as deficits or ‘continuations’ (or ‘co-values’) indicating that a value is stilled owed or yet
to be provided. Operations to both create and compensate deficits will be provided and
will be called shifts. The classical analogue is that of dual spaces, e.g. x∗ ∈ X∗ := X → R
‘compensates’ x ∈ X by x∗(x) = 1. Importantly, deficits themselves qualify as elements and
thus we can form ‘deficits of deficits’ (e.g. X∗∗) and so on: That is (−)∗ is not involutive,
but we will see X ∼= X∗∗ naturally.

(iii) Unitarity. Unitarity combines compositionality and duality, in that it qualifies resources as
‘unitary’ if and only if their corresponding shifts are witnesses of composition which in turn
is the case iff they are unitary (in this sense, unitarity is a coinductive definition).

1. Higher lists

The definition of n-cells Cn and n-diagrams Dn is both inductive in the dimension n and of
inductive-recursive flavour at each dimension: This means, Cn and Dn as well as certain functions
on these types will be defined simultaneously. Further, we will later introduce paths in the path

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 3

type IdCn , making the definitions below ‘higher inductive-recursive’ (on the other hand, Cn, Dn

will have decidable equality making them sets and not higher types by Hedberg’s Theorem: Thus,
the reader should understand IdCn

as an equivalence relation on Cn). Bundling all definitions
together, the data structure described in the following could be formalised as an higher indexed
inductive-recursive definition. However, we will be agnostic to which specific type theory could be
used for this formalisation.

In later section 2 we will extend the ‘core’ definitions presented here with additional constructors
and equalities, to which (we claim) the core definitional process can be straight-forwardly extended.
In both the core and the extended versions, the following entities will be defined in the n-th step of
the definitional process

Sign : Type (n-signatures)(1.1)

π
(n)
1 : Sign → Sign−1 (signature projection)

and assuming a signature σn : Sign as a parameter we will further define

Cn(σn) : Type (n-cells)(1.2)

∂
(n)
i (σn) : Cn(σn)→ Dn−1(σn) (cell boundaries, i ∈ { 0, 1 })

Dn(σn) : Type (n-diagrams)(1.3)

|−|(n) (σn) : Dn(σn)→ N (diagram size)

∂
(n)
i (σn) : Dn(σn)→ (Dn−1(π1σn))⊥ (diagram boundaries)

p
(n)
i (σn) : Dn(σn)→ (Cn(σn))⊥ (diagram processeses)

c
(n)
i (σn) : Dn(σn)→

(
N2n

)
⊥ (diagram coordinates)

(1.4)

(−.−)(n)(σn) : Dn(σn)×Dn(σn)→ (Dn(σn))⊥ (concatenation)

−|(n)c (σn) : Dn(σn)→ (Dn(σn))⊥ (restriction to c : N2n)

(− I
c
−)(n)(σn) : Dn−1(π1σn)×Dn(σn)→ (Dn(σn))⊥ (whiskering at c : N2n)

A few important remarks:

Remark 1.5. (i) Partiality is an issue for the operations in (1.3) and (1.4): Recall that the
notation f : A → B⊥ means a function from A into the flat domain obtained from B
by adding a bottom element B⊥ = B + { ⊥ }, with the extra structure of partial order:
∀b : B.⊥ < b. Such an f describes a partial function on A, i.e. one that has either a defined
value f(a) : B or is undefined f(a) = ⊥, for a ∈ A.

Since the present context is type theory and not domain theory, there are no underlying
orders on types and no restriction on monotonicity of functions. However, for the case of flat
domains only we can assert monotonicity easily by the following convention: All function
definitions of the above form

f : A→ B⊥

will be tacitly extended to

f : A⊥ → B⊥

by setting f(⊥) = ⊥. For functions f with multiple parameters we use the smash product
(A⊥ ∧A′⊥) of pointed domains, which is the product (A⊥ ×A′⊥) up to the identification
⊥ = (a,⊥) = (⊥, a′) ∈ (A⊥ ∧A′⊥) ∼= (A×A′)⊥. For example, in the case of the restriction

4 CHRISTOPH DORN

function from (1.4) this convention implies

⊥|(n)c (σn) = d|(n)⊥ (σn) = ⊥ : (Dn(σn))⊥

It is important to note that we regard the coordinate c : N2n as another parameter to the
restriction function −|c.

We emphasise that the technicality of using ‘partial functions’ does not carry real impor-
tance to the bigger picture of our discussion and could probably be dealt with otherwise.

(ii) The dependence on the parameter σn above could of course also be written out as a dependent
type

n-Sig : Type n-signatures

Cn :
∏

σn:n-Sig

Type (n-cells)

∂
(n)
0 , ∂

(n)
1 :

∏
σn:n-Sig

(Cn(σn)→ Dn−1(σn)) (n-cell boundaries)

Dn :
∏

σn:n-Sig

Type (n-diagrams)

|−|(n) :
∏

σn:n-Sig

(Dn(σn)→ N) (diagram size)

· · ·

However, for clarity in notation, we will usually assume the dependence on an n-signature
implicitly, leading us to drop σn : Sign from our notation as follows:

Cn : Type (n-cells)

∂
(n)
0 , ∂

(n)
1 : Cn → Dn−1 (n-cell boundaries)

Dn : Type (n-diagrams)

|−|(n) : Dn → N (diagram size)

· · ·

(iii) To further lighten notation, we will usually keep the dimension n at which functions act
implicit (as these can be inferred from their arguments). Thus we can simplify the above to

Cn : Type (n-cells)

∂0, ∂1 : Cn → Dn−1 (n-cell boundaries)

Dn : Type (n-diagrams)

|−| : Dn → N (diagram size)

· · ·

(iv) We indicated in the beginning of this section that the above definitions can be bundled
together into an indexed inductive-recursive definition: This means, for instance the definition
of Dn will have dependency on parameters from Dn−1, Cn as well as dependency on the

functions of ∂
(n)
i , |−|(n), −|(n−1)c . Among these dependencies, Cn, ∂

(n)
i , |−|(n) will have to be

defined simultaneously with Dn as they lie on the same dimension n as Dn. Also note that the

definition of n-signatures Sign will in fact depend on the definitions of Dn−1, ∂
(n−1)
i , |−|(n−1)

making Sign part of the inductive process in n, but no mutual induction with other definitions
at dimension n will be required.

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 5

(v) Cn, Dn will have decidable equality by virtue of their construction, and thus they are sets by
Hedberg’s Theorem. We will interchangeably use ‘:’ and ‘∈’ for sets, e.g. write both p : Cn
and p ∈ Cn. ♦

1.1. 0-cells and 0-diagrams.

We give the above definitions (1.1), (1.2), (1.3) and (1.4) for the induction start n = 0. The
definitions will become clearer and more detailed explanation will be provided once we do the
inductive step to k-cells and k-diagrams.

(0) First, we note that some of the definitions for the case n = 0 require reference to ‘(−1)-
dimensional diagrams’ D−1 and ‘(−1)-signatures’ Sig−1. We thus set

D−1 = { ε }
Sig−1 = { ε }

Well will call ε the empty cell or empty diagram. We also define size, |−|, boundary ∂i and
restriction functions −|0 of (−1)-diagrams

|−| : D−1 → N
ε 7→ |ε| = 0

∂i : D−1 → {⊥ }
ε 7→ ∂iε = ⊥

−|0 : D−1 → D−1

ε 7→ ε|0 = ε

(i) Signatures Sign (1.1): For n = 0 the defintions for (1.1) are as follows. A 0-signature σ0
is essentially a set A with decidable equality, denoted A : dec-Set. However, we will also
keep track of the (−1)-signature (there is only the empty one, namely ε) and the signature
projection to dimension −1 is the projection to this information. Explicitly, we set

Sig0 := Sig−1 + dec-Set

π1(σ0 : Sig0) : Sig−1 := ε

For a 0-signature σ0 = (ε, A) we will often refer to A = π2σ0 by G0: the set of ‘0-generators’.

(ii) Cells C0 (1.2): For n = 0 the defintions for (1.2) are as follows. For now, the only way to
construct a cell is from a generator:

p ∈ C0 := | cell(g) , g ∈ G0

The boundaries of these cells are given by maps ∂0, ∂1 : C0 → D−1 such that

∂0∂1(p : C0) : D−1 := ε

(ii)b Cell identities IdC0
: The identity type IdC0

is the trivial one, meaning that it does not
contain paths/equations apart from witnesses of reflexivity reflp : p = p.

