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Introduction

−→

Topological Land
Combinatorial land

−→

f ram i n gs

Framed combinatorial topology is a novel theory providing a combinatorial
description of phenomena that arise at the intersection of stratified topology,
Morse and singularity theory, and higher algebra. The theory synthesizes
several elements of classical combinatorial topology with a new approach to
framings that locally endows combinatorial structures with a rigid frame of
spatial directions. Adding framings as a foundational ingredient leads to a new
and greatly refined perspective on many topological and geometric phenomena
as well as their combinatorial counterparts. This often results in unexpectedly
good behavior when compared to classical, nonframed combinatorial notions
of space.

In discussing this behavior and its contrast with that of classical structures,
we emphasize two broad themes, ‘computability in combinatorial topology’
and ‘combinatorializability of topological phenomena’. The first theme of
computability concerns whether certain combinatorial structures (such as
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I.1. ♢COMPUTABILITY IN COMBINATORIAL TOPOLOGY x

simplicial complexes homeomorphic to spheres) can be algorithmically rec-
ognized and classified. The second theme of combinatorializability concerns
whether certain constructions in the study of continuous (or smooth) spaces
can be faithfully described through discrete combinatorial means.

Combining these themes, we will find that in the context of framed combi-
natorial topology we can overcome a set of fundamental classical obstructions
to the computable combinatorial representation of topological phenomena.
Building on these themes, as of yet unexplored connections between smooth
manifold structures, singularity theory, and higher algebra, linked through
the language of framed combinatorial topology, will emerge towards the end
of the book.

We begin this introduction by elaborating the themes of computability
and of combinatorializability in, respectively, Section I.1 and Section I.2. We
then give a more formal overview of our results in Section I.3, a chapter-by-
chapter outline in Section I.4, and an outlook on the larger program and
aims of the subject in Section I.6.

I.1. ♢Computability in combinatorial topology

Computability is the ability to solve a general problem by a general
method, that is, the ability to write a step-by-step procedure which for each
specific instance of a problem computes a solution. Combinatorial topology
provides, in a sense, a computation-oriented foundation for the study of spaces,
by encoding space in discrete structures [RS72, Bry02]. However, many
fundamental problems in combinatorial topology turn out to be computably
intractable; such problems include the following [Mar58, VKF74, CL06,
Wei04, JLLT22]:

Consider this list of
references [Reduced
to two originals, one
survey. In ‘Quantum
Geometry’ book, sec.
6.3, same first two
reference are picked]

(1) Disk recognition. The statement ‘The simplicial complex K is homeo-
morphic to the n-disk’ cannot be computably verified for general finite
complexes K. This uncomputability issue remains in the piecewise lin-
ear setting: the statement ‘The simplicial complex K piecewise linearly
subdivides the n-simplex’ cannot be verified. In particular, one cannot
classify all topological subdivisions of the n-disk, nor all piecewise linear
subdivisions of the n-simplex.

(2) Homeomorphism problem. More generally, it is impossible to algo-
rithmically decide whether two simplicial complexes K and L have
homeomorphic, or piecewise linearly homeomorphic, geometric realiza-
tions. Similarly, given two embedded, or piecewise linearly embedded,
simplicial complexes K ↪→ RN and L ↪→ RN , one cannot in general
determine whether the embeddings are ambient homeomorphic, respec-
tively ambient piecewise linearly homeomorphic. Yet more generally,
it is undecidable whether stratified simplicial complexes are stratified
homeomorphic or stratified piecewise linearly homeomorphic; similarly
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for stratified embedded complexes and stratified ambient homeomor-
phism, or stratified piecewise linearly embedded complexes and stratified
ambient piecewise linear homeomorphism.

(3) Manifold classification. Manifolds are comparably intractable: the
statement ‘The simplicial complex K is homeomorphic to a manifold’
cannot be computably verified in general, and neither can the statement
‘The simplicial complex K is a piecewise linear manifold’. In particular,
one cannot classify all simplicial complexes homeomorphic or piecewise
linearly homeomorphic to manifolds, nor constructively enumerate
homeomorphism or piecewise linear homeomorphism types of manifolds.

One could view these failures of computability as unavoidable imperfections
of mathematics as we know it, or one can see them as failures of the interplay
of standard simplicial methods and traditional topological notions. Adopting
the latter viewpoint, one may hope for a form of combinatorial topology
with better computability properties, for instance in which one can recog-
nize combinatorial disks, decide combinatorial homeomorphism, and classify
combinatorial manifolds.

The first central theme of this book is that, though classical simplicial
methods often do not provide an entirely computable foundation for com-
binatorial spaces, there is a different approach, using framed combinatorial
spaces, that may provide a more suitable foundation for computable combina-
torial topology. Our theory of ‘framed combinatorial topology’ differs in two
fundamental respects from classical piecewise linear topology: first, we endow
simplices and simplicial complexes with a combinatorial framing structure
akin to local directions [Gra03], and second, we generalize the resulting class
of ‘framed simplicial complexes’ to a broader class of ‘framed regular cell
complexes’. Though classical regular cells are much less tractable even than
simplices—indeed even the list of cell shapes is uncomputable—it will turn
out that framed regular cells arise as iterated constructible combinatorial
bundles and therefore both these cells and their complexes are, remarkably,
algorithmically classifiable.

A classical frame of an m-dimensional vector space is an ordered choice
of m linearly independent vectors. We will define a combinatorial frame of an
m-simplex to be an ordered choice of m vectors in the spine of the simplex.
To make sense of a frame on a simplicial complex, we need a notion of the
compatibility of frames along faces shared between simplices. The restriction
of a frame of a simplex to a face gives not only information about a frame
of the face but also about how that restricted frame embeds in the ambient
frame of the simplex; we will be primarily concerned with the resulting
notion of embedded framed simplex, and a framed simplicial complex will be
a simplicial complex with compatible embedded frames on all its simplices.

Regular cell complexes, that is those complexes whose attaching maps
are injective, generalize simplicial complexes by allowing cells of ‘polytopic’
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shapes instead of merely ‘triangular’ shapes [Zie12]. Regular cells can be
identified with the geometric realizations of their face posets [Bjö84, LW69],
and via that identification they obtain piecewise linear simplicial subdivisions.
We use that simplicial structure, together with our notion of framed simplicial
complexes, to define framings of regular cells and identify a tractable class of
such cells: namely, cells whose framing structure is ‘contractible’ as guaranteed
by a combinatorial notion of framed collapse which closely mirrors the classical
notion of combinatorial-topological collapse [Whi50] but respects frame
orders.

