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Abstract

We write out a self-contained definition of manifold-diagrammatic higher categories with no fluff provided.
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Introduction

This document contains the ‘bare minimum’ of self-contained mathematics needed for defining manifold-
diagrammatic higher categories. More gentle introductions to manifold diagrams, combinatorial manifold
diagrams, and their related models of higher categories exist, cf. in particular:
1. this paper on manifold diagrams,
2. this blog post on trusses and this blog post on geometric higher categories,
3. the 𝑛Lab articles on manifold diagrams, trusses and manifold-diagrammatic categories.

∗Please report mistakes and typos to my current email.
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1 Trusses

1.1 1-Trusses

Definition 1.1. A 1-truss 𝑇 ≡ (𝑇 ,≤,⪯, dim) is a set 𝑇 with two partial orders (the ‘face’ order ≤ and the ‘frame’
order ⪯) as well as a ‘dimension’ map dim ∶ (𝑇 ,≤) → [1]op such that

1. (𝑇 ,⪯) ≅ [𝑛] = (0 → 1 → ... → 𝑛)

2. either 𝑖 < 𝑖 + 1 or 𝑖 + 1 < 𝑖 for all 𝑖 ≺ 𝑛

3. dim is conservative. ▴

Definition 1.2. A 1-truss map 𝐹 ∶ 𝑇 → 𝑆 is a function of sets that preserves both face and frame order. Further,

• 𝐹 is called regular if dim ◦𝐹 ⇒ dim,
• 𝐹 is called singular if dim ◦𝐹 ⇐ dim,
• 𝐹 is called dimension-preserving if dim ◦𝐹 = dim,

where ⇒ and ⇐ denote natural transformations of functors (𝑇 ,≤) → [1]op = (0 ← 1). ▴

Notation 1.3. Given a truss 𝑇 , denote by 𝑇(𝑖) the subset of objects 𝑥 with dim(𝑥) = 𝑖. ▴

1.2 1-Truss bundles

To define bundles of 1-trusses, we first define what are the valid fiber transitions. We dub these ‘1-truss bordisms’.
Remark 1.4. Below, a Boolean profunctor is an ordinary profunctor 𝐻 ∶ 𝐶 ←→ 𝐷 whose values are either the
initial set ∅ ≡ ⊥ or the terminal set ∗ ≡ ⊤. If 𝐶 and 𝐷 are discrete, then such a profunctor 𝐻 is simply a relation
of sets. In this case, we call the profunctor 𝐻 a function if it is a functional relation or a cofunction if the dual
profunctor 𝐻op is a function. ▴

Remark 1.5. For any map of posets 𝐹 ∶ 𝑃 → 𝑄, the fiber 𝐹−1(𝑥 → 𝑦) over an arrow 𝑥 → 𝑦 of 𝑄 defines a
Boolean profunctor 𝐹−1(𝑥) ←→ 𝐹−1(𝑦) by mapping (𝑎, 𝑏) to ⊤ iff 𝑎 → 𝑏 is an arrow in 𝑃 . ▴

Definition 1.6. Given 1-trusses 𝑇 and 𝑆, a 1-truss bordism 𝑅 ∶ 𝑇 ←→ 𝑆 is a Boolean profunctor 𝑇 ←→ 𝑆
satisfying the following:
1. 𝑅 restricts to a function 𝑅(0) ∶ 𝑇(0) ←→ 𝑆(0) and a cofunction 𝑅(1) ∶ 𝑇(1) ←→ 𝑆(1).
2. Whenever 𝑅(𝑡, 𝑠) = ⊤ = 𝑅(𝑡′, 𝑠′), then either 𝑡 ≺ 𝑡′ or 𝑠′ ≺ 𝑠 but not both. ▴