(iii) Diagrams D0 (1.3): For n = 0 the definitions are as follows: 0-Diagrams are either identities
(written id(b)) of lower dimensional diagrams, or diagrams glued with a 0-cell (written p
(d . p)):

d ∈ D0 := | id(b) , b ∈ D−1
| d .

0
p , p ∈ C0

if
[(
∂|d|d

)∣∣
0

= ∂0p
]

6 CHRISTOPH DORN

Remark 1.6. The following points should be noted
(a) [A] denotes the support of a type A, i.e. the proposition isInhabited(A) : Prop.
(b) We will sometimes also write d .

0
p as cons(d, p, 0, w) to firstly, emphasise that it has

to be read as a constructor, and secondly, to remind ourselves that the constructor
implicitly also depends on a witness

w :
[(
∂|d|d

)∣∣
0

= ∂0p
]

: Prop

as a parameter.
(c) It is ‘legitimate’ in the following sense to drop w from our notation d .

0
p above: Since

a type of the form [a = b] is a proposition, we know that any two witnesses w,w′ can
be (internally) equated and so cons(d, p, 0, w), cons(d, p, 0, w′) will be equal, too. We
will thus regard

[(
∂|d|d

)∣∣
0

= ∂0p
]

as a ‘side condition’ for the constructor d .
0
p to be

applicable.
(d) For general dimension n, the number below ‘.’ will denote a coordinate vector in N2n,

but in the 0-dimensional case these coordinates must always be the origin 0 ∈ N0 − In
the case of a coordinate being the origin we usually do not annotate it and keep the
additional vector ~0 tacit writing . instead of .

~0
.

(e) Further note that the side condition will in fact turn out to be always true in the
0-dimensional case. To see this we still need to define the functions that were used in it,
namely ∂i and |−|. ♦

Before we define these functions, we recall from the introduction that most definitions of
functions on inductive datatypes T will be given by some kind of pattern matching with the
following notation: To define a function f : T → T ′ we write

f(t : T) : T ′ := | t = constructor(a1, ...ai) 7→ value(a1, ..., ai)

| . . .

to mean f(t) := value(a1, ..., ai) if t matches constructor(a1, ...ai). If T ′ = (T ′′)⊥ we implicitly
add the case t = ⊥ 7→ ⊥ as was described in Remark 1.5.

Using this notation, the size, process and coordinate maps are given by

|d : D0| : N := | d = id(b) 7→ 0

| d = d′ . p 7→ |d′|+ 1

pi(d : D0) : (C0)⊥ := | d = id(b) 7→ ⊥

| d = d′ . p 7→

{
p i = |d′|+ 1

pi(d) otherwise

ci(d : D0) : (N0)⊥ := | d = id(b) 7→ ⊥

| d = d′ . p 7→

{
0 i = |d|+ 1

ci(d
′) otherwise

The boundary maps for diagrams are given by

∂i(d : D0) : (D−1)⊥ :=

{
ε 0 ≤ i ≤ |d|
⊥ otherwise

Remark 1.7. Recall from Remark 1.5 that the notation f : A→ B⊥ means a function from
A into the flat domain of B, which effectively describes a partial function, i.e. one that has
either a value f(a) ∈ B or is undefined f(a) = ⊥ for a ∈ A. Let supp(f) ⊂ A be the subset

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 7

where f is defined, which we call the support of f . By induction on the strucutre of d ∈ D0

we see that

supp(λ(i : N).pid) = supp(λ(i : N).cid) = { i | 1 ≤ i ≤ |d| }
supp(λ(i : N).∂id) = { i | 0 ≤ i ≤ |d| }

♦

(iii)b Diagram identities IdD0
: As for C0 there are no non-trivial equality paths on D0. However

it should be pointed out that equality has a description in terms of the functions ∂i, pi, ci as
follows

d1 = d2 , di ∈ D0

⇐⇒ ∀i.(∂id1, pid1, cid1) = (∂id2, pid2, cid2)

This could be proven by induction on the structure of di ∈ D0. However, in the present case
of dimension 0, in fact neither ∂i nor ci play a role for equality, as both are constant on their
support. Instead, we can identify 0-diagrams essentially with lists of programs writing

d ≡ (p1d, p2d..., p|d|d)

for

d ≡ (...((id(ε) .
0
p1d) .

0
p2d)... .

0
p|d|d) .

In the higher dimensional case, it will become useful to keep track of boundaries and
coordinates and for this purpose we already introduce the following notation

d ≡ ∂0d
p1d

c1d
// ∂1d

p2d

c2d
// ∂2d · · · ∂|d|−1d

p|d|d

c|d|d
// ∂|d|d

Example 1.8. In the present case of dimension 0 this means we write

d ≡ ε
p1d

0
// ε

p2d

0
// ε · · · ε

p|d|d

0
// ε

for

d ≡ (...((id(ε) .
0
p1d) .

0
p2d)... .

0
p|d|d) .

Remark 1.9. In the upcoming sections, the equality type IdCn
will be augmented by new

equivalences. It is important to note that adding new equalities on types is only admissible
and consistent if all previously defined functions (e.g. ∂i, pi, ci) on these types preserve the
new equalities, i.e. if they stay ‘well-defined’. ♦

(iv) Diagram operations (1.4): For n = 0, we define
- a function (−.−), called concatenation, which concatenates two 0-diagrams along a

common boundary,
- a function −|c , c ∈ N2, called restriction, that restricts a 0-diagram to a sub-diagram

described by the coordinates c,
- and a function (− I

0
−), called whiskering, which whiskers a diagram d ∈ D0 by the

empty boundary b ∈ D−1 at coordinates 0.

For the first we set:

−.− : D0 ×D0 → (D0)⊥

(d, d′) ≡ ((p1d, ..., p|d|d), (p1d
′..., p|d′|d

′))

7→ (p1d, ..., p|d|d, p1d
′..., p|d′|d

′)

i.e. in the 0-dimensional case −.− is in fact the usual concatenation of lists, and the common
boundary is always the empty ε.

8 CHRISTOPH DORN

Restriction is defined by

−|(l,r) : D0 → (D0)⊥

(d) ≡ (p1d, ..., p|d|d) 7→

{
(pl+1, ..., p|d|−r) l + r ≤ |d|
⊥ otherwise

Lastly, we consider the operation of ‘whiskering diagrams’ at coordinates 0 ∈ N0:

− I
0
− : D−1 ×D0 → (D0)⊥

(b, d) ≡ (ε, (p1d, ..., p|d|d))

7→ (p1d, ..., p|d|d) ≡ d
i.e. in the 0-dimensional case − I

0
− is in fact only gluing a list to the empty boundary,

which yields again the list that we started with.

Importantly, these operations satisfy the following Inductive Claim 1.10 for n = 0, which summarises
the inductive hypothesis that we will be working with. The reader should convince herself that
indeed all claims for the case n = 0 follow from the above definitions.

Inductive Claim 1.10. The definitions of the terms stated in (1.1), (1.2), (1.3) and (1.4) satisfy
the following

(i) For p ∈ Cn, we have

∂0∂0p = ∂0∂1p(1.11)

∂|∂0p|∂0p = ∂|∂1p|∂1p

called the ‘globular conditions’.
(ii) For d1, d2 ∈ Dn we have

d1 = d2

⇐⇒ ∀i.(∂id1, pid1, cid1) = (∂id2, pid2, cid2)

and moreover

supp(λ(i : N).pid) = supp(λ(i : N).cid) = { i | 1 ≤ i ≤ |d| }
supp(λ(i : N).∂id) = { i | 0 ≤ i ≤ |d| }

Thus we can write

d ≡ ∂0d
p1d

c1d
// ∂1d

p2d

c2d
// ∂2d · · · ∂|d|−1d

p|d|d

c|d|d
// ∂|d|d ∈ Dk

in order to refer to a diagram d in Dn.
(iii) Under the assumption of part (ii) the following holds.