A framed regular cell complex, finally, will be a regular cell complex with
compatible choices of framings on each of its cells.

A space with a homeomorphism to a regular cell complex is ‘cellulated’,
as a space with a homeomorphism to a simplicial complex is ‘triangulated’.
The fact that cellulated spaces have played a less prominent role than tri-
angulated spaces in classical combinatorial topology is partially due to the
aforementioned fundamental computability obstruction: it is impossible to
classify all the possible shapes of regular cells, in the sense that one cannot
produce a list of all regular cells with a given number of faces, in general;
said another way, there is no general algorithm for deciding whether a given
poset is the face poset of a regular cell, even though there are only finitely
many posets of a given size. Even when constraining the class of cells further,
say, to the class of convex polytopic shapes, classifications of these cells in
elementary combinatorial terms are often not known.

Endowing regular cells with a framing overcomes these fundamental
issues: framed regular cells, in contrast to their nonframed counterparts, are
classifiable. More precisely, we will discover that collapsibly framed regular
cell complexes are classified by a novel elementary combinatorial structure,
called ‘trusses’, which are iterated constructible bundles of oriented fence
posets. As a result, given a poset together with a framing of its underlying
simplicial complex, we can algorithmically recognize whether the poset is the
face poset of a framed regular cell.

Framed regular cells strike an unlikely and delicate balance, being simul-
taneously a class of shapes that is tractable (i.e., algorithmically recognizable
and classifiable in elementary combinatorial terms) and also a class of shapes
that is quite general and has a rich category of maps. In combination, this
provides a unique set of properties, many of which are unthinkable with
simplicial structures and unknown with any other class of shapes: cell subdi-
visions obtain elementary combinatorial representation as certain maps, the
class of cells is closed under geometric dualization, and, most importantly,
framed realizable spaces admit coarsest cell structures. In particular, any
n-framed regular cell complex that can be (not necessarily injectively) framed
realized in Rn has a computable unique coarsest cell structure. Having a
computably unique representation of these complexes makes algorithmically
decidable almost any question about them; for instance, it follows that framed
homeomorphism of these complexes is decidable, in stark contrast to the
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classical (nonframed simplicial) situation. In this and other related respects,
working with framed regular cells and their complexes provides, finally, a
computable framework for combinatorial models of spaces.

1 : Of course, in
final pass will re-
move ’framed realiz-
able’ in favor of n-
DAG, probably. ’re-
alizable’ is no longer
in serious use in the
main text.

I.2. ♢Combinatorializability of topological phenomena

Combinatorics is primarily concerned with discrete, and often finite, struc-
tures whose constituents can be counted. Topology, by contrast, is primarily
concerned with the continuous structure of spaces. The ‘combinatorializ-
ability’ of topological phenomena refers to the ability to faithfully encode
continuous objects (spaces, manifolds, continuous maps, bordisms, et cetera)
in discrete or finite data structures. This faithful encoding depends both
on having a combinatorial representation of the object in question, and on
knowing that representation is unique up to some specified combinatorial
equivalence relation.

There are by now various known instances of topological phenomena that
cannot be faithfully combinatorialized, or even combinatorialized at all, giving
an impression of a mysterious and insurmountable divide between topological
spaces and any discrete representations of those spaces. A headline instance
of this divide is the disproven ‘Hauptvermutung’, a conjecture that, roughly
speaking, claimed that topological homeomorphism coincides with piecewise
linear homeomorphism [RCS+96]. This conjecture would in particular
imply that combinatorial spaces (that is, geometric realizations of simplicial
complexes) that are homeomorphic are also piecewise linear homeomorphic.
This intuitive, presumptive claim was eventually disproven [Mil61] by the
explicit construction of homeomorphic finite simplicial complexes that are
not piecewise linear homeomorphic.

Consider this list of
references. [I moved
refs to end of sen-
tence. Ethan Akin
ref removed. Selec-
tion is a bit biased?
(Could cover more
topics?) But also we
go into more details
below.]

A flurry of results followed in subsequent decades, quantifying the
divide not only between the ‘continuous’ and the ‘combinatorial’, but
also between the ‘combinatorial’ and the ‘smooth’ conceptions of space
[KS69, HM74, KS77, Fre82, Don83]. Recently, a disproof of the tri-
angulation conjecture [Man16] established an especially stark gap, that in
every dimension greater than 4 there exist compact topological manifolds
that do not even admit a triangulation. (It will be pertinent later that
most instances of the classical topological–combinatorial gap rely on certain
infinitary or ‘wild’ topological constructions.) By contrast, smooth manifolds
always admit triangulations and all triangulations of a smooth manifold are
combinatorially equivalent [Whi40]. However, smooth manifolds that are
not smoothly isomorphic may nevertheless be combinatorially isomorphic
[Mil56, Mil10], and combinatorial manifolds need not admit any smooth
structure [Ker60].

One might dream of a topological foundation or combinatorial framework
in which the mismatch between the continuous, combinatorial, and smooth
conceptions of space would, at least to some extent, be lessened. One could
imagine, firstly, a discrete, perhaps infinitary, combinatorial theory that
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faithfully represents a delineated class of relevant continuous phenomena,
and secondly, a discrete, perhaps finitary, combinatorial theory that suitably
encodes smooth behavior. Each of these two comparative visions has been
pursued, to some but not complete satisfaction: for instance, an ‘o-minimal’
approach to tame topology provides a method for excluding certain wild
topological structures [VdD98, Shi14], while a ‘matroid’ perspective aims
for a direct combinatorial description of smooth structures [Mac91, GM92,
Bjö99].

The second central theme of this book is that, in contrast to the classical
gap between topological and combinatorial phenomena, in our framed com-
binatorial setting there is a faithful comparison between framed topological
and framed combinatorial phenomena. Moreover, addressing the second vi-
sion above, we expect framed combinatorial structures also faithfully encode
all framed smooth phenomena, and therefore will provide an unexpected
unification of the continuous, combinatorial, and smooth perspectives on
space. While the resulting ‘topologie modérée’ [Gro97] shares some of the
common characteristics of existing approaches like o-minimal topology, it is
ultimately a fundamentally different approach, distinguished by its systematic
foundational use of bundle constructibility conditions.

