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Introduction
These notes the ‘bare minimum’ of self-contained mathematics needed for defin-
ing manifold-diagrammatic higher categories. More gentle introductions to
manifold diagrams, combinatorial manifold diagrams, and their related models
of higher categories exist, cf. in particular:

1. this paper on manifold diagrams,

2. this blog post on trusses and this blog post on geometric higher categories,

3. the nLab articles on manifold diagrams, trusses and manifold-diagrammatic
categories.

Some prerequisites to read these notes include:

1. Basic familiarity with category theory (in particular, notions of hom functors,
profunctors and partial orders as categories).

2. Some familiarity with higher categories (at least the basic idea of higher mor-
phisms being morphisms between morphisms between ..., and the conceptual
relation of that idea to homotopy theory).

3. Basic intuition about stratified spaces

1 Trusses
1.1 1-Trusses
Definition 1.1. A 1-truss T í (T ,f,û, dim) is a set T with two partial orders
(the ‘face’ order f and the ‘frame’ order û) as well as a ‘dimension’ map dim :
(T ,f) ô [1]op such that

1. (T ,û) ˆ [n] = (0 ô 1 ô ... ô n)
2. either i < i + 1 or i + 1 < i for all i « n

3. dim is conservative. À
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Definition 1.2. A 1-truss map F : T ô S is a function of sets that preserves
both face and frame order. Further,

• F is called regular if dim ˝F Ÿ dim,

• F is called singular if dim ˝F ◊ dim,

• F is called dimension-preserving if dim ˝F = dim,

where Ÿ and ◊ denote natural transformations of functors (T ,f) ô [1]op =
(0 } 1). À

Notation 1.1. Given a truss T denote by T(i) the subset of objects x of T with
dim(x) = i. À

1.2 1-Truss bundles
To define bundles of 1-trusses, we first define what are the valid fiber transitions.
We dub these ‘1-truss bordisms’.

Remark 1.1. Below, a Boolean profunctor is an ordinary profunctor H : C ,;ô
D whose values are either the initial set Á í Ú or the terminal set < í Ò. If C and
D are discrete, then such a profunctor H is simply a relation of sets. In this case,
we call the profunctor H a function if it is a functional relation or a cofunction if
the dual profunctor Hop is a function. À

Remark 1.2. For any map of posets F : P ô Q, the fiber F*1(x ô y) over an
arrow x ô y of Q defines a Boolean profunctor F*1(x) ,;ô F

*1(y) by mapping
(a, b) to Ò i� a ô b is an arrow in P . À

Definition 1.3. Given 1-trusses T and S, a 1-truss bordism R : T ,;ô S is a
Boolean profunctor T ,;ô S satisfying the following:

1. R restricts to a function R(0) : T(0) ,;ô S(0) and a cofunction R(1) : T(1) ,;ô S(1).

2. Whenever R(t, s) = Ò = R(t®, s®), then either t « t
® or s® « s but not both. À
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Importantly, 1-truss bordisms are morphisms of a category T1 that embeds into
the category of profunctors Prof (unlike general Boolean profunctors). See the
discussion of ‘labels’ below for details.

Definition 1.4. A 1-truss bundle over a ‘base’ poset (P ,f) is a poset map q :
(T ,f) ô (P ,f) in which, for each x À P , the fiber (T x

,f) = q
*1(x) is equipped

with the additional structures (û, dim) of a 1-truss, and, for each arrow x ô y in
P , the fiber q*1(x ô y) is a 1-truss bordisms T x ,;ô T

y (cf. Rmk. 1.2). À

Definition 1.5. A 1-truss bundle map F : q1 ô q2 of 1-truss bundles q
i
: T

i
ô

P
i

is a map F : T1 ô T2 that descends along q
i

to a ‘base’ map F0 : P1 ô P2,
such that F is fiberwise a 1-truss map (cf. Def. 1.2). We further say F is regular
resp. singular resp. dimension-preserving if it is fiberwise so. À

1.3 n-Truss bundles and n-trusses
Definition 1.6. An n-truss bundle T over a poset P is a tower of 1-truss bundles
(see Def. 1.4)

T
n

T
n*1 5 T1 T0 = P

q
n

q
n*1 q2 q1 À

Definition 1.7. An n-truss bundle map F : T ô T
® is a tower of 1-truss bundle

maps F
i
: q

i
ô q

®
i

where F
i*1 is the base map of F

i
and F

n
í F : T

n
ô T

®
n
.