(a) (Whiskering) Given d = ∂0d
p1d

c1d
// ∂1d

p2d

c2d
// ∂2d · · · ∂|d|−1d

psd

c|d|d
// ∂|d|d ∈ Dn, and

b ∈ Dn−1, then b I
c
d is defined if and only if b|c = ∂0d and in this case we have:

b I
c
d = b

p1d

c+c1d
// b1

p2d

c+c2d
// b2 · · · b|d|−1

p|d|d

c+c|d|d
// b|d|

where bi = ∂i(b I
c
d) ∈ Dn−1, i ≥ 1, and c+ci denotes vector addition (cf. Remark 1.13).

(b) (Concatenation) For d, d′ ∈ Dn, d.d′ is defined if and only if ∂|d|d = ∂0d
′ and in this

case we have:

d.d′ = ∂0d
p1d

c1d
// · · ·

p|d|d

c|d|d
// ∂|d|d

p1d
′

c1d
′
// · · ·

p|d′|d
′

c|d′|d
′
// ∂|d′|d

′

Note that this makes (−.−) associative and thus we can write e.g. d.d′.d′′ without
brackets.

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 9

(c) (Restriction) For d, d′ ∈ Dn we have

d|(c,l,r) = d′(1.12)

⇐⇒ d = dL.(∂ld I
c
d′).dR , where |dL| = l, |dR| = r

(d) (Distributivity) For d, d′ ∈ Dn, b ∈ Dn−1 we have

b I
c

(d.d′) =
(
b I
c
d
)
.
(
b′ I

c
d′
)

where b′ = ∂|d|(b I
c
d).

(e) (Stable Boundaries) For d, d′ ∈ Dn with ∂0d = ∂0d
′ and ∂|d|d = ∂|d′|d

′ and b ∈ Dn−1
we have

∂|d|(b I
c
d) = ∂|d′|(b I

c
d′)

in case either the left or the right hand side is defined.

Note that (Restriction) does not directly define how to compute the restriction function, but
describes restriction in terms of the concatenation and whiskering: It expresses that d′ is a sub-
diagram (‘a restriction’) of d, if and only if d can be obtained from d′ by appropriate gluing and
concatenating with the ‘missing parts’ of d (right hand side).

Remark 1.13. We use vector addition and substraction +,− : N2n × N2n → (N)⊥ on coordinates:
While addition of two natural number vectors is always defined, substraction of two vectors is only
defined if it is elementwise non-negative. ♦

Lemma 1.14. The Inductive Claim 1.10 holds for n = 0.

Proof. Some claims have already been discussed explicitly. Since for n = 0 we observed that Dn is
just the type of lists of 0-cells (and (−.−) is list concatenation, −|c is restriction to sub-lists and
ε I − is the identity), all remaining claims can be ‘read off’ from the definitions. �

1.2. k-cells and k-diagrams.

Let k > 0. We assume that, for all n < k, all terms in (1.1), (1.2), (1.3) and (1.4) have been
defined and satisfy the Inductive Claim 1.10.

(i) k-Signatures Sigk (1.1): For a set Gk : dec-Set with decidable equality and equipped
with maps ∂0, ∂1 : Gk → Ck−1 we define the k-globular condition globk(Gk, ∂0, ∂1) to be
satisfaction (i.e. inhabitation) of the following equalities:

globk(Gk, ∂0, ∂1) :=
∏
g:Gk

[
∂0∂0g = ∂0∂1g

∧ ∂|∂0g|∂0g = ∂|∂1g|∂1g

]
We then define k-generator sets Genk to be the type of such sets

Genk :=
∑

Gk:dec-Set

∑
∂0,∂1:Gk→Ck−1

globk(G, ∂0, ∂1)

Finally a k-signature is given by a (k − 1)-signature together with a k-generator set, yielding
the following type of k-signatures

Sigk := Sigk−1 + Genk

We define the signature projection π1 : Sigk → Sigk−1 to be the actual projection on the first
component:

π1 : Sigk → Sigk−1

σk = (σk−1, a : Genk) 7→ σk−1

Below we will implicitly assume a signature σk = (σk, a) (as was already discussed in Re-
mark 1.5). Further we will refer to the set of k-generators π1a as Gk.

10 CHRISTOPH DORN

(ii) k-Cells Ck (1.2): As in the 0-dimensional case, for now, the only way we will allow cells to
be constructed is from generators

p ∈ Ck := | cell(g) , g ∈ Gk

The boundary maps ∂0, ∂1 : Ck → Dk−1 × Dk−1 for k-cells of this form are given by
pattern matching

∂0(p : Ck) : Dk−1 ×Dk−1 := | cell(g) 7→ ∂0g

and

∂1(p : Ck) : Dk−1 ×Dk−1 := | cell(g) 7→ ∂1g

where on the right hand sides ∂i denotes the boundary function provided by the signature’s
k-generator set.

Claim 1.15. All p ∈ Ck satisfy the globular conditions (1.11) (for n = k).

Proof. By definition of ∂0, ∂1, this property is inherited from the globular condition on
generators globk(Gk, ∂0, ∂1). �

(ii)b k-Cell identities IdCk
: For now, we do not introduce non-trivial identity paths on Ck.

(iii) k-Diagrams Dk (1.3): Next we define k-diagrams: As before diagrams are either identities
on lower dimensional boundaries, or they arise from gluing a process p to a diagram d.
Unlike the 0-dimensional case however, the coordinates c ‘where’ to glue the process are now
non-trivial vectors in N2k and implicate a typing condition for gluing: The sub-boundary
in ∂|d|d described by c, should agree with the boundary ∂0p in order for the gluing to be
well-typed. This is captured in the following definition

d ∈ Dk := | id(b) , b ∈ Dk−1

| d .
c
p , p ∈ Ck, c ∈ N2k

if
[
∂|d|d

∣∣
c

= ∂0p
]

As before we let d .
c
p be equivalently denoted by cons

(
d, c, p, w :

[
∂|d|d

∣∣
c

= ∂0p
])

in order

to keep track of the if -condition (cf. Remark 1.6).

Remark 1.16. We inductively define the empty k-diagram ε(k) ∈ Dk by

ε(k) := id
(
ε(k−1)

)
with ε(−1) := ε ∈ D−1 to start the induction. By convention, we will keep the dimension k
implicit, and just write ε ∈ Dk.

The size, process and coordinate functions are defined as for the case k = 0:

|d′ : Dk| : N := | d′ = id(b) 7→ 0

| d′ = d .
c
p 7→ |d|+ 1

pi(d
′ : Dk) : (Ck)⊥ := | d′ = id(b) 7→ ⊥

| d′ = d .
c
p 7→

{
p i = |d′|+ 1

pi(d) otherwise

ci(d
′ : Dk) : (N2k)⊥ :=

| d′ = id(b) 7→ ⊥

| d′ = d .
c
p 7→

{
c i = |d′|+ 1

ci(d) otherwise

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 11

For the boundaries we need to refer to the inductive assumption (1.12) which applied to
the side condition on the .

c
constructor says that (matching c with (c′, l, r), c′ ∈ N2(n−1)):

∂|d|d
∣∣
(c′,l,r)

= ∂0p

⇐⇒ ∂|d|d =
(
∂|d|d

)
L
.(∂l∂|d|d I

c
∂0p).

(
∂|d|d

)
R
, where

∣∣(∂|d|d)L∣∣ = l,
∣∣(∂|d|d)R∣∣ = r

With this in mind (and retaining the above notation for
(
∂|d|d

)
L

and
(
∂|d|d

)
R

) we define

∂i(d
′ :Dk) : (Dk−1)⊥ :=

(1.17)

| d′ = id(b) 7→

{
b i = 0

⊥ otherwise

with c = (c′, l, r), c′ ∈ N2(n−1) :

| d′ = cons
(
d, c, p, w :

[
∂|d|d

∣∣
c

= ∂0p
])
7→

{(
∂|d|d

)
L
.(∂l∂|d|d I

c′
∂1p).

(
∂|d|d

)
R

i = |d′|+ 1

∂id otherwise

We note that the with clause indicates that we performed an intermediate pattern matching
on c and set c to be of the pattern (c′, l, r).

Claim 1.18. We claim that in the above context

(1.19)
(
∂|d|d

)
L
.(∂l∂|d|d I

c′
∂1p).

(
∂|d|d

)
R

is in fact a defined diagram.

Proof. We have to show definedness of the three operations marked in red. We know that(
∂|d|d

)
L
.(∂l∂|d|d I

c′
∂0p).