The concrete framed topological structures used in the above comparisons
will not be mere tame spaces, but rather tame stratifications. These strat-
ifications are framed by an embedding in standard euclidean space. Their
tameness is captured by the condition that the stratification admit a refin-
ing ‘mesh’, which is a refinement by framed regular cells; this refinement
requirement is analogous to working with triangulable spaces and therefore
excluding, a priori, certain wild behavior. These meshes are iterated con-
structible bundles of stratified 1-manifolds, and will be a precise topological
counterpart of the iterated constructible combinatorial structure of trusses
mentioned earlier.

The chain of associations, from a tame stratification to its mesh cellulation
to the corresponding combinatorial truss, does not by itself necessarily ensure
a faithful combinatorialization of tame stratified topology. As a space can have
various inequivalent triangulations, a tame stratification could in theory have
various inequivalent meshes (and therefore corresponding trusses)—however,
we will prove, crucially, that such a stratification always has a unique coarsest
compatible mesh. This uniqueness is an unexpected and stark counterpoint
to the classical situation: given two triangulations of a space, traditionally
one aims (and fails) to construct a mutual refinement and thereby verify
their combinatorial equivalence; now instead, given two mesh cellulations of a
stratification, we construct a canonical mutual coarsening and thus establish
the desired combinatorial equivalence. The proof of this canonical coarsening
will rely, of course, again on the generality of the shapes of framed regular
cells. The canonical coarsest cell refinement provides the desired faithful
combinatorialization of topological phenomena in standard framed euclidean
space. In this context, we will also establish the ‘framed Hauptvermutung’,
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that for tame stratifications, framed homeomorphism classes coincide with
framed piecewise linear homeomorphism classes.

Regarding the combinatorialization of smooth phenomena, we will con-
jecture that any smooth manifold can be represented as a tame stratification
(via a generic embedding in euclidean space) and that the resulting combi-
natorial representation as a truss faithfully encodes the smooth structure.
The conjectures are based on a connection of so-called elementary tame
singularities and classical differential singularities, and broader parallels to
higher-dimensional Morse theory [Cer70, Arn75, Arn81, MNB22]. We
will revisit the context and plausibility of this smooth combinatorialization
conjecture in the outlook, Section I.6 below.

I.3. Overview of core concepts

We collect and summarize our main theorems, and along the way further
describe and illustrate our key definitions. Recall that a framed simplex is
an ordinary simplex together with a frame, that is, a choice of order of its
spine vectors. More generally, a framed regular cell is an ordinary regular
cell together with a suitably compatible choice of frames on each simplex
in the cell’s face poset. Though it is impossible to classify regular cells, by
contrast framed regular cells are classifiable. The classifying combinatorial
structure will be a special case of the notion of trusses, which are iterated
constructible poset bundles defined as follows.

Consider whether
to add pointer to
overview diagram
somewhere in here.
[not needed imo]

Definition 1 (Trusses). A ‘1-truss’ is a fence poset equipped with a total
‘frame’ order on its elements. An ‘n-truss’ is a length-n tower of constructible
bundles of 1-trusses.

The notions of ‘1-trusses’, their ‘constructible bundles’, and ‘n-trusses’ are
given more precisely in, respectively, Definition 2.1.6, Definition 2.1.74, and
Definition 2.3.1. Elements of a 1-truss that are targets of poset arrows are
called ‘singular’ or ‘dimension 0’, while elements that are sources of poset
arrows are called ‘regular’ or ‘dimension 1’. A 1-truss is ‘closed’ if both its
endpoints are singular, and ‘open’ if both are regular; an n-truss is ‘closed’
or ‘open’ if all its fiber 1-trusses are closed or open respectively. In Figure I.1
we illustrate a closed 2-truss and an open 3-truss; singular elements are red,
regular elements are blue, and the frame orders are indicated by green arrows.

A closed truss is called a ‘truss block’ if its total poset has an initial
element; these truss blocks provide the combinatorial correlate of framed
regular cells.

Theorem 2 (Classification of framed regular cells). The category of
framed regular cells is equivalent to the category of truss blocks.

This result will appear as Theorem 3.1.1. It will immediately imply the
algorithmic enumerability of framed regular cells (Corollary 3.3.29). More-
over, this enumeration is efficient and cells are generated ‘bottom up’ in an
elementary fashion, which sets the class of framed regular cells apart from
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2
3

1

2

1

Figure I.1. A closed 2-truss and an open 3-truss.

other, at least theoretically computationally tractable classes of shapes such
as convex polytopes: a brief comparative discussion for the latter is included
in Section 1.3.2.5.

The classification of framed regular cells builds on the classification of
regular cell complexes by cellular posets. Namely, given a framed regular
cell, the total poset of the classifying truss block is the face poset of the
cell; sequentially projecting out frame vectors from this poset determines
a tower of 1-truss bundles. In Figure I.2 and Figure I.3 we illustrate a few
framed regular cells and their corresponding truss blocks. A more extensive
menagerie of framed regular cells is kept in Chapter C.

There is an arrow
missing in the last
row [addressed]

The classification of framed regular cells by truss blocks implies a corre-
sponding classification for framed regular cell complexes. As a regular cell
complex is a presheaf on the category of regular cells and their injective maps
[EZ50, Dug99] whose cells injectively include into the complex, a ‘regular
block complex’ is a presheaf on the category of truss blocks and their injective
maps whose blocks injectively include into the complex.

Theorem 3 (Classification of framed regular cell complexes). The cat-
egory of framed regular cell complexes is equivalent to the category of truss
block complexes.

This result appears in the main text as Theorem 3.1.3.

Trusses have a geometric counterpart, called meshes, which rephrases key
elements of their definition in stratified topological terms.

Definition 4 (Meshes). A ‘1-mesh’ is a contractible 1- or 0-manifold,
stratified by open intervals and points, and equipped with a framing. An
‘n-mesh’ is a length-n tower of constructible bundles of 1-meshes.
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2

1

Figure I.2. Framed regular 2-cells and their classifying truss
blocks.