Importantly, 1-truss bordisms are morphisms of a category 𝔗1 that embeds into the category of profunctors 𝐏𝐫𝐨𝐟
(unlike general Boolean profunctors). See the discussion of ‘labels’ below for details.
Definition 1.7. A 1-truss bundle over a ‘base’ poset (𝑃 ,≤) is a poset map 𝑞 ∶ (𝑇 ,≤) → (𝑃 ,≤) in which, for
each 𝑥 ∈ 𝑃 , the fiber (𝑇 𝑥,≤) = 𝑞−1(𝑥) is equipped with the additional structures (⪯, dim) of a 1-truss, and, for
each arrow 𝑥 → 𝑦 in 𝑃 , the fiber 𝑞−1(𝑥 → 𝑦) is a 1-truss bordisms 𝑇 𝑥 ←→ 𝑇 𝑦 (cf. Rmk. 1.5). ▴

Definition 1.8. A 1-truss bundle map 𝐹 ∶ 𝑞1 → 𝑞2 of 1-truss bundles 𝑞𝑖 ∶ 𝑇𝑖 → 𝑃𝑖 is a map 𝐹 ∶ 𝑇1 → 𝑇2 that
descends along 𝑞𝑖 to a ‘base’ map 𝐹0 ∶ 𝑃1 → 𝑃2, such that 𝐹 is fiberwise a 1-truss map (cf. Def. 1.2). We
further say 𝐹 is regular resp. singular resp. dimension-preserving if it is fiberwise so. ▴
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1.3 𝑛-Truss bundles and 𝑛-trusses

Definition 1.9. An 𝑛-truss bundle 𝑇 over a poset 𝑃 is a tower of 1-truss bundles (see Def. 1.7)
𝑇𝑛 𝑇𝑛−1 ⋯ 𝑇1 𝑇0 = 𝑃

𝑞𝑛 𝑞𝑛−1 𝑞2 𝑞1 ▴

Definition 1.10. An 𝑛-truss bundle map 𝐹 ∶ 𝑇 → 𝑇 ′ is a tower of 1-truss bundle maps 𝐹𝑖 ∶ 𝑞𝑖 → 𝑞′𝑖 where
𝐹𝑖−1 is the base map of 𝐹𝑖 and 𝐹𝑛 ≡ 𝐹 ∶ 𝑇𝑛 → 𝑇 ′

𝑛 . The adjectives ‘regular’ resp. ‘singular’ resp. ‘dimension-
preserving’ apply to 𝐹 if they apply to all 𝐹𝑖. If 𝑇 and 𝑇 ′ have the same base 𝑃 , then 𝐹 is called base-preserving
if 𝐹0 = id𝑃 . ▴

Terminology 1.11. An 𝑛-truss bundle over the terminal poset ∗ is called an 𝑛-truss. ▴

2 Labels

2.1 Truss bundles with labels

Definition 2.1. Given a category 𝐶 , a 𝐶-labeled 𝑛-truss bundle 𝑇 = (𝑇 , 𝗅𝖻𝗅𝑇 ) over 𝑃 consists of an ‘underlying’
𝑛-truss bundle 𝑇 = (𝑇𝑛 → ... → 𝑇1 → 𝑃 ) together with a ‘labeling’ functor 𝗅𝖻𝗅𝑇 ∶ 𝑇𝑛 → 𝐶 . In other words, 𝑇 is
of the form

𝐶 𝑇𝑛 𝑇𝑛−1 ⋯ 𝑇1 𝑇0 = 𝑃
𝑞𝑛 𝑞𝑛−1 𝑞2 𝑞1𝗅𝖻𝗅𝑇 ▴

Remark 2.2. If 𝐶 = ∗ is the terminal category in the previous definition, then we recover ordinary 𝑛-truss
bundles. ▴