(
∂|d|d

)
R

is a well-defined diagram, namely it equals ∂|d|d. The globular conditions on Ck say that
both ∂0∂0p = ∂0∂1p and ∂|∂0p|∂0p = ∂|∂1p|∂1p. The first globular condition guarantees that
(∂l∂|d|d I

c′
∂1p) is well-defined by the properties of (Whiskering). Together, the globular

conditions also allow us to apply (Stable Boundaries) to deduce

∂|∂0p|(∂l∂|d|d I
c′
∂0p) = ∂|∂1p|(∂l∂|d|d I

c′
∂1p)

Thus, by the properties of (Concatenation) and since (∂l∂|d|d I
c′
∂0p) can be (post-)concatenated

with
(
∂|d|d

)
R

so can (∂l∂|d|d I
c′
∂1p), showing the second concatenation ‘.’ is defined.

On the other hand, the definedness of (pre-)concatenation with
(
∂|d|d

)
L

should be clear

as (∂l∂|d|d I
c′
∂1p) still has the initial boundary ∂l∂|d|d by (Whiskering). Thus we checked

that (1.19) is indeed a well-defined diagram. �

Claim 1.20. The boundaries of diagrams also satisfy the following globular condition, that
is they satisfy the equations

∂0∂0d = ∂0∂|d|d

∂|∂0d|∂0d = ∂|∂|d|d|∂|d|d

Proof. In fact, we have

∂0∂0d = ∂0∂id

∂|∂0d|∂0d = ∂|∂id|∂id

12 CHRISTOPH DORN

and this can be seen inductively from the inductive definition of ∂id (it is true for i = 0):
When defining ∂i+1d the initial and final boundaries of ∂id carry over to ∂i+1d: Indeed, by
(1.17) the latter is a (Concatenation) of (k − 1)-diagrams of the form

(∂id
′)L.(∂l∂id

′ I
c′
∂1p).(∂id

′)R

while the former equals

(∂id
′)L.(∂l∂id

′ I
c′
∂0p).(∂id

′)R

Here, we defined d′ to consist of the first i processes of d

d′ := id(∂0d) .
c1d

p1d
cid

pid

The initial and final boundary of ∂i+1d and ∂id thus coincide by (Concatenation), and by
induction they coincide with the initial and final boundary of ∂0d. �

(iii)b k-Diagram identities: As before we introduce no non-trivial identity paths on Dn. But
before we proceed we claim the following.

Claim 1.21.
(a) For d, d1, d2 ∈ Dk we have that firstly,

d1 = d2

⇐⇒ ∀i.(∂id1, pid1, cid1) = (∂id2, pid2, cid2)

Secondly, we have

supp(λ(i : N).pid) = supp(λ(i : N).cid) = { i | 1 ≤ i ≤ |d| }
supp(λ(i : N).∂id) = { i | 0 ≤ i ≤ |d| }

Consequently, we can write

d ≡ ∂0d
p1d

c1d
// ∂1d

p2d

c2d
// ∂2d · · · ∂|d|−1d

p|d|d

c|d|d
// ∂|d|d ∈ Dk

in order to refer to a diagram d in Dk.
(b) Let e be a sequence

e = b0
p1

c1
// b1

p2

c2
// b2 · · · bs−1

ps

cs
// bs

where bi ∈ (Dk−1)⊥, pi ∈ Ck and ci ∈
(
N2k

)
⊥. Then e corresponds (in the sense of

part (a)) to a valid diagram d ∈ Dk if and only if the following ‘boundary conditions’
conditions are fulfilled

(1.22)

∀i ∈ { 1, ..., s } .
(
bi−1|ci = ∂0pi

∧ bi = (bi−1)L .(∂lbi−1 I
c′i

∂1pi). (bi−1)R , where c′i, (bi−1)R, (bi−1)L satisfy

ci = (c′i, li, ri) ∈ N2k , |(bi−1)L| = li , |(bi−1)R| = ri

)
Namely, under these conditions we can take

d = id(b0) .
c1
p1 .

c2
p2... .

cs
ps

Remark 1.23. In case bi, ci are defined and boundary conditions (1.22) are met for e
we identify e with d as an element of Dk. Otherwise we identify e with ⊥ ∈ (Dk)⊥. In
either case we see that e ∈ (Dk)⊥.

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 13

We also emphasise that by properties of (Restriction) the boundary conditions have the
following equivalent formulation

∀i ∈ { 1, ..., s } .
(
bi−1 = (bi−1)L .(∂lbi−1 I

c′i

∂0pi). (bi−1)R(1.24)

∧ bi = (bi−1)L .(∂lbi−1 I
c′i

∂1pi). (bi−1)R

where ci = (c′i, li, ri) ∈ N2k , |(bi−1)L| = li , |(bi−1)R| = ri

)
♦

Proof. part (a): Both statements follow by a standard inductive argument which the reader
is invited to skip. The second statement follows by structural induction on d and the
inductive definitions of ∂i, pi and ci. For instance, in the case of ci the statement holds
if d = id(b), as then supp (λ(i : N).ci(id(b))) = ∅. For d = d′ .

c
p, we have by induction

supp (λ(i : N).ci(d
′))) = { i | 1 ≤ i ≤ |d′| }. But |d| := |d′|+ 1 and c|d′|+1(d) := c 6= ⊥ while

ci>|d′|+1 := ci(d
′) = ⊥ and so the statement follows. Similar arguments hold for ∂i and pi.

Both directions of the first statement follow by mutual structural induction on d1, d2. If
di = id(bi), i = 1, 2, then for all j, cjdi = pjdi = ⊥, and d1 matches d2 iff b1 and b2 match iff
∂jd1 = ∂jd2 for all j. If one of d1, d2 equals id(b) and the other equals d′ .

c
p then d1, d2 do

not match but neither do ∂j , cj , pj on them as they have different supports by the second
statement of part (a) which we just proved. If finally di = d′i .ci

pi, i = 1, 2, then d1 = d2 iff

d′1 = d′2, c1 = c2 and p1 = p2 iff (by inductive hypothesis for d′i and definition of ∂j , cj and
pj) the right hand side of the statement holds.

part (b): For the ‘only if’ direction we assume that e is the sequence of some diagram d.

By part (a) we have

bi = ∂id ∈ Dk , 0 ≤ i ≤ s = |d|

ci = cid ∈ N2k , 1 ≤ i ≤ s = |d|
d itself is a diagram of the form

d = id(∂0d) .
c1d

p1d .
c2d

p2d
c|d|d

p|d|d

and thus the first boundary condition bi−1|ci = ∂0pi in (1.22) follows from the typing

conditions of constructors . in d, while the second boundary condition bi = (bi−1)li .(∂lbi−1 Ic
∂1p). (bi−1)ri in (1.22) follows from the inductive definition of ∂i.

For the ‘if’ direction we need to show that the candidate diagram

d = id(b0) .
c1
p1 .

c2
p2... .

cs
ps

is indeed a valid diagram by exhibiting witnesses of the equalities(
∂i

(
id(b0) .

c1
p1 .

c2
p2... .

ci
pi︸ ︷︷ ︸

=:di

))∣∣∣∣
ci

= ∂0pi+1

Under the inductive assumption (which is true for i = 1) that

bi−1
!
= ∂i−1(di−1) := ∂i−1

(
id(b0) .

c1
p1 .

c2
p2... .

ci−1

pi−1

)
the first boundary condition from (1.22) guarantees that ∂i−1(di−1)|ci−1

= ∂0pi, i.e. we can

glue pi to di−1. By the definition of ∂i and the second condition bi = (bi−1)li .(∂lbi−1 Ic
∂1p). (bi−1)ri this yields

bi = ∂i

(
id(b0) .

c1
p1 .

c2
p2... .

ci
pi

)
= ∂i(di)

14 CHRISTOPH DORN

In this way we can inductively construct the required witnesses. �

(iv) k-Diagram operations (1.4): Using Remark 1.23 to identify diagrams with their respective
sequences, we can define concatenation and restriction directly without resorting to pattern
matching.

We start with the definition of concatenation

−.− : Dk ×Dk → (Dk)⊥(1.25)

d, d′ 7→

∂0d

p1d

c1d
// · · ·

p|d|d

c|d|d
// ∂|d|d

p1d
′

c1d
′
// · · ·

p|d′|d
′

c|d′|d
′
// ∂|d′|d

′ if ∂|d|d = ∂0d
′

⊥ otherwise

Claim 1.26. For d, d′ ∈ Dn, d.d′ ∈ (Dk)⊥ is defined if and only if ∂|d|d = ∂0d
′.