The notions of ‘1-mesh’, their ‘constructible bundles’, and ‘n-mesh’ are
given more precisely in, respectively, Definition 4.1.9, Definition 4.1.28, and
Definition 4.1.69. An n-mesh is ‘closed’ if its total space is compact, and is
‘open’ if its total space is an open disc. In Figure I.4 we illustrate a closed
2-mesh and an open 3-mesh.

The correspondence of meshes and trusses is at the core of our combina-
torialization of topological phenomena.

Theorem 5 (Equivalence of meshes and trusses). The topological category
of closed, respectively open, meshes is weakly equivalent to the discrete category
of closed, respectively open, trusses.

This result appears in a more precise form as Theorem 4.2.1. Recall that
the fundamental poset of a stratified space has an element for each stratum
and an arrow indicating when a stratum intersects the closure of another
stratum. The above equivalence takes a mesh, a tower of stratified spaces,
to the truss given by the tower of corresponding fundamental posets. As
an illustration, note that the meshes in Figure I.4 yield, on application of
fundamental posets, the trusses in Figure I.1.

Consider whether we
need more illustra-
tions of basic players,
eg mesh block, etc
[considering the level
of rigor .. i’d say
no. in any case, def-
initely not for mesh
blocks.]

Recall that a basic unsolvable problem of classical combinatorial topol-
ogy is to classify subdivisions of the n-simplex. By contrast, leveraging the
connection between framed regular cell complexes and block complexes, we
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Figure I.3. Framed regular 3-cells and their classifying truss
blocks.

can classify framed subdivisions of framed regular cells in terms of combi-
natorially defined ‘subdivision’ maps in the category of trusses. A simple
such subdivision, realized by framed regular cell complexes, is illustrated in
Figure I.5.
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3

1

2

1

Figure I.4. A closed 2-mesh and an open 3-mesh.

Theorem 6 (Combinatorial classification of framed cell subdivisions).
A framed regular cell complex framed subdivides a framed regular cell if and
only if it corresponds to a truss that combinatorially subdivides a truss block.

Couldn’t we omit the
words ‘as a framed
stratified space’
from the theorem?
[Rephrased]

This result appears in more precise form as Theorem 4.2.8.

2

1

Figure I.5. A subdivision of a framed regular cell.
There is no reference
to Fig I5. Will go
through the commit
history to unwind
when I’m next on the
intro [was meant to
tacitly illustrate the
theorem, added triv-
ial reference]

From here to the
break: not so clear
why, really, this is
here. [rewritten]

Meshes naturally support a construction of geometric dualization, which
inverts dimension of each individual stratum. The construction provides
an endofunctor on the category of meshes, turning closed meshes into open
meshes, and mesh blocks (the geometric analog of truss blocks) into so called
mesh braces.

Theorem 7 (Dualization of meshes). The topological category of closed
meshes is weakly equivalent to the topological category of open meshes.

This self-duality appears later as Corollary 4.2.9, and is based on the preceding
combinatorialization result of Theorem 5: the fundamental poset of the dual
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n-mesh is dual to the fundamental poset of the original mesh, and dimensions
of all strata in the mesh are dualized—the collection of geometric shapes
and their incidences is fully inverted. Figure I.6 illustrates the duality of
meshes in two cases: the first dualizes a (closed) 3-mesh block to an (open)
3-mesh brace, the second dualizes a 3-mesh consisting of two 3-cells to a
corresponding open 3-mesh. Note that open meshes themselves have (open)
framed regular cells as their strata.

2
3

1

2
3

1

(a)

(b)

Figure I.6. Dualization of meshes.

Removed ’, built up
from mesh blocks
and their duals, ’

If seeking smooth
connection to previ-
ous section, recon-
sider how

Meshes are a flexible, computationally tractable class of highly structured
stratifications; they furthermore provide access to a much broader, almost
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completely general class of stratifications by considering those stratifications
that admit a refinement by a mesh, as follows.

Definition 8 (Tame stratifications). An ‘n-tame stratification’ is a
stratification of a subspace of Rn that admits a refinement by an n-mesh.

This definition will appear in a more precise form in Definition 5.1.1. In
Figure I.7 we illustrate two tame stratifications of an open 4-cube, by depicting
three pertinent slices. The first stratification is the classical third Reidemeister
move [Rol03], and the second is the classical swallowtail singularity [TF18];
that these indeed admit mesh refinements is illustrated in a moment in
Figure I.8 and Figure I.9.

1

2
3

4

1

2
3

4

Figure I.7. Two tame stratifications of the 4-cube.

At the heart of the computability of our combinatorial model of stratified
framed topology is the rather unexpected fact that among the set of all
refining meshes of a tame stratification, there is always a canonical coarsest
choice. Heuristically, the coarsest refining mesh of a stratification is built up
just from the indispensable critical loci of certain projections of the strata.
Needless to say, this situation is in stark contrast to any simplicial model of
(stratified) topology, in which two triangulations almost never have a mutual
coarsening and typically do not even admit a mutual refinement, preventing
any canonical or computable comparison.

Theorem 9 (Coarsest meshes of tame stratifications). Any tame strati-
fication has a unique refining mesh that is coarser than any other refining
mesh.

This will be established as Theorem 5.2.23. In Figure I.8 and Figure I.9 we
depict the unique coarsest mesh for the third Reidemeister move and for the
swallowtail singularity.

All the RIII pictures
I think need some
editing to make the
crossings jump out
more — they really
appear to just be
in the central plane
atm. [done]

This is an actual
question: is it essen-
tial to the correct-
ness of the swallow-
tail pictures that the
projection that re-
moves the 3-axis has
no singularities? If
so, I think we should
adjust the pictures
to make the surfaces
not tangent to the 3-
direction at the right
edge. [addressed,
though likely not an
issue]
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1
2
3

4

Figure I.8. The coarsest mesh refining the third Reidemeis-
ter move.

CLD HEREA tame stratification is refined by a mesh, and a mesh is combinatorialized
by a truss; to complete the combinatorialization of tame stratifications, we
translate the initial stratification into a stratified structure on the truss. A
‘stratified poset’ is a poset together with a ‘stratification map’ to another poset
(encoding the set of strata and the combinatorial entrance paths between
them); a ‘stratified truss’ is a truss together with a stratification of its
total poset. Furthermore, a stratified truss is ‘normalized’ if it cannot be
simplified while preserving the stratification; this property of being normalized
corresponds to a mesh being maximally coarsened while still refining a given
stratification.