The adjectives ‘regular’ resp. ‘singular’ resp. ‘dimension-preserving’ apply to
F if they apply to all F

i
. If T and T

® have the same base P , then F is called
base-preserving if F0 = id

P
. À

Terminology 1.1. An n-truss bundle over the terminal poset < is called an n-
truss. À
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2 Labels
2.1 Truss bundles with labels
Definition 2.1. Given a category C , a C-labeled n-truss bundle T = (T , lbl

T
)

over P consists of an ‘underlying’ n-truss bundle T = (T
n
ô ... ô T1 ô P )

together with a ‘labeling’ functor lbl
T
: T

n
ô C . In other words, T is of the form

C T
n

T
n*1 5 T1 T0 = P

q
n

q
n*1 q2 q1lbl

T À

Remark 2.1. If C = < is the terminal category in the previous definition, then
we recover ordinary n-truss bundles. À

Definition 2.2. A labeled n-truss bundle map F = (F , lbl
F
) : T ô T

® from
a C-labeled n-truss bundle T to a C

®-labeled n-truss bundle T
® consists of an

n-truss bundle map F : T ô T
® and a functor lbl

F
: C ô C

® such that there
is a natural isomorphism lbl

T ®˝F ˆ lbl
F
˝lbl

T
. Adjectives ‘regular’, ‘singular’,

‘dimension-preserving’, ‘base-preserving’ apply if they apply to F . Further, we
say F is label-preserving if lbl

F
= id

C
. À

Labeled truss bundles are a central ingredient in truss theory (see Appendix A).

2.2 Normalization theorem
Definition 2.3. Given C-labeled n-truss bundles T and T

® over P , a reduction
F : T ô T

® is a labeled n-truss bundle map which is:

1. regular;

2. endpoint-dimension-preserving, meaning it is dimension-preserving on the
endpoints of all 1-truss fibers;

3. base-preserving;

4. label-preserving-on-the-nose, meaning that lbl
F

= id and there is a strict
equality lbl

T ®˝F = lbl
T

. À
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Terminology 2.1. We sometimes write reductions as F : T
red
,,,,,,,,,,,,ô T

®, and say T
®

is a reduct of T . A labeled truss whose only reduct is itself is called normalized
(or, said to be in normal form). À

Theorem 2.1. (Normalization ends in normal forms). For any labeled truss T ,
the category Norm(T ) of reducts of T and reductions between them has a unique
terminal object JT K (called the normal form of T ).

3 Combinatorial manifold diagrams
Certain labeled trusses are the combinatorial analogues of geometric manifold
diagrams (see Appendix B).

3.1 Ingredients
Definition 3.1. (Stratified truss). A stratified n-truss T is a labeled n-truss T

whose labeling lbl
T

is a quotient map of posets whose preimages are connected.À

Definition 3.2. (Open truss). A 1-truss is called open if its endpoints have
dimension 1. A (labeled) n-truss T is called open if all 1-truss fibers in all 1-truss
bundles that comprise T are open. À

Definition 3.3. (Open neigborhood). Given an open n-truss T and an element
x À T

n
, define the neighborhood T

fx of x to be the unique open truss that comes
with a dimension-preserving map F : T

fx ± T such that F : T
fx
n

± T
n

is an
inclusion of the downward closure of x into the poset (T

n
,f). À

Terminology 3.1. (Atomic truss). Given an open n-truss T with x À T
n

such
that T fx = T , we say T is an atomic open n-truss with cone point x. À

Definition 3.4. (Stratified open neighborhood). Given a stratified open n-truss T
and an element x À T

n
, define the stratified neighborhood T

fx to be the unique
stratified truss that stratified embeds in T with underlying truss map being the
(non-stratified) neighborhood inclusion of x. À
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Terminology 3.2. (Cone types). A stratified open n-truss T is said to be a com-
binatorial cone type if the underlying truss of T is atomic with cone point x, and
{x} = lbl*1

T
˝lbl

T
(x) (in words: ‘x is its own stratum’). À

Definition 3.5. (Cylinders). Given a labeled m-truss T defined the k-cylinder
Ik ù T of T to be the labeled (m + k)-truss obtained from T by adding k trivial
truss bundles < ô < to its underlying truss. À

Remark 3.1. (Products). More generally, one can similarly define labeled (k+m)-
trusses U ù T as products between unlabeled k-trusses U and labeled m-trusses
T . À

3.2 Definition
Putting the preceding notions together (and inspired by the geometric definition
of manifold diagrams, see Appendix B), we obtain a combinatorial version of
framed conicality as follows.

Definition 3.6. A combinatorial manifold n-diagram T is a stratifed open n-truss
such that for all x À T we have

q
T
fxy = Ik ù C

x

where C
x

is a combinatorial cone type. À

4 Manifold-diagrammatic higher categories
We define two classes of maps, which together assemble into a double category
over which we consider presheafs.