Proof. If ∂|d|d 6= ∂0d
′ then d.d′ is certainly undefined. On the other hand, if ∂|d|d = ∂0d

′

then the given sequence for d.d′ is indeed a valid diagram since it satisfies the boundary
conditions from Claim 1.21 (b). �

Next we define restriction of k-diagrams at coordinates c = (c′, l, r) ∈ N2(k+1) which
uses the definition of restriction in lower dimensions

−|(c′,l,r) : Dk → (Dk)⊥

(1.27)

d 7→

 (∂ld)|c′
pl+1d

(cl+1d)−c′
// (∂l+1d)|c′ → · · · →

(
∂|d|−r+1d

)∣∣
c′

p|d|−rd

(c|d|−rd)−c′
//
(
∂|d|−rd

)∣∣
c′

if l + r ≤ |d|

⊥ otherwise

We remark (in the first case for l+r ≤ |d|) that some of the boundaries (∂jd)|c′ or coordinates
(cjd) − c′ (cf. Remark 1.13) of the above sequence might be undefined, but that this is
accounted for in Claim 1.21 (b) and Remark 1.23 : In this case the sequence is identified
with the undefined diagram ⊥ in (Dk)⊥.

Finally, we give a definition of whiskering at coordinates c = (c′, l, r) ∈ N2(k+1). The
definition is quite intuitive and straightforward, however showing definedness will take up a
bit more space.

− I
c
− : Dk−1 ×Dk → (Dk)⊥

b, d 7→

id(b) .
c1d+c

p1d .
c2d+c

... . p|d|−1d .
c|d|d+c

p|d|d if b|c = ∂0d

⊥ otherwise

In the first case (which assumes b|c = ∂0d) we need to provide witnesses for the .-constructors’
side conditions to guarantee their applicability. For given b, d and assuming b|c = ∂0d, these
witnesses are constructed inductively as follows:

Construction 1.28. We set c = (c′, l, r), cid = ci = (c′i, li, ri) and pid =: pi. Our inductive
assumption is

(1.29) ∂i

(
id(b) .

c1+c
p1

ci+c
pi︸ ︷︷ ︸

=:d̃i

)
= bL.

(
∂lb I

c′
∂id

)
.bR

where bR, bL are such that |bL| = l, |bR| = r. This is true for i = 0 by our hypothesis b|c = ∂0d
together with an application of (Restriction). However, d also satisfies the following boundary

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 15

condition (1.22)

∂id|ci+1
= ∂0pi+1

and thus by again by (Restriction)

(1.30) ∂id = (∂id)L,i .

(
∂li+1∂id I

c′i+1

∂0pi+1

)
. (∂id)R,i

with diagrams (∂id)L,i , (∂id)R,i satisfying
∣∣∣(∂id)L,i

∣∣∣ = li+1 and
∣∣∣(∂id)R,i

∣∣∣ = ri+1. Substituting

(1.30) for ∂id in (1.29) we obtain

∂id̃i = bL.

(
∂lb I

c′
∂id

)
.bR

(1.31)

= bL.

(
∂lb I

c′

(
(∂id)L,i.

(
∂li+1

∂id I
c′i+1

∂0pi+1

)
.(∂id)R,i

))
.bR

= bL.

(
∂lb I

c′
(∂id)L,i

)
︸ ︷︷ ︸

bL,i

.

(
∂l+li+1∂id̃i I

c′

(
∂li+1∂id I

c′i+1

∂0pi+1

))
.

(
∂|∂id̃i|−r−ri+1

∂id̃i I
c′

(∂id)R,i

)
.bR︸ ︷︷ ︸

bR,i

= bL,i.

(
∂l+li+1

∂id̃i I
c′

(
∂li+1

∂id I
c′i+1

∂0pi+1

))
.bR,i

In the first step we performed the substitution, in the second step we applied (Distributivity)
twice to distribute the three coloured terms, in the last step we condensed notation. Note
that (by properties of (Whiskering) and (Concatenation)) we have

|bL,i| = l + li+1(1.32)

|bR,i| = r + ri+1

Further, from the sequence representation of (Whiskering) (applied here in lower dimensions
than k) we can read off the following equality

(1.33) ∂l+li+1∂id̃i I
c′

(
∂li+1∂id I

c′i+1

∂0pi+1

)
= ∂l+li+1∂id̃i I

c′+c′i+1

∂0pi+1

Substituting (1.33) into the expression for ∂id̃i obtained in (1.31) we get

(1.34) ∂id̃i = bL,i.

(
∂l+li+1

∂id̃i I
c′+c′i+1

∂0pi+1

)
.bR,i

Now (1.34) and (1.32) together imply that the side condition for the constructor application

d̃i+1 := d̃i .
ci+1+c

pi+1

is satisfied. From our inductive assumption (1.29) on d̃i we deduce that

d̃i+1 = id(b) .
c1+c

p1
ci+c

pi .
ci+1+c

pi+1

By definition of ∂i+1 we have

∂i+1d̃i+1 = bL,i.

(
∂l+li+1∂id̃i I

c′+c′i+1

∂1pi+1

)
.bR,i

16 CHRISTOPH DORN

But from here we can now trace backwards the equality (1.33) and the last two steps in (1.31)
to arrive at

∂i+1d̃i+1 = bL.

(
∂lb I

c′

(
(∂id)L,i.

(
∂li+1∂id I

c′i+1

∂1pi+1

)
.(∂id)R,i

))
.bR

Again by definition of ∂i+1 (this time on d) the right hand side can then be collapsed to

∂i+1d̃i+1 = bL.

(
∂lb I

c′
∂i+1d

)
.bR

Comparing this to (1.29) we see that we have completed the induction step from i to i+ 1.
As a consequence, each application of a constructor in

id(b) .
c1d+c

p1d .
c2d+c

... . p|d|−1d .
c|d|d+c

p|d|d

is valid under our initial assumption b|c = ∂0d. Thus whiskering of d on b at c is defined
whenever b|c = ∂0d. �

We have just proven part (a) of the following claim.

Claim 1.35. Concatenation, restriction and whiskering as defined in this section satisfy the
following.

(a) (Whiskering) Given d = ∂0d
p1d

c1d
// ∂1d

p2d

c2d
// ∂2d · · · ∂|d|−1d

psd

c|d|d
// ∂|d|d ∈ Dk, and

b ∈ Dk−1, then b I
c
d is defined if and only if b|c = ∂0d and in this case we have:

b I
c
d = b

p1d

c+c1d
// b1

p2d

c+c2d
// b2 · · · b|d|−1

p|d|d

c+c|d|d
// b|d|

where bi = ∂i(b I
c
d), i ≥ 1, and c+ ci denotes vector addition (cf. Remark 1.13).

(b) (Concatenation) For d, d′ ∈ Dk, d.d′ is defined if and only if ∂|d|d = ∂0d
′ and in this

case we have:

d.d′ = ∂0d
p1d

c1d
// · · ·

p|d|d

c|d|d
// ∂|d|d

p1d
′

c1d
′
// · · ·

p|d′|d
′

c|d′|d
′
// ∂|d′|d

′

Note that (−.−) is associative and thus we can write e.g. d.d′.d′′ without brackets
(c) (Restriction) For d, d′ ∈ Dk we have

d|(c,l,r) = d′

⇐⇒ d = dL.(∂ld I
c
d′).dR , where |dL| = l, |dR| = r

(d) (Distributivity) For d, d′ ∈ Dk, b ∈ Dk−1 we have

b I
c

(d.d′) =
(
b I
c
d
)
.
(
b′ I

c
d′
)

where b′ = ∂|d|(b I
c
d).

(e) (Stable Boundaries) For d, d′ ∈ Dk with ∂0d = ∂0d
′ and ∂|d|d = ∂|d′|d

′ and b ∈ Dn−1 we
have

∂|d|(b I
c
d) = ∂|d′|(b I

c
d′)

in case either the left or the right hand side is defined.