Theorem 10 (Classification of tame stratifications). Framed stratified
homeomorphism classes of tame stratifications are in bijective correspondence
with isomorphism classes of normalized stratified trusses.

This will be established as Theorem 5.1.23. Figure I.10 illustrates a tame
stratification, its coarsest refining mesh, and the corresponding normalized
stratified truss; the stratification on the truss records which strata of the
mesh assemble into each stratum of the initial tame stratification.
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Figure I.9. The coarsest mesh refining the swallowtail sin-
gularity.

Tame stratifications are intrinsically topological structures, considered up
to homeomorphism, while stratified trusses are intrinsically combinatorial or
piecewise linear structures, considered up to combinatorial or piecewise linear
equivalence—the classification of framed stratifications by stratified trusses
thus provides a faithful bridge between the topological and piecewise linear
contexts. Recall the classical, false Hauptvermutung, that homeomorphic
simplicial complexes are piecewise linear homeomorphic. The failure of
correspondence between the topological and the piecewise linear remains even
for subspaces (or substratifications) of euclidean space: given two piecewise
linear embedded triangulated spaces in euclidean space that are ambient
homeomorphic, they need not be ambient piecewise linear homeomorphic. By
contrast, in the framed setting we will have a tight correspondence between
the topological and piecewise linear, as follows.

Theorem 11 (Framed Hauptvermutung). Tame piecewise linear strat-
ifications that are framed stratified homeomorphic are also piecewise linear
framed stratified homeomorphic.

This result will be established later as Theorem 5.1.27. A brief comparison to
the o-minimal topological setting, in which a version of the Hauptvermutung
has also been established [Shi14, Shi13], is provided in ??.
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Figure I.10. A tame stratification, its coarsest mesh, and
its normalized stratified truss.

Having a combinatorial or piecewise linear handle on tame stratifications,
via stratified trusses, resolves several fundamental decidability problems for
framed homeomorphism and framed stratified homeomorphisms. As a first
result we will show that if an n-framed regular cell complex admits a framed
piecewise-linear realization in standard framed Rn (meaning, simply, a map
that restricts to framed embeddings on each cell), then the problem of framed
homeomorphism becomes decidable.

Theorem 12 (Decidability of framed homeomorphism). Given two finite
realizable n-framed regular cell complexes, one can algorithmically decide
whether they are framed homeomorphic.

This is recorded later as Theorem 5.1.31.
2 : Obviously all
these results need to
uniformized to the
main text, in the end.
Here, n-DAGs

A second central problem concerns the question of framed stratified
homeomorphism which, for the class of all tame stratifications, is resolved by
the following result.

Theorem 13 (Decidability of framed stratified homeomorphism). Given
two tame stratifications, one can algorithmically decide whether they are
framed stratified homeomorphic.

This is recorded later as Theorem 5.1.30, and will rely on the combinatorial-
ization of such stratifications using (normalized) stratified trusses.

Finally, we mention two key conjectures. Tame stratifications and their
framed maps exhibit conceptual analogies with stratified Morse theory, which
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understands stratified spaces through studying differentiable functions on
them: combinatorial frames provide a notion of direction or ‘flow’ akin to
that induced by a Morse function. In contrast to the classical theory, by
iterating this idea in each dimension, ‘attaching maps’ in tame stratification
become determined inductively by 1-dimensional data. We expect that this
reduction of dimensionality will allow us to extend the above computable
combinatorialization of framed topological phenomena to framed smooth
phenomena.

Conjecture 14 (Framed homeomorphism implies diffeomorphism).
Given two smooth compact manifolds smoothly embedded in euclidean space,
and defining tame stratifications there, if they are ambient framed homeomor-
phic then they are diffeomorphic.

Conjecture 15 (Framed stratifications are dense in smooth embeddings).
Any smooth embedding of a smooth compact manifold into euclidean space
has an arbitrarily small perturbation that is a tame stratification.

These conjectures reappear later as Conjecture 5.4.22 and Conjecture 5.4.23.
Because tame stratifications can be faithfully combinatorialized as stratified
trusses, these conjectures together would imply a first-of-its-kind faithful
combinatorial representation of smooth structures on manifolds.

Fig edits: specify
chapter references to
sections as appropri-
ate.I.4. Chapter outlines

We briefly outline how core notions and results are organized across
chapters. A summary of this organization is illustrated in Figure I.11.

Chapter 1 introduces framed combinatorial structures. The first such
structure, ‘framed simplices’, is a combinatorial analog of classical framed
vector spaces. A ‘framed simplicial complex’ will be a collection of compatibly
framed simplices. After recalling the classical combinatorial-topological defi-
nition of regular cell complexes, we then further generalize framed simplicial
complexes to ‘framed regular cell complexes’.

In Chapter 2, we develop our fundamental combinatorial notion of
‘trusses’, as certain iterated constructible bundles of posets. This devel-
opment begins with ‘1-trusses’, which are framed fence posets, morphisms
between them called ‘1-truss bordisms’, and families of them called ‘1-truss
bundles’. 1-truss bundles over simplices turn out to have an unexpected total
order on the top-dimensional simplices in their total posets, and this leads
to a crucial method of ‘truss induction’. Finally, we describe ‘n-trusses’, as
iterated 1-truss bundles, their corresponding ‘n-truss bordisms’ and ‘n-truss
bundles’, and their elementary constituents ‘n-truss blocks’.

Chapter 3 proves the equivalence of the category of truss blocks and
the category of framed regular cells, and more generally the equivalence
of the category of regular presheaves on truss blocks and the category of
framed regular cell complexes, as stated in Theorem 2 and Theorem 3 above.
Truss blocks are translated into framed regular cells by an appropriate
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Figure I.11. Overview of notions.

combinatorial ‘gradient’ functor; the converse functor, termed ‘integration’,
entails the more technical construction of a tower of 1-truss bundles from the
framing information on the regular cell.

In Chapter 4, we introduce our fundamental stratified topological notion
of ‘meshes’, as certain iterated constructible bundles of stratified manifolds.
From the outset, meshes appear as a topological analog of the combinatorial
structure of trusses, and the notions of ‘1-mesh’, ‘1-mesh bundle’, and ‘n-
mesh’ parallel the corresponding truss notions. Indeed, we prove, as claimed
in Theorem 5, that the topological category of meshes is weakly equivalent to
the discrete category of trusses; one direction constructs a ‘fundamental truss’,
which combinatorially encodes a mesh, and the other direction produces a
‘mesh realization’, which geometrically realizes a truss. This fundamental
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translation allows us to establish the classification of subdivisions of framed
regular cells (Theorem 6) and the self-duality of meshes (Theorem 7).