Definition 2.3. A labeled 𝑛-truss bundle map 𝐹 = (𝐹 , 𝗅𝖻𝗅𝐹 ) ∶ 𝑇 → 𝑇 ′ from a 𝐶-labeled 𝑛-truss bundle 𝑇 to a
𝐶 ′-labeled 𝑛-truss bundle 𝑇 ′ consists of an 𝑛-truss bundle map 𝐹 ∶ 𝑇 → 𝑇 ′ and a functor 𝗅𝖻𝗅𝐹 ∶ 𝐶 → 𝐶 ′ such
that there is a natural isomorphism 𝗅𝖻𝗅𝑇 ′◦𝐹 ≅ 𝗅𝖻𝗅𝐹◦𝗅𝖻𝗅𝑇 . Adjectives ‘regular’, ‘singular’, ‘dimension-preserving’,
‘base-preserving’ apply if they apply to 𝐹 . Further, we say 𝐹 is label-preserving if 𝗅𝖻𝗅𝐹 = id𝐶 . ▴

Labeled truss bundles are a central ingredient in truss theory (see Appendix A).

2.2 Normalization theorem

Definition 2.4. Given 𝐶-labeled 𝑛-truss bundles 𝑇 and 𝑇 ′ over 𝑃 , a reduction 𝐹 ∶ 𝑇 → 𝑇 ′ is a labeled 𝑛-truss
bundle map which is:
1. regular;
2. endpoint-dimension-preserving, meaning it is dimension-preserving on the endpoints of all 1-truss fibers;
3. base-preserving;
4. label-preserving-on-the-nose, meaning that 𝗅𝖻𝗅𝐹 = id and there is a strict equality 𝗅𝖻𝗅𝑇 ′◦𝐹 = 𝗅𝖻𝗅𝑇 . ▴

Terminology 2.5. We sometimes write reductions as 𝐹 ∶ 𝑇
𝗋𝖾𝖽
←←←←←←←←←←←←→ 𝑇 ′, and say 𝑇 ′ is a reduct of 𝑇 . A labeled truss

whose only reduct is itself is called normalized (or, said to be in normal form). ▴

Theorem 2.6. (Normalization ends in normal forms). For any labeled truss 𝑇 , the category 𝖭𝗈𝗋𝗆(𝑇 ) of reducts
of 𝑇 and reductions between them has a unique terminal object J𝑇 K (called the normal form of 𝑇 ).
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3 Combinatorial manifold diagrams

Certain labeled trusses are the combinatorial analogues of geometric manifold diagrams (see Appendix B).

3.1 Ingredients

Definition 3.1. (Stratified truss). A stratified 𝑛-truss 𝑇 is a labeled 𝑛-truss 𝑇 whose labeling 𝗅𝖻𝗅𝑇 is a quotient
map of posets whose preimages are connected. ▴

Definition 3.2. (Open truss). A 1-truss is called open if its endpoints have dimension 1. A (labeled) 𝑛-truss 𝑇 is
called open if all 1-truss fibers in all 1-truss bundles that comprise 𝑇 are open. ▴

Definition 3.3. (Open neigborhood). Given an open 𝑛-truss 𝑇 and an element 𝑥 ∈ 𝑇𝑛, define the neighborhood
𝑇 ≤𝑥 of 𝑥 to be the unique open truss that comes with a dimension-preserving map 𝐹 ∶ 𝑇 ≤𝑥 ↪ 𝑇 such that
𝐹 ∶ 𝑇 ≤𝑥

𝑛 ↪ 𝑇𝑛 is an inclusion of the downward closure of 𝑥 into the poset (𝑇𝑛,≤). ▴

Terminology 3.4. (Atomic truss). Given an open 𝑛-truss 𝑇 with 𝑥 ∈ 𝑇𝑛 such that 𝑇 ≤𝑥 = 𝑇 , we say 𝑇 is an
atomic open 𝑛-truss with cone point 𝑥. ▴

Definition 3.5. (Stratified open neighborhood). Given a stratified open 𝑛-truss 𝑇 and an element 𝑥 ∈ 𝑇𝑛, define
the stratified neighborhood 𝑇 ≤𝑥 to be the unique stratified truss that stratified embeds in 𝑇 with underlying truss
map being the (non-stratified) neighborhood inclusion of 𝑥. ▴