Proof. Part (a) was proven in Construction 1.28. Part (b) is just restating the definition (1.25).
With part (a) and (b) at hand, parts (d) and (e) can both be proven from Construction 1.28
by inspection of the inductive assumption (1.29). More explicitly, for (d) the claim (1.29)
implies that

b′ := ∂|d|(b I
c
d) = bL.(∂lb I

c′
∂|d|d).bR

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 17

where we set c = (c′, l, r), and |bL| = l, |bR| = r. Assuming b I
c
d is defined, we thus see

that (b′ I
c
d′) is defined iff d.d′ is defined, namely iff ∂|d|d = b′|c = ∂0d

′. Thus both sides are

defined iff b|c = ∂0d and ∂|d|d = ∂0d
′. In this case, equality of the left hand side and right

hand side follows from comparing processes, coordinates (using (a)) and the first boundary.
For part (e) on the other hand, note that both sides are defined iff b|c = ∂0d = ∂0d

′. In this
case, equality follows since by claim (1.29) the left hand side equals

∂|d|(b I
c
d) = bL.(∂lb I

c′
∂|d|d).bR

where we set c = (c′, l, r), and |bL| = l, |bR| = r. With the same definitions, the right hand
side equals

∂|d′|(b I
c
d) = bL.(∂lb I

c′
∂|d′|d

′).bR

which by assumption ∂|d|d = ∂|d′|d
′ implies the statement of (e).

We are left with proving part (c). Writing out the definition (1.27) for d|(c,l,r), we need to

proof the following

(∂ld)|c
pl+1d

(cl+1d)−c
// · · ·

p|d|−rd

(c|d|−rd)−c
//
(
∂|d|−rd

)∣∣
c

= d′

⇐⇒ d = dL.(∂ld I
c
d′).dR , where |dL| = l, |dR| = r

For the ⇒ direction we assume the left hand side of the mutual implication holds. Note
that d′ is defined and thus d|(c,l,r) needs to be defined too. The hypothesis d|(c,lr) = d′

implies equality of the first boundary (∂ld)|c = ∂0d
′ and thus (∂ld I

c
d′) is defined by part

(a). Further, by hypothesis on d′ and part (a) we obtain

(∂ld I
c
d′) = ∂ld

pl+1d

c+(cl+1d−c)
// (∂ld)1

pl+2d

c+(cl+2d−c)
// (∂ld)2 · · · ∂|d|−r−1d

p|d|−rd

c+(c|d|−rd−c)
// (∂ld)|d′|

= ∂ld
pl+1d

cl+1d
// ∂l+1d

pl+2d

cl+2d
// ∂l+2d · · · ∂|d|−r−1d

p|d|−rd

c|d|−rd
// ∂|d|−rd

where we not only computed c+ (cl+id− c) = cl+id but also equated (∂ld)i = ∂l+id: To see
why this can be done we first note both sequences are valid: The first sequences was derived
by part (a) satisfying (a)’s definedness condition. The second one is valid because it is a
subsequence of d, and thus fulfills the boundary conditions (1.22). But then, having the same
initial boundary as well as the same processes and coordinates both sequences determine the
same diagram (cf. Claim 1.21) and thus can be equated. Setting

dL = ∂0d
p1d

c1d
// ∂1d . . .

pld

cld
// ∂ld ∈ Dk

dR = ∂|d|−rd
p|d|−r+1d

c|d|−r+1d
// ∂|d|−r+1d . . .

p|d|d

c|d|d
// ∂|d|d ∈ Dk

by part (b) (describing concatenation) we obtain d = dL.(∂ld I
c
d′).dR as required. Also note

that |dL| = l, |dR| = r as they are described by sequences of length l and r respectively.
For the ⇐ direction we assume the right hand side of the mutual implication holds. First

note that d is defined and so we must have l + r ≤ |d| and ∂ld|c = ∂0d
′. Further, setting

d′ = ∂0d
′ p1d

′

c1d
′
// ∂1d

′ . . .
p|d′|d

′

c|d′|d
′
// ∂|d′|d

′ ∈ Dk

18 CHRISTOPH DORN

we can apply part (a) yielding

(∂ld I
c
d′) = ∂ld

p1d
′

c+c1d
′
// (∂ld)1

p2d
′

c+c2d
′
// (∂ld)2 · · · (∂ld)|d′|−1

p|d′|d
′

c+c|d′|d
′
// (∂ld)|d′|

However, since dL.(∂ld I
c
d′).dR = d and applying part (b) we also have

(∂ld I
c
d′) = ∂ld

pl+1d

cl+1d
// ∂l+1d

pl+2d

cl+2d
// ∂l+2d · · · ∂l+|d′|−1d

pl+|d′|d

cl+|d′|d
// ∂l+|d′|d

And thus we can equate for

(∂ld)i = ∂l+id , 0 ≤ i ≤ |d′|
pid
′ = pl+id , 1 ≤ i ≤ |d′|

c+ cid
′ = cl+id , 1 ≤ i ≤ |d′|

and thus

cid
′ = (cl+id)− c , 1 ≤ i ≤ |d′|

Together with the previous observation that ∂ld|c = ∂0d
′, we deduce as required

(∂ld)|c
pl+1d

(cl+1d)−c
// · · ·

p|d|−rd

(c|d|−rd)−c
//
(
∂|d|−rd

)∣∣
c

= d′

because any diagram is uniquely determined by its processes, process coordinates and a
single boundary (which either follows by definition of ∂i or, for the present case of the initial
boundary it can also be seen from Claim 1.21). �

Lemma 1.36. The Inductive Claim 1.10 holds for n = k.

Proof. The required proofs have been done in Claim 1.15, Claim 1.21 and Claim 1.35.

2. Lists with duals

As explained in the introduction, the previous section describes the ‘core’ datatype to capture
the behaviour of higher lists. We will now extend this behaviour in three usefule ways: Namely to
include Compositionality of lists (‘higher lists of list’), Duality of list elements (which means
elements can be both resources/values or co-resources/continuations) and Unitarity which coin-
ductively describes when a resource and co-resources compose to the identity.

The discussion of the first two of these extension will follow the same scheme: We extend the set
of constructors for Cn, define ∂0, ∂1 on these extensions and show that they satisfy the globular
condition. This is the required extension of Claim 1.15, and in fact the only required addition to
the inductive step Lemma 1.36.

Before we proceed we introduce the following useful definition and notational convention.

Definition 2.1 (Segments). For a diagram

d =

(
b0

p1

c1
// b1 → · · · → bk−1

pk

ck
// bk

)
∈ Dn

we define, for 0 ≤ i ≤ j ≤ k, the [i, j]-segment of d, denoted by d[i,j], as follows

d[i,j] =

(
bi

pi+1

ci+1

// bi+1 → · · · → bj−1
pj

cj
// bj

)
As a shorthand we set d[i] := d[i,i+1], and refer to it as the ith segment of d. We also emphasise
that d[i,i] = id(∂id) = id(bi). ♦

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 19

Notation 2.2 (Processes are size 1 diagrams). For any p ∈ Cn, id(∂0p) . p is a defined diagram of
size 1 since the side condition for application of . is manifestly fulfilled (recall that if coordinates
are kept implicit by convention we assume them to be 0 ∈ N2n). Conveniently, we have that
∂i(id(∂0) . p) = ∂ip, i = 0, 1. By abuse of notation we then set

p ≡ id(∂0p) . p ∈ Dn

In this way, we can associate cells to diagrams of size 1. Since in sequence notation we could also
write these diagrams as

id(∂0p) . p = ∂0p
p
// ∂1p

we will often use the notation

p : ∂0p // ∂1p

for a cell p. Moreover, I and . collapse under this convention, in the sense that, whenever b|c = ∂0p
we have

id(b) .
c
p = b I

c
p

since ∂0(−), c1(−), p1(−) coincide for the left and the right hand side (on the right hand side we
force p ∈ Dn by the identification that was just introduced). ♦

2.1. Compositionality.

For all n ∈ N, composition of diagrams yields new cells which we denote by:

p : Cn := . . .

| 〈d〉 , d ∈ Dn

These compositions are witnessed by higher cells, and thus we further extend Cn+1 as follows

p : Cn+1 := . . .

| d⇒ 〈d〉 , d ∈ Dn

Having introduced new cells, we now need to extend the boundary function (∂0, ∂1). For 〈d〉 we do
so by setting

∂0 〈d〉 = ∂0d

∂1 〈d〉 = ∂|d|d

For (d⇒ 〈d〉) we use Notation 2.2 such that the following boundaries for witnesses of composition
in Cn+1 make sense:

∂0(d⇒ 〈d〉) = d(2.3)

∂1(d⇒ 〈d〉) = 〈d〉

Finally, we need to verify that the globular conditions for (1.15) stay true. After substituting the
above definitions, in the case of 〈d〉 we need to verify the following (highlighted in blue)

∂0∂0 〈d〉 := ∂0∂0d
!
= ∂0∂|d|d =: ∂0∂1 〈d〉

∂|∂0〈d〉|∂0 〈d〉 := ∂|∂0d|∂0d
!
= ∂|∂|d|d|∂|d|d =: ∂|∂1〈d〉|∂1 〈d〉

and in the case of (d⇒ 〈d〉) in Cn+1 we need to verify

∂0∂0(d⇒ 〈d〉) := ∂0d
!
= ∂0 〈d〉 =: ∂0∂1(d⇒ 〈d〉)

∂|∂0(d⇒〈d〉)|∂0(d⇒ 〈d〉) := ∂|d|d
!
= ∂1 〈d〉 =: ∂|∂1(d⇒〈d〉)|∂1(d⇒ 〈d〉)

Now, the first two equations follow from Claim 1.20. The last two equations are true by definition
(2.3).