Finally, Chapter 5 radically broadens the class of stratifications under
investigation, introducing ‘tame stratifications’ as those stratifications that
admit a mesh refinement. The core work of the chapter is the proof that every
tame stratification has a coarsest refining mesh, as claimed in Theorem 9.
We leverage that result to establish the combinatorial classification of tame
stratifications in terms of normalized stratified trusses (Theorem 10). We
then bridge the topological to piecewise linear chasm, proving the framed
Hauptvermutung (Theorem 11) that for tame stratifications, framed stratified
homeomorphism implies piecewise linear framed stratified homeomorphism.
As a final application, we establish the decidability of framed stratified
homeomorphism (Theorem 13). In the final portion of the chapter, we will
describe a future outlook for framed combinatorial topology, including theories
of manifold diagrams, tangles [Con70], and the combinatorial representation
of smooth structures and singularities (Conjecture 14 and Conjecture 15).

Chapter A provides a detailed discussion of classical linear frames, cor-
responding notions of indframes and proframes (which conceptually inspire
the constructions in Chapter 3), as well as their generalizations to the cases
of partial and embedded frames, and the affine analogs of these structures.
Based on the affine notions of framings and proframings, this appendix also
describes the geometric realization of framed regular cell complexes into
‘framed spaces’. Chapter B reviews and elaborates various elementary notions
from stratified topology, including the construction of fundamental posets
and higher categories of stratifications. Chapter C provides a menagerie
of framed regular cells in dimensions 2, 3, and 4, illustrating the range of
familiar, curious, novel, and exotic shapes that arise.

I.5. Reader’s guide

Contents of this research book are organized in a largely linear fashion.
However, this linearity hides that there are, in fact, two intertwining con-
ceptual tracks: one is the ‘classical combinatorial structures’ track starting
in Chapter 1, the other the ‘constructible combinatorial structures’ track
starting in Chapter 2. The former builds directly on familiar classical notions,
such as simplices and regular cells, introducing framings as an additional
structure on those. This perspective will be especially helpful to the reader
who has had some previous exposure to classical combinatorial topology. The
latter chapter makes no direct contact with any classical notions; instead, it
defines and explores a new notion of constructible combinatorial stratified
line bundles. The equivalence of the two perspectives is proven in Chapter 3,
though the (at times technical) proofs should not distract the reader from
the useful core intuitions relating the perspectives developed earlier.

Both Chapter 1 and Chapter 2 introduce new combinatorial notions and
are, therefore, definition and example driven chapters by design that are
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relatively light on theorems and proofs. This is distinctly different from
the flavor of Chapter 4 and Chapter 5, which focus on putting the earlier
definitional frameworks to use. Together, these chapters contain most of this
book’s ‘headline results’. In both, the constructible perspective will be more
important than the classical perspective on framed combinatorial structures.
Therefore, to get to these chapters, a reading of Chapter 1 and Chapter 3 is
not strictly necessary (at least for the majority of the discussed results). A
summary of chapter dependencies, with a rough delineation of ‘classical’ and
‘constructible’ tracks, is given in Figure I.12.

Chapter 1
Combinatorial frames

on simplices, cells,
and complexes

Chapter 3
Classifying framed
regular cells using

trusses

Chapter 2
The theory of trusses,
truss bordisms, and

truss bundles

Chapter 4
The notion of meshes as a

stratified-topological
counterpart to trusses

Chapter 5
Classification and key

properties of tame
(i.e. meshable)
stratifications,

Appendix B
A theory of stratified

spaces from first
principles

Appendix A
Classical analogues
of combinatorial

frames

Appendix C
A menagerie

of framed regular
cell shapes

Figure I.12. Chapter dependencies.

An attempt is made, despite this book notably developing a new area
of research rather than acting as a reference to or expansion of an existing
one, to keep contents as self-contained as possible. In particular, the book
should be readable by any reader with basic knowledge of simplicial topology
and category theory. Additional topics are reviewed in the appendices (in
particular Chapter B, which provides an introduction to stratified topology):
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note that all three appendices are designed mostly independently of the
main text and can thus be read separately or in parallel as the reader sees
fit. Moreover, key terms and symbols are indexed in the backmatter with
references to the relevant environments where they are defined. Finally, we
remark that sections containing technical proofs and constructions that can
be safely skipped are marked with the symbol .

Fig edit: the
arrow from C5 to
AppB suggests a
dependency there,
which doesn’t exist.
Rethink where
AppB goes and how.
Maybe the arrows
to appendices are
of a different type,
and maybe they
go ‘up’, suggesting
that it’s useful
but not essential.
That better reflects
the role of AppA
and AppC too.
Maybe with that
modification the
placement of AppB
works, but also
warrants an arrow
to C4. But if there’s
an arrow from AppB
to both C4 and C5,
then why not from
AppC to C1?

Mention other back-
matter eg glossary,
symbol list, list of fig-
ures, etc [not needed
here imo]

I.6. Outlook

We briefly summarize our immediate outlook for framed combinatorial
topology beyond the present book; a more detailed discussion of these future
directions appears in the final Section 5.4.

Tame stratifications are already highly, if implicitly, structured by their
canonical mesh refinements and the relation of that refinement to the ambient
frame on euclidean space. However, the stratification itself need not be
in any sort of generic relation to the ambient frame. Moreover, a priori
strata in the stratification may have ‘irregular’ attachment maps. For certain
theoretical and computational purposes, it is essential to restrict attention to
appropriately generic and regular stratifications. We can define and detect
such stratifications in purely topological, as opposed to smooth, terms, by
insisting that each point in the stratification has a neighborhood with a
trivialization whose ‘trivial direction’ is transversal to the ambient framing.
We dub this condition framed conicality, in analogy with the classical notion
of conical stratification (see Chapter B), and call the resulting framed conical
stratifications manifold diagrams : indeed our definition provides a solution to
the long-standing search for a formal generalization of ‘string diagrams’ to all
higher dimensions [BD98, Bur93]. This notion of manifold diagrams is as
powerful as one could hope: first, because of the combinatorializability of tame
stratifications, manifold diagrams are also completely combinatorializable,
into an appropriate notion of transverse trusses, thus providing a computable
and combinatorial theory of ‘diagrammatic reasoning’; second, combining the
framed conicality and the dualization of meshes, manifold diagrams naturally
dualize to a notion of higher cell pasting diagrams that formalizes arbitrary
composability structures in higher categories.