Terminology 3.6. (Cone types). A stratified open 𝑛-truss 𝑇 is said to be a combinatorial cone type if the
underlying truss of 𝑇 is atomic with cone point 𝑥, and {𝑥} = 𝗅𝖻𝗅−1𝑇 ◦𝗅𝖻𝗅𝑇 (𝑥) (in words: ‘𝑥 is its own stratum’).▴
Definition 3.7. (Cylinders). Given a labeled 𝑚-truss 𝑇 defined the 𝑘-cylinder 𝕀𝑘 × 𝑇 of 𝑇 to be the labeled
(𝑚 + 𝑘)-truss obtained from 𝑇 by adding 𝑘 trivial truss bundles ∗ → ∗ to its underlying truss. ▴

Remark 3.8. (Products). More generally, one can similarly define labeled (𝑘 + 𝑚)-trusses 𝑈 × 𝑇 as products
between unlabeled 𝑘-trusses 𝑈 and labeled 𝑚-trusses 𝑇 . ▴

3.2 Definition

Putting the preceding notions together (and inspired by the geometric definition of manifold diagrams, see
Appendix B), we obtain a combinatorial version of framed conicality as follows.
Definition 3.9. A combinatorial manifold 𝑛-diagram 𝑇 is a stratifed open 𝑛-truss such that for all 𝑥 ∈ 𝑇 we
have q

𝑇 ≤𝑥y = 𝕀𝑘 × 𝐶𝑥

where 𝐶𝑥 is a combinatorial cone type. ▴

4 Manifold-diagrammatic higher categories

We define two classes of maps, which together assemble into a double category over which we consider presheafs.

4.1 Embeddings

Definition 4.1. Embeddings of combinatorial manifold diagrams 𝑇 , 𝑆 are described by spans of the form
𝑇 𝑇 ′ 𝑆𝗋𝖾𝖽

where 𝑇 ′ 𝗋𝖾𝖽
←←←←←←←←←←←←→ 𝑇 is a reduction and 𝑇 ′ ↪ 𝑆 is map of labeled trusses whose underlying map is regular and

injective. Embeddings compose by pullback composition of spans. ▴
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4.2 Quotients

Definition 4.2. Quotients of combinatorial manifold diagrams 𝑇 , 𝑆 are maps of labeled trusses

𝑇 ↠ 𝑆

whose underlying map of trusses is singular and surjective. ▴

4.3 Definition

Terminology 4.3. Together, embeddings and quotients organize into the double category 𝕄𝖣𝗂𝖺𝗀𝑛 of combinato-
rial manifold 𝑛-diagrams, with horizonal morphisms being embeddings, vertical morphisms being quotients,
squares being commuting diagrams of the following form:

𝑇1 𝑇 ′
1 𝑆1

𝑇2 𝑇 ′
2 𝑆2

𝗋𝖾𝖽

𝗋𝖾𝖽

(note that the dashed arrow is unique if it exists.) The category of manifold 𝑛-diagrams 𝖬𝖣𝗂𝖺𝗀𝑛 will refer to just
the horizontal part of this double category. ▴

Remark 4.4. (The 𝑛 = ∞ case). Given a combinatorial manifold 𝑛-diagram 𝑓 , note its cylinder 𝕀 × 𝑓 is a
combinatorial manifold (𝑛+ 1)-diagram. This defines a chain of inclusions of (ordinary resp. double) categories,
the colimit of which is a category of manifold diagrams 𝖬𝖣𝗂𝖺𝗀 (resp. the double category 𝕄𝖣𝗂𝖺𝗀). ▴

Terminology 4.5. The category 𝖬𝖣𝗂𝖺𝗀𝑛 (and similarly, 𝖬𝖣𝗂𝖺𝗀 from Rmk. 4.4) contains wide subcategories
𝖬𝖣𝗂𝖺𝗀𝐿𝑛 resp. 𝖬𝖣𝗂𝖺𝗀𝑅𝑛 consisting of spans