20 CHRISTOPH DORN

Remark 2.4 (Composition and identities). For later use we introduce the shorthand

1(d) := 〈id(d)〉

♦

2.2. Duality.

Dualisation yields new cells for all n ∈ N as follows:

p : Cn := . . .

| p∗ , p ∈ Cn

These duals (or ‘deficits’ as discussed in the introduction) are introduced and eliminated by higher
cells called shifts. Since elimination will in fact be dual to introduction itself, we need to extend
Cn+1 only with the (two) shift cells for, say, elimination as follows

p : Cn+1 := . . .

| ˆR(p) , p ∈ Cn
| ˆL(p) , p ∈ Cn

We will refer to ˆR (p) as right elimination, ˆL (p) as left elimination and introduce the shorthands
´R (p) := (ˆR (p))∗, ´L (p) := (ˆL (p))∗ referred to as right introduction and left introduction
respectively.

As for compositionality we need to extend the boundary maps onto these new cells and we do so
as follows

∂0p
∗ = ∂1p(2.5)

∂1p
∗ = ∂0p

From this definition we see that assuming inductively p satisfies the globular conditions, it follows
that p∗ satisfies the globular conditions for Claim 1.15 as well.

For shifts we then define

∂0ˆR (p) = p.p∗

∂1ˆR (p) = id(∂0p)

∂0ˆL (p) = p∗.p

∂1ˆL (p) = id(∂1p)

Note that e.g. p.p∗ is (by Notation 2.2 and (Concatenation)) the following diagram

p.p∗ = ∂0p
p

0
// ∂1p

p∗

0
// ∂0p

This has the same initial and final boundary as id(∂0p) and thus the globular conditions are fulfilled
for ˆR (p) and Claim 1.15 can be extended accordingly. The same argument shows this also holds
for ˆL (p).

We now extend dualisation and shifts (which so far only act on cells) to diagrams:

(i) Dualisation on diagrams (−)∗ : Dn → Dn is defined by

d = ∂0d
p1d

c1d
// ∂1d

p2d

c2d
// ∂2d · · · ∂|d|−1d

p|d|d

c|d|d
// ∂|d|d

7→ d∗ = ∂|d|d
(p|d|d)

∗

c|d|d
// ∂|d|−1d

(p|d|−1d)
∗

c|d|−1d
// ∂|d|−2d · · · ∂1d

(p1d)
∗

c1d
// ∂0d

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 21

We should show that the sequence given for the image of d indeed describes a valid diagram
(in the sense of Claim 1.21). Note that d ∈ Dn implies that

∂i−1d
pid

cid
// ∂id

is a valid diagram. In particular, setting cid = (c′i, li, ri), we have by the boundary conditions
(1.24)

∂i−1d = bi,L.

(
∂li∂i−1d I

c′i

∂0pid

)
.bi,R

= bi,L.

(
∂li∂i−1d I

c′i

∂1(pid)∗
)
.bi,R where |bi,L| = li , |bi,R| = ri

∂id = bi,L.

(
∂li∂i−1d I

c′i

∂1pid

)
.bi,R

= bi,L.

(
∂li∂i−1d I

c′i

∂0(pid)∗
)
.bi,R where |bi,L| = li , |bi,R| = ri

for some diagrams bi,L, bi,R. Here we used the definition of (pid)∗ and its boundaries (2.5).
It follows that the sequence

(2.6) ∂id
(pid)

∗

cid
// ∂i−1d

satisfies the boundary conditions (1.24) and is also a valid diagram. Thus the defining
sequence of d∗ given above, which is a (Concatenation) of the subsequences (2.6), is a valid
diagram as well.

(ii) The (right eliminating) shift for a diagram d ∈ Dn, denoted by ˆR (d), can be defined quite
elegantly by induction on the size of d, k = |d|. However, we remark this is not the unique
way in which the cell ˆR (d) could be defined (cf. Remark 2.9).

Construction 2.7. We claim inductively in k = |d|, that for all d ∈ Dn, |d| ≥ 1, we have a cell

ˆR (d) : d.d∗ → id(∂0d)

Proof. For k = 1, we can take

d = (b0 I
c
p)

where bi = ∂id, and thus

d∗ = (b1 I
c
p∗)

Using (Distributivity) we find

d.d∗ = (b0 I
c
p).(b1 I

c
p∗)

= b0 I
c

(p.p∗)

And thus we can set ˆR (d) to be the composite of the diagram

d.d∗ = b0 I
c

(p.p∗)

ˆR(p)(c,0,0)

��

id(∂0d) = b0 I
c

(id(∂0p))

For general k, assuming ˆR (d′) has been constructed for all d′ with |d′| < k, we can take

d = (b0 I
c1
p1).d[1,k]

22 CHRISTOPH DORN

where bi = ∂id, and d[1,k] denotes the [1, k]-segment of d which is of size k − 1 (and was
defined in Definition 2.1). We have

d∗ =

(
(b0 I

c1
p1).d[1,k]

)∗
= d∗[1,k].(b1 I

c1
p∗1)

and we can then set ˆR (() d) to be the composite of the diagram

d.d∗

= (b0 I
c1
p1).d[1,k].d

∗
[1,k].(b1 Ic1

p∗1)

ˆR(d[1,k])(0,1,1)

��

(b0 I
c1
p1).id(∂0d[1,k]).(b1 I

c1
p∗1)

= (b0 I
c1
p1).(b1 I

c1
p∗1)

(Dist)
= (b0 I

c1
(p1.p

∗
1))

ˆR(p1)(c1,0,0)

��

(b0 I
c1

(id(∂0p)))

= id(∂0d)

which completes the inductive construction of ˆR (d). ♦

Definition 2.8. In the same inductive fashion, but using the other remaining shifts

ˆL (p) , ´R (p) , ´L (p)

instead of ˆR (p), we can define, for d ∈ Dn, |d| ≥ 1, the following (n+ 1)-cells

ˆL (d) : d∗.d→ id(∂|d|d)

´R (d) : id(∂0d)→ d.d∗

´L (d) : id(∂|d|d)→ d∗.d

For all of their constructions no new difficulties arise, and thus we can safely leave them to
the reader.

Remark 2.9. While we already remarked that the above construction is not the only reasonable
way to construct ˆR (d), we claim that all such correct constructions are in fact the ‘equivalent’, in
the sense that their equivalence is witnessed by higher cells which are marked as equivalences. The
notion of equivalences, or synonymously, the notion of unitary cells, will be discussed in the next
section.

Definition 2.10. We define left and right transposition for a (n+ 1)-cell f

f : ∂0f → ∂1f

(i) The left transpose, denoted by

fˆL : (∂1f)∗ → (∂0f)∗ ,

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 23

is the composite of the diagram

(∂1f)∗

= (∂1f)∗.id(∂0∂0f)

´R(∂0f)(~0,|∂1f |,0)
��

(∂1f)∗.(∂0f).(∂0f)∗

f(~0,|∂1f |,|∂0f |)
��

(∂1f)∗.(∂1f).(∂0f)∗

ˆL(∂1d)(~0,0,|∂0f |)
��

id(∂|∂1d|∂1f).(∂0f)∗

= (∂0f)∗

This sequence is indeed a valid diagram as it manifestly satisfies the boundary conditions
(1.24).