Framed conicality
appears here, but
may be suppressed
in C5. Probably
suppress here too.
[outdated after
discussion]

Building on the conceptual link between stratified Morse theory and
framed stratifications, and drawing from the established connection between
embedded manifold bordisms and higher categories via the tangle hypothesis,
we can leverage the theory of manifold diagrams to identify a combinatorially
tractable class of tame tangles : specifically, these are embeddings of manifolds
in euclidean space that allow refinements through manifold diagrams. Of
course we expect any smooth embedding of a manifold has an arbitrarily
small deformation to a tame tangle, and so nothing is lost by excluding
more general embeddings. Our combinatorial encoding of (tame) tangles
immediately provides a novel computational toolkit: we can stratify the space
of tangles by algorithmically computable local or global complexity measures,
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and formalize computable notions of tangle perturbation, simplification, and
stability. Having a robust algorithmic approach to tangles is already novel
in dimension 4 [Kam17], but indeed our definitions and tools apply in all
dimensions and all codimensions. The divergence of our theory from the clas-
sical view of tangles becomes more interesting in higher dimensions [Lur08].
A sufficiently small open neighborhood around a critical point in a tangle is
called a ‘tangle singularity’, or just a ‘singularity’ for brevity. The traditional
view has been that singularity classification becomes profoundly unmanage-
able as the dimension increases [MY82, Fun11, BGMP24, GZA85]: first
arise uncountable continuous moduli of distinct singularity types, then the
moduli space of singularities itself becomes infinite dimensional, and generally
demons abound (except for the so-called simple singularities [AWT86]). By
contrast, in the framed combinatorial setting, singularities are countable in
all dimensions.

That context of manifold diagrams and tangle singularities considered,
there arise various open problems and directions for investigation; for instance,
the classification of perturbation-stable singularities. A ‘perturbation-stable
singularity’ is one that cannot be simplified by small deformations, and is
therefore in a sense an ‘elementary singularity’; this stability condition is
straightforward to formalize using the combinatorial complexity measures at
our disposal. We expect that the set of isomorphism classes of perturbation-
stable singularities in any fixed dimension is finite, at least when considering
tangles in codimension 1. While this classification exhibits intriguing parallels
to the classification of classical differential singularities (especially, the simple
ones), a full description remains elusive as the dimension grows.

Complementary to singularities, which are the most local sort of tangles,
are ‘tangle isotopies’, or ‘isotopies’ for brief, which are singularity-free tangles
that encode the ways manifolds can pass by one another at a distance in
euclidean space. As there are distinguished elementary singularities, namely
those that are perturbation-stable, similarly there are ‘elementary isotopies’,
namely those that cannot be deformed into a composite of simpler isotopies.
Naturally we may then pose the problem: classify elementary isotopies. Again,
we expect that the set of isomorphism classes of elementary isotopies in any
fixed dimension is finite, but a precise classification remains unknown even
in relatively low dimensions.

Given a sufficiently perturbation-stable k-dimensional tangle Mk in eu-
clidean space Rn, the composite map Mk ↪→ Rn → Rm (where the last map is
the standard projection in the canonical proframe of euclidean space) should
be a prototypical ‘m-Morse function’, in the sense that all its local singu-
larities and global isotopies would be, in an appropriate sense, elementary.
Less precisely than the previous problems, we may ask for the development
of a direct definition of m-Morse functions (without reference to tangle
embeddings), cf. [B+67, Sae93, GK11], which retains the combinatorial
and computational flavor of our tangles and manifold diagrams, and there-
fore admits a tractable classification and attendant application to smooth
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manifold topology. We expect not only that such a combinatorial higher
Morse theory exists, but that the resulting combinatorial invariants detect,
for instance, all smooth structures on manifolds. The realization of such
an expectation depends, most likely, on the validity of our aforementioned
conjectures about framed homeomorphism and framed stratifications—indeed
they would imply that every combinatorial tame tangle built from (combina-
torially represented) smooth singularities has a canonical smooth structure
and that every perturbation-stable smooth tangle has such a combinatorially
tame representation.
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CHAPTER 1

Framed combinatorial structures

In this chapter, we introduce notions of framings on classical combinatorial
structures. We begin by defining frames on simplices, in Section 1.1, along
with the related concepts of partial and embedded frames on simplices. We
then define framings on simplicial complexes, in Section 1.2, and explain
the condition of collapsibility for framed simplicial complexes. Finally, we
define framings on regular cells and regular cell complexes, in Section 1.3, in
terms of locally collapsible framings on the associated barycentric subdivision
simplicial complexes.

1
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1.1. Framed simplices

The notion of a frame on a simplex, and later on other combinatorial
objects, is of course inspired by and modeled on the classical notion of frames.
Classically, a coordinate trivialization of an m-dimensional vector space V
is specified by a linear isomorphism V ∼−→ Rm. Preimages of standard unit
vectors ei ∈ Rm under this isomorphism define an ordered list of vectors
(v1, v2, . . . , vm) in V called a ‘frame’ of V .

The guiding intuition in the translation of frames in linear algebra into
the combinatorics of simplices, is that directed edges of simplices play the
role of vectors. However, simplices are combinatorially specified by sets of
vertices and thus they do not have a distinguished origin. Moreover, their
vectors (i.e., directed edges) are ‘affine’ in that different vectors may start
at different points in the simplex. This fact complicates the translation of
the classical intuition of frames in linear algebra into the combinatorics of
simplices, and we will emphasize this difference by referring to the ‘affine
combinatorics’ of framed simplices.

The basic analogy of vectors in a vector space with ‘vectors’ in a simplex
will lead to a notion of ‘frames’ on a simplex as follows. We say two vectors
in a simplex are ‘composable’ if the endpoint of the first vector is the starting
point of the second vector; in this case, their ‘composite’ is the unique
directed edge starting at the starting point of the first vector and ending in
the endpoint of the second vector. A ‘basis’ of an m-simplex is a set of m
vectors such that all other vectors (up to reversing their direction) can be
written as composites of vectors in the basis. A ‘frame’ of an m-simplex is
an ordered basis.