𝑇 𝑆 𝑆 resp. 𝑇 𝑇 𝑆.𝗋𝖾𝖽 ▴

We define a coverage for 𝖬𝖣𝗂𝖺𝗀𝑅𝑛 . (Note that 𝖬𝖣𝗂𝖺𝗀𝑅𝑛 does not have all pullbacks since, e.g., subdiagrams can
intersect in non-diagrams.)
Definition 4.6. The neighborhood coverage 𝐽 for 𝖬𝖣𝗂𝖺𝗀𝑅𝑛 is the coverage that assigns to 𝑇 ∈ 𝖬𝖣𝗂𝖺𝗀 the single
family {𝑓𝑥 ∶ 𝑇 ≤𝑥 → 𝑇 }𝑥∈𝑇 comprised of the stratified neighborhoods of 𝑇 . ▴

Definition 4.7. A manifold-diagrammatic 𝑛-category  is a presheaf on 𝖬𝖣𝗂𝖺𝗀𝑛 such that:
1.  is a sheaf on (𝖬𝖣𝗂𝖺𝗀𝑅𝑛 , 𝐽 ) and locally constant on (i.e. constant on the connected components of) 𝖬𝖣𝗂𝖺𝗀𝐿𝑛 ,
2.  extends to a double-(co)presheaf 𝕄𝖣𝗂𝖺𝗀op,co𝑛 → 𝕊𝐞𝐭 (where 𝕊𝐞𝐭 is the double category of squares in the
category of sets, and  is covariant on vertical categories). ▴

A Classifying categories for truss bundles

A.1 Classifying 1-truss bundles

Since fiber transitions in 1-truss bundles are 1-truss bordisms, it comes as no surprise that the category of 1-truss
bordisms classifies 1-truss bundles.
Definition A.1. Given 1-truss bordisms 𝑅 ∶ 𝑇 ←→ 𝑆 and 𝑄 ∶ 𝑆 ←→ 𝑈 , their composite profunctor 𝑅◦𝑄
(composed as ordinary profunctors) is again a 1-truss bordism. (In contrast, composites of general Boolean
profunctors (composed as ordinary profunctors) in general need not themselves be Boolean.) This defines the
category 𝔗1 of 1-trusses and their bordisms. ▴
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Theorem A.2. 1-truss bundles over a base poset 𝑃 up to dimension-preserving base-preserving isomorphism
bijectively correspond to functors 𝑃 → 𝔗1 up to natural isomorphism.

Proof. Follows from the definition of 1-truss bundles.

The theorem now generalizes to labelled 1-truss bundles as follows.
Definition A.3. Given a category 𝐶 , the category 𝔗1(𝐶) of 𝐶-labeled 1-trusses and their bordisms is defined
as follows: objects of 𝔗1(𝐶) are 𝐶-labeled 1-truss bundles over [0]; morphisms are 𝐶-labeled 1-truss bundles
over [1] (with domain and codomain given by restricting to fibers over 0 resp. 1); two morphisms compose to a
third iff there is a 𝐶-labeled bundle over [2] that restricts over (0 → 1), (1 → 2), and (0 → 2) to the first, second,
resp. third morphism. ▴

Theorem A.4. 𝐶-labelled 1-truss bundles over a base poset 𝑃 up to dimension-preserving base-preserving
label-preserving isomorphism bijectively correspond to functors 𝑃 → 𝔗1(𝐶) up to natural isomorphism.