(ii) The right transpose, denoted by

fˆR : (∂1f)∗ → (∂0f)∗ ,

is the composite of the diagram

(∂1f)∗

= id(∂|∂0|∂0f).(∂1f)∗

´L(∂0f)(~0,0,|∂1f |)
��

(∂0f).(∂0f)∗.(∂1f)∗

f(~0,|∂0f |,|∂1f |)
��

(∂0f)∗.(∂1f).(∂1f)∗

ˆR(∂1d)(~0,|∂0f |,0)
��

(∂0f)∗.id(∂0∂1f)

= (∂0f)∗

which again is a valid diagram, as it manifestly satisfies the boundary conditions (1.24)
(domain and codomain of shifts are marked in color for better readability).

(iii) Similarly, but under the condition the boundaries of f are duals of diagrams themselves, i.e.

∂0f = d∗0, ∂1f = d∗1 ,

we can define the following composites in analogy to the definitions above

f´L :=

〈
d1

´L(d0)

(~0,|d1|,0)
// d1.d

∗
0.d0

f

(~0,|d1|,|d0|)
// d1.d

∗
1.d0

ˆR(d1)

(~0,0,|d0|)
// d0

〉
and

f´R :=

〈
d1

´R(d0)

(~0,0,|d1|)
// d0.d

∗
0.d1

f

(~0,|d0|,|d1|)
// d0.d

∗
1.d1

ˆL(d1)

(~0,|d0|,0)
// d0

〉
It is important to reiterate that these definitions only apply if the boundaries ∂0f , ∂1f
can be written as the duals of some diagrams d0, d1 − as a shorthand we will write this as
∂0f, ∂1f ∈ D∗n.

24 CHRISTOPH DORN

Importantly, from the definition of left and right transposition we see that

∂0f
ˆR = ∂0f

ˆL = (∂1f)∗(2.11)

∂1f
ˆR = ∂1f

ˆL = (∂0f)∗

and similarly, if ∂0f = d∗0, ∂1f = d∗1 ∈ D∗n, we have

∂0f
´R = ∂0f

´L = d1(2.12)

∂1f
´R = ∂1f

´L = d0

Definition 2.13. Dualities and shifts (and consequently transpositions) generate a broad range
of new cells, and it will turn out to be natural to equate some of them. We will do so now, by
‘augmenting’ IdCn

by certain equivalences. As noted in Remark 1.9, these equations need to be
admissible in the sense that all previously defined functions on Cn (namely ∂0, ∂1) preserve them.

For dualities we introduce the following

IdCn
:: | 〈d〉∗ = 〈d∗〉 , where d ∈ Dn

| p1 = p2 , where pi ∈ Cn, p∗1 = p∗2

The first equation says dualisation and composition commute. The second equation says dualisation
is in fact injective. Both equations are seen to be admissible by the definition of boundaries of
dualised cells p∗ (2.5) and cells from composed diagrams 〈d〉 (2.3).

We recall from the introduction that the peculiar notation

IdCn
:: . . . | a = b , P (a, b)

should indicate a path/equivalence of type IdCn
(a, b) can be constructed for approriate a, b satisfying

P (a, b): Again, we do not care about the naming of such a path as Cn is in fact a set.

Example 2.14. For 1(d) the previous equalities imply for instance

1(d)∗ := 〈id(d)〉∗ = 〈id(d)∗〉 = 〈id(d)〉 =: 1(d)

i.e. 1(d)∗ = 1(d) is a fixed point of dualisation. ♦

Next we consider equations related to transposition. We introduce the following

IdCn+1
:: . . . | fˆR = fˆL =: fᵀ , where f ∈ Cn+1

| f´R = f´L =: f

ᵀ

, where f ∈ Cn+1, ∂if ∈ D∗n
| (fᵀ)

ᵀ

= f , where f ∈ Cn+1

| (f

ᵀ

)ᵀ = f , where f ∈ Cn+1, ∂if ∈ D∗n

While the first two equations equate left and right transposition and ‘co-transposition’, the last
two equations record that those two operations are in fact inverse to each other. For the first two
equalities admissibility was verified in (2.11) and (2.12). From there it can be equally derived for
the last two equations. Further we introduced the shorthand fᵀ to denote the left or right transpose
of f , and f

ᵀ

to denote its ‘co-transpose’ if it exists.
Finally, we consider how transposition interacts with special cells we have defined so far, namely

identities 1(d) := 〈id(d)〉 and witnesses of composition d⇒ 〈d〉. We equate the following

IdCn+1 :: . . . | 1(d)ᵀ = 1(d∗) , where d ∈ Dn

| (d⇒ 〈d〉)ᵀ = (d∗ ⇒ 〈d∗〉)∗ , where d ∈ Dn

It can be safely left to the reader to trace back definitions and verify that both equations are
admissible (i.e. ∂0, ∂1 coincide on the cells that are equated by these two new equivalences). ♦

A DATASTRUCTURE FOR HIGHER SESQUICATEGORIES 25

2.3. Unitarity.

Unitarity of a cell marks when this cell witnesses an equivalence between diagrams, and witnesses
of composition are one such example. Compositions and unitaries are the ‘invertible’ cells in some
sense. On the other hand, a cell is unitary iff its left and right shift are unitary and not just mere
cells. This calls for a coinductive definition which we write as follows

Definition 2.15. Mutual invertibility for cells p1, p2 ∈ Cn, written inv(p1, p2), and unitarity of a
cell p ∈ Cn, written is uni(p), are defined as follows

inv(p1, p2) := ∃c1 : p1.p2 → id(∂0p1)

∧ ∃c2 : p2.p1 → id(∂1p1)

s.t. is uni(c1) ∧ is uni(c2)

is uni(p) := is uni(ˆR (p)) ∧ is uni(ˆL (p))

Note that the dimension n is implicit for the predicates inv and is uni. ♦

Construction 2.16. We postulate unitarity of the following cells:

- Invertibility implies unitarity, that is for p ∈ Cn:

(∃p′ ∈ Cn.inv(p, p′))⇒ is uni(p)

- Identitites are unitary:
is uni(1(d))

- Witnesses of composition are, as promised, unitary:

is uni(d⇒ 〈d〉)
- Unitarity is preserved under composition, for d ∈ Dn:

(∀i.is uni(pid))⇒ is uni(〈d〉)
- Unitarity is preserved under transposition, for p ∈ Cn:

is uni(p)⇒ is uni(pᵀ)

(- By Lemma 2.18, Unitarity is also preserved under dualisation, that is for p ∈ Cn:

is uni(p)⇒ is uni(p∗))

♦

Definition 2.17. We define Unin = { p | p ∈ Cn, is uni(p) }.

Lemma 2.18. The following are consequences of the above definition. Let p ∈ Cn. Then

(i) is uni(p)⇒ ∃p′.inv(p, p′)
(ii) is uni(p)⇒ is uni(p∗)

(iii) Let e : p→ p′. If is uni(p), is uni(e) then we have is uni(p′) .

Proof. Part (i) follows with p′ = p∗ and setting c1 = ˆR (p), c2 = ˆL (p) which indeed satisfies the
conditions for invertibility and thus yields

is uni(p)⇒ inv(p, p∗)

Part (ii) is a consequence of part (i), invertibility being symmetric inv(p1, p2) ⇐⇒ inv(p2, p1)
and invertibility implying unitarity:

is uni(p)⇒ inv(p, p∗)⇒ inv(p∗, p)⇒ is uni(p∗)

Part (iii) follows from p′ being having p∗ as a mutual inverse under the stated assumptions: This
is witnessed by

c′1 :=

〈
p′.p∗

e∗

(~0,0,1)

// p.p∗
ˆR(p)

// id(∂0p
′)

〉

26 CHRISTOPH DORN

and

c′2 :=

〈
p∗.p′

e∗

(~0,1,0)

// p∗.p
ˆL(p)

// id(∂1p
′)

〉
Both c′i are unitary since they are composites of unitary cells, and thus serve as the required
witnesses for

inv(p′, p∗)

The statement follows from inv(p′, p∗)⇒ is uni(p′). �

	0. Introduction and Overview
	1. Higher lists
	1.1. 0-cells and 0-diagrams
	1.2. k-cells and k-diagrams

	2. Lists with duals
	2.1. Compositionality
	2.2. Duality
	2.3. Unitarity