4.1 Embeddings
Definition 4.1. Embeddings of combinatorial manifold diagrams T ,S are de-
scribed by spans of the form
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T T
®

S
red

where T
® red
,,,,,,,,,,,,ô T is a reduction and T

® ± S is map of labeled trusses whose
underlying map is regular and injective. Embeddings compose by pullback
composition of spans. À

4.2 Quotients
Definition 4.2. Quotients of combinatorial manifold diagrams T ,S are maps of
labeled trusses

T ß S

whose underlying map of trusses is singular and surjective. À

4.3 Definition
Terminology 4.1. Together, embeddings and quotients organize into the double
category MDiag

n
of combinatorial manifold n-diagrams, with horizonal mor-

phisms being embeddings, vertical morphisms being quotients, squares being
commuting diagrams of the following form:

T1 T
®
1 S1

T2 T
®
2 S2

red

red

(note that the dashed arrow is unique if it exists.) The category of manifold
n-diagrams MDiag

n
will refer to just the horizontal part of this double category.À

Remark 4.1. (The n = ÿ case). Given a combinatorial manifold n-diagram f ,
note its cylinder I ù f is a combinatorial manifold (n + 1)-diagram. This defines
a chain of inclusions of (ordinary resp. double) categories, the colimit of which
is a category of manifold diagrams MDiag (resp. the double category MDiag).À

Terminology 4.2. The category MDiag
n

(and similarly, MDiag from Rmk. 4.1)
contains wide subcategories MDiagL

n
resp. MDiagR

n
consisting of spans
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T S S resp. T T S.
red À

We define a coverage for MDiagR
n

. (Note that MDiagR
n

does not have all pullbacks
since, e.g., subdiagrams can intersect in non-diagrams.)

Definition 4.3. The neighborhood coverage J for MDiagR
n

is the coverage that
assigns to T À MDiag the single family {f

x
: T

fx ô T }
xÀT comprised of the

stratified neighborhoods of T . À

Definition 4.4. A manifold-diagrammatic n-category C is a presheaf on MDiag
n

such that:

1. C is a sheaf on (MDiagR
n
, J ) and locally constant on (i.e. constant on the con-

nected components of) MDiagL
n

,

2. C extends to a double-(co)presheaf MDiagop,co
n

ô Set (where Set is the dou-
ble category of squares in the category of sets, and C is covariant on vertical
categories). À

A Classifying categories for truss bundles
A.1 Classifying 1-truss bundles
Since fiber transitions in 1-truss bundles are 1-truss bordisms, it comes as no
surprise that the category of 1-truss bordisms classifies 1-truss bundles.

Definition A.1. Given 1-truss bordisms R : T ,;ô S and Q : S ,;ô U , their
composite profunctor R˝Q (composed as ordinary profunctors) is again a 1-truss
bordism. (In contrast, composites of general Boolean profunctors (composed as
ordinary profunctors) in general need not themselves be Boolean.) This defines
the category T1 of 1-trusses and their bordisms. À

Theorem A.1. 1-truss bundles over a base poset P up to dimension-preserving
base-preserving isomorphism bijectively correspond to functors P ô T1 up to
natural isomorphism.

9



Proof. Follows from the definition of 1-truss bundles.

The theorem now generalizes to labelled 1-truss bundles as follows.

Definition A.2. Given a category C , the category T1(C) of C-labeled 1-trusses
and their bordisms is defined as follows: objects of T1(C) are C-labeled 1-truss
bundles over [0]; morphisms are C-labeled 1-truss bundles over [1] (with domain
and codomain given by restricting to fibers over 0 resp. 1); two morphisms
compose to a third i� there is a C-labeled bundle over [2] that restricts over
(0 ô 1), (1 ô 2), and (0 ô 2) to the first, second, resp. third morphism. À

Theorem A.2. C-labelled 1-truss bundles over a base poset P up to dimension-
preserving base-preserving label-preserving isomorphism bijectively correspond
to functors P ô T1(C) up to natural isomorphism.

Proof. Follows from the definition of T1(C).

Remark A.1. (Recovering the unlabeled case). In particular, the preceding two
definitions coincide T1(<) ˆ T1 up to (essentially unique!) isomorphism of
categories when C = < is terminal. À

Remark A.2. (Functoriality of labeled bordism). Importantly, the construction
of T(C) is functorial in C . Indeed, given a functor F : C ô D, then T1(F ) :
T1(C) ô T1(D) acts on objects and morphisms of T1(C) by post-composing
their labelings with F . This yields the labeled bordism functor

T1 : Cat ô Cat.

A.2 Classifying n-truss bundles
For a given category C À Cat we can thus apply the labeled bordism functor n
times to it: the resulting category Tn(C) classifies C-labeled n-truss bundless as
follows.
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Theorem A.3. C-labelled n-truss bundles over a base poset P up to dimension-
preserving base-preserving label-preserving isomorphism bijectively correspond
to functors P ô Tn(C) up to natural isomorphism.