Proof. Follows from the definition of 𝔗1(𝐶).
Remark A.5. (Recovering the unlabeled case). In particular, the preceding two definitions coincide 𝔗1(∗) ≅ 𝔗1

up to (essentially unique!) isomorphism of categories when 𝐶 = ∗ is terminal. ▴

Remark A.6. (Functoriality of labeled bordism). Importantly, the construction of 𝔗(𝐶) is functorial in 𝐶 .
Indeed, given a functor 𝐹 ∶ 𝐶 → 𝐷, then 𝔗1(𝐹 ) ∶ 𝔗1(𝐶) → 𝔗1(𝐷) acts on objects and morphisms of 𝔗1(𝐶)
by post-composing their labelings with 𝐹 . This yields the labeled bordism functor

𝔗1 ∶ 𝐂𝐚𝐭 → 𝐂𝐚𝐭.

A.2 Classifying 𝑛-truss bundles

For a given category 𝐶 ∈ 𝐂𝐚𝐭 we can thus apply the labeled bordism functor 𝑛 times to it: the resulting category
𝔗𝑛(𝐶) classifies 𝐶-labeled 𝑛-truss bundless as follows.
Theorem A.7. 𝐶-labelled 𝑛-truss bundles over a base poset 𝑃 up to dimension-preserving base-preserving
label-preserving isomorphism bijectively correspond to functors 𝑃 → 𝔗𝑛(𝐶) up to natural isomorphism.

Proof. Inductively apply the previous theorem, starting with the highest 1-truss bundle and working your way
downwards.
Remark A.8. (𝑛-Truss bundles over categories). The theorem makes it evident that nothing would have stopped
us from defining 𝑛-truss bundles over categories 𝐵 (in place of just posets): indeed, such bundles may be thought
of as functors 𝐵 → 𝔗𝑛(∗) (or 𝐵 → 𝔗𝑛(𝐶) in the labeled case). ▴

Lukas Heidemann points out the following nice perspective on the labeled bordism functor.
Remark A.9. (Universal construction of the labeled bordism functor) Applying the profunctorial Grothendieck
construction to the (frame-order-forgetting) functor 𝔗1 → 𝐏𝐫𝐨𝐟 , yields an exponentiable fibration 𝐸𝔗1 → 𝔗1.
By general nonsense, the composition of the pullback 𝐂𝐚𝐭∕𝔗1 → 𝐂𝐚𝐭∕𝐸𝔗1 and forgetful functor 𝐂𝐚𝐭∕𝐸𝔗1 → 𝐂𝐚𝐭
has a right adjoint 𝐂𝐚𝐭 → 𝐂𝐚𝐭∕𝔗1 ; this adjoint is exactly the functor 𝐶 ↦ 𝔗1(𝐶 → ∗). (Note: more generally,
this construction applies to all normal pseudofunctors 𝐻 ∶ 𝐷 → 𝐏𝐫𝐨𝐟 , where it characterizes the constructions
of ‘vertical comma categories’ 𝐻∕∕𝐶 for such functors 𝐻 (see [Dorn-Douglas 2021, Term. 2.3.18]) as right
adjoints.) ▴
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Remark A.10. (Labels in ∞-categories) The construction of 𝔗1(−) generalizes to an endofunctor on ∞-
categories 𝐂𝐚𝐭∞, which immediately leads to a notion of truss bundles labeled in ∞-categories. ▴

Thus there is a ‘spectrum’ of base/label structures on which we can reasonably consider truss bundles, ranging
from posets over to categories to ∞-categories. Most of the theory works the same across the spectrum. In this
article, we work with the simplest possible choice, i.e. with posets (initially as base structure, but later even as
label structures for the purpose of defining ‘stratifications’).

B Geometric manifold diagrams and their combinatorialization

(We omit a recollection of stratified topology, see here for an introduction to stratified spaces.)