Proof. Inductively apply the previous theorem, starting with the highest 1-truss
bundle and working your way downwards.

Remark A.3. (n-Truss bundles over categories). The theorem makes it evident
that nothing would have stopped us from defining n-truss bundles over categories
B (in place of just posets): indeed, such bundles may be thought of as functors
B ô Tn(<) (or B ô Tn(C) in the labeled case). À

Lukas Heidemann points out the following nice perspective on the labeled bordism
functor.

Remark A.4. (Universal construction of the labeled bordism functor) Apply-
ing the profunctorial Grothendieck construction to the (frame-order-forgetting)
functor T1 ô Prof , yields an exponentiable fibration ET1 ô T1. By general
nonsense, the composition of the pullback Cat_T1 ô Cat_ET1 and forgetful func-
tor Cat_ET1 ô Cat has a right adjoint Cat ô Cat_T1 ; this adjoint is exactly the
functor C ≠ T1(C ô <). (Note: more generally, this construction applies to all
normal pseudofunctors H : D ô Prof , where it characterizes the constructions
of ‘vertical comma categories’ H__C for such functors H (see [Dorn-Douglas
2021, Term. 2.3.18]) as right adjoints.) À

Remark A.5. (Labels in ÿ-categories) The construction of T1(*) generalizes
to an endofunctor on ÿ-categories Catÿ, which immediately leads to a notion
of truss bundles labeled in ÿ-categories. À

Thus there is a ‘spectrum’ of base/label structures on which we can reasonably
consider truss bundles, ranging from posets over to categories to ÿ-categories.
Most of the theory works the same across the spectrum. In this article, we work
with the simplest possible choice, i.e. with posets (initially as base structure, but
later even as label structures for the purpose of defining ‘stratifications’).
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B Geometric manifold diagrams and their combinatori-
alization

(We omit a recollection of stratified topology, see here for an introduction to
stratified spaces.)

B.1 Definition of manifold diagrams
Definition B.1. The standard n-framing of Rn is the chain of oriented R-fiber
bundles ⇡

i
: Ri ô Ri*1 (1 f i f n) with ⇡

i
defined to be the map that forgets

the last coordinate of Ri (and fibers carry the standard orientation of R after
identifying Ri = Ri*1 ùR). À

When considering Rn we tacitly always think of it as ‘standard framed Rn’ and,
thus, we stop mentioning the standard framing as an explicit structure all-together.
Indeed, more important than defining the standard n-framing is to define the
maps that preserve it.

Definition B.2. A framed map F : Rn ô Rn is a map for which there exist
(necessarily unique) maps F

j
: Rj ô Rj (0 f j f n) with F

n
= F such that

⇡
i
˝F

i
= F

i*1˝⇡i with F
i

preserving orientations of fibers of ⇡
i

(i.e. mapping
fibers strictly monotously). À

A framed stratified map (Rn
, f ) ô (R, g) is a stratified map whose underlying

map Rn ô Rn is framed. Moreover, when working with products (Rk
, f ) ù

(Rn*k
, g) we will identitify Rn ˆ Rk ù Rn*k in the standard way; and, when

working with cone stratifications (Cone(Sn*1), cone(l)), we will standard embed
S
n*1 ± Rn and identify Cone(Sn*1) ˆ Rn by mapping (x À S

n*1
, � À [0, 1))

to �

1*�x À Rn.

Definition B.3. A stratification (Rn
, f ) is framed conical if each point x À

Rn it has a framed stratified neighborhood (framed) homeomorphic to Rk ù
(Cone(Sn*k*1), cone(l)) with x À Rk ù {0}, where 0 f k f n and (Sn*1

, l) is
some stratification. À
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Definition B.4. A compactly-described triangulation K of Rn is a finite stratifi-
cation of Rn by open disks whose closures are the images of linear embeddingsnn
�k ùRlg0 ± Rn (k + l f n). This now translates to the framed stratified case as
follows: a stratification (Rn

, f ) is framed compactly triangulable if it admits a
framed stratified subdivision (Rn

,K) ô (Rn
, f ) of f by a compactly-described

triangulation K . À

We can now put these concepts together to obtain the following definition of
manifold diagrams.

Definition B.5. A manifold n-diagram is a framed conical, framed compactly
triangulable stratification of Rn. À

B.2 Combinatorialization theorem
Theorem B.1. Manifold diagrams, up to framed stratified homeomorphism, bi-
jectively correspond to normalized combinatorial manifold n-diagrams.

Proof sketch. Given a manifold n-diagram (Rn
, f ) its corresponding normalized

combinatorial manifold n-diagram can be constructed by first refining f by
the unique coarsest n-mesh M , and then labeling the n-truss Entr(M) with the
labeling Entr(M ô f ).
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