B.1 Definition of manifold diagrams

Definition B.1. The standard 𝑛-framing of ℝ𝑛 is the chain of oriented ℝ-fiber bundles 𝜋𝑖 ∶ ℝ𝑖 → ℝ𝑖−1

(1 ≤ 𝑖 ≤ 𝑛) with 𝜋𝑖 defined to be the map that forgets the last coordinate of ℝ𝑖 (and fibers carry the standard
orientation of ℝ after identifying ℝ𝑖 = ℝ𝑖−1 ×ℝ). ▴

When considering ℝ𝑛 we tacitly always think of it as ‘standard framed ℝ𝑛’ and, thus, we stop mentioning
the standard framing as an explicit structure all-together. Indeed, more important than defining the standard
𝑛-framing is to define the maps that preserve it.
Definition B.2. A framed map 𝐹 ∶ ℝ𝑛 → ℝ𝑛 is a map for which there exist (necessarily unique) maps
𝐹𝑗 ∶ ℝ𝑗 → ℝ𝑗 (0 ≤ 𝑗 ≤ 𝑛) with 𝐹𝑛 = 𝐹 such that 𝜋𝑖◦𝐹𝑖 = 𝐹𝑖−1◦𝜋𝑖 with 𝐹𝑖 preserving orientations of fibers of
𝜋𝑖 (i.e. mapping fibers strictly monotously). ▴

A framed stratified map (ℝ𝑛, 𝑓 ) → (ℝ, 𝑔) is a stratified map whose underlying map ℝ𝑛 → ℝ𝑛 is framed.
Moreover, when working with products (ℝ𝑘, 𝑓 ) × (ℝ𝑛−𝑘, 𝑔) we will identitify ℝ𝑛 ≅ ℝ𝑘 ×ℝ𝑛−𝑘 in the standard
way; and, when working with cone stratifications (Cone(𝑆𝑛−1), cone(𝑙)), we will standard embed 𝑆𝑛−1 ↪ ℝ𝑛

and identify Cone(𝑆𝑛−1) ≅ ℝ𝑛 by mapping (𝑥 ∈ 𝑆𝑛−1, 𝜆 ∈ [0, 1)) to 𝜆
1−𝜆

𝑥 ∈ ℝ𝑛.
Definition B.3. A stratification (ℝ𝑛, 𝑓 ) is framed conical if each point 𝑥 ∈ ℝ𝑛 it has a framed stratified neigh-
borhood (framed) homeomorphic to ℝ𝑘 × (Cone(𝑆𝑛−𝑘−1), cone(𝑙)) with 𝑥 ∈ ℝ𝑘 × {0}, where 0 ≤ 𝑘 ≤ 𝑛 and
(𝑆𝑛−1, 𝑙) is some stratification. ▴

Definition B.4. A compactly-described triangulation 𝐾 of ℝ𝑛 is a finite stratification of ℝ𝑛 by open disks whose
closures are the images of linear embeddingsnn Δ𝑘 ×ℝ𝑙

≥0 ↪ ℝ𝑛 (𝑘 + 𝑙 ≤ 𝑛). This now translates to the framed
stratified case as follows: a stratification (ℝ𝑛, 𝑓 ) is framed compactly triangulable if it admits a framed stratified
subdivision (ℝ𝑛, 𝐾) → (ℝ𝑛, 𝑓 ) of 𝑓 by a compactly-described triangulation 𝐾 . ▴

We can now put these concepts together to obtain the following definition of manifold diagrams.
Definition B.5. A manifold 𝑛-diagram is a framed conical, framed compactly triangulable stratification of ℝ𝑛.▴

B.2 Combinatorialization theorem

Theorem B.6. Manifold diagrams, up to framed stratified homeomorphism, bijectively correspond to normalized
combinatorial manifold 𝑛-diagrams.

Proof sketch. Given a manifold 𝑛-diagram (ℝ𝑛, 𝑓 ) its corresponding normalized combinatorial manifold 𝑛-
diagram can be constructed by first refining 𝑓 by the unique coarsest 𝑛-mesh 𝑀 , and then labeling the 𝑛-truss
𝖤𝗇𝗍𝗋(𝑀) with the labeling 𝖤𝗇𝗍𝗋(𝑀 → 𝑓 ).
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