To emphasize a different aspect of the analogy to classical linear frames,
we can rephrase the notion of frames on a simplex as follows. Observe that the
elements of any basis of an m-simplex S must be the elements of a chain of m
composable vectors in the simplex; we call such a chain a ‘spine’ of S [Lan21,
Def. 1.1.37]. A choice of basis therefore determines an identification S ∼= [m]
of S with the ordered standard simplex [m] = (0 < 1 < · · · < m), by mapping
the spine of S to the standard spine of [m]. Conversely, any identification
S ∼= [m] determines a basis of the simplex S by transporting the standard
spine. A frame of an m-simplex S is then an identification S ∼= [m] together
with a choice of order on the set of standard spine vectors spine[m] of [m].
The standard simplex [m] has of course the canonical identity identification
with itself, and so we refer to the simplex [m] with an order F of its spine
vector set spine[m] as a ‘framed standard simplex’ ([m],F).

The collection of all framed standard simplices ([m],F) with any choice
of frame F will together play the role of the solitary euclidean space Rm with
its standard frame {e1, e2, . . . , em}. The fact that there is only one ‘framed
standard euclidean space Rm’ but many ‘framed standard simplices ([m],F)’
reflects the fact that several affine constellations of standard basis vectors
can arise. For instance, considering the standard basis vectors e1 and e2
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in R2, the affine concatenation of e1 with e2 forms the spine (e1, e2) of a
‘framed standard simplex’, while the affine concatenation of e2 with e1 forms
the spine (e2, e1) of a different ‘framed standard simplex’. Similarly, the
three standard basis vectors in R3 admit six distinct affine concatenations,
and these correspond to the six types of framed standard 3-simplices. See
Figure 1.1 for an illustration. The affine combinatorics of framed simplices
allows and accounts for all of these configurations.

2 3

1

2

1

Figure 1.1. Distinct framed standard simplices spanned by
the same standard frame vectors.

Outline. In Section 1.1.1 we describe the affine combinatorial counter-
parts of various classical linear algebraic notions, and then define frames on
simplices along with their generalization to ‘partial’ and ‘embedded’ frames.
Then in Section 1.1.2 we introduce the basic notion of ‘kinship’ of simplicial
vectors and use it to define restriction of frames to simplicial faces, with
which we can characterize framed maps of framed simplices.

1.1.1. Frames, partial frames, and embedded frames.

Synopsis. We begin with a description of the correspondence between
classical linear algebraic notions and simplicial notions, which will also include
a generalization of the classical notion of frames to partial and embedded
frames. We then formally define and illustrate all three notions of frames for
simplices.

It will be useful to first fix some basic terminology and notation concerning
simplices [Mun18, §1-§3] [Fri08].

Terminology 1.1.1 (Combinatorial simplices). An ‘ordered m-simplex’
is a totally ordered set with m+ 1 elements. An ‘unordered m-simplex’, also
called simply an ‘m-simplex’, is a set with m+ 1 elements.

Notation 1.1.2 (Category of ordered simplices). We will denote the
category of ordered simplices by ∆; its objects are the ordered simplices, and
its morphisms are the order-preserving maps.

Notation 1.1.3 (Category of unordered simplices). We will denote the
category of unordered simplices by ∆; its objects are the unordered simplices
and its morphisms are all functions.
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Terminology 1.1.4 (Unordering ordered simplices). The ‘unordering’
functor (−)un : ∆→ ∆ forgets the order of ordered simplices.

Terminology 1.1.5 (Face maps and degeneracy maps). An injective
map of (ordered or unordered) simplices is called a ‘face map’, and a surjective
map of (ordered or unordered) simplices is called a ‘degeneracy map’.

Notation 1.1.6 (Maps between ordered and unordered simplices). Maps
S → T resp. T → S between an unordered simplex S and an ordered simplex
T will be parsed as maps of unordered simplices S → T un resp. T un → S.

Terminology 1.1.7 (Ordered standard simplex). The ‘ordered standard
m-simplex’ [m] is the poset (0 < 1 < · · · < m); considering posets as
categories, this simplex is, equivalently, the category (0 → 1 → · · · →
m).

Since it will be used so frequently, we usually refer to the ordered standard
m-simplex simply as ‘the m-simplex [m]’. Every ordered m-simplex S is
canonically isomorphic to the standard m-simplex [m]. We may therefore
work with a skeleton of ∆ as follows.

Notation 1.1.8 (The skeleton of standard simplices). Abusing notation,
we denote the skeleton of ∆ containing only standard simplices [m] for m ∈ N
again by ∆.

Terminology 1.1.9 (Unordered standard simplex). The unordering
[m]un of the ordered standard simplex [m] is the ‘unordered standard m-
simplex’ {0, 1, ...,m}.

Terminology 1.1.10 (Sets of numerals). The ‘set of numerals’ or ‘nu-
meral set’ m is the ordered set {1 < 2 < · · · < m}. A morphism of numeral
sets is an order-preserving function.

Terminology 1.1.11 (Geometric simplices). Given an m-simplex S,
the ‘geometric simplex’ |S| is the convex hull of the set S in the free vector
space R⟨S⟩. Similarly given a map of simplices f : S → T , the map of
geometric simplices |f | : |S| → |T | is the restriction of the linear extension
R⟨f⟩ : R⟨S⟩ → R⟨T ⟩.

1.1.1.1. The fundamental analogy. We now develop a fundamental
though loose analogy between some notions in linear algebra and corre-
sponding notions in affine simplicial combinatorics, which will motivate and
guide our definitions of frames on simplices. See Chapter A for recollections
of the relevant linear and affine algebra background context.

As the fundamental starting point, for the notion of an m-dimensional
vector space V , we take as an analog the notion of an unordered m-simplex
S. The standard vector space Rm will have its analog being the standard
simplex [m]. Next, for the notion of a vector in a vector space, we take as an
analog the notion of 1-simplex in a simplex, as follows.



1.1. FRAMED SIMPLICES 5

Terminology 1.1.12 (Simplicial vectors). A ‘vector’ v in an unordered
simplex S is a map v : [1] → S. We say the vector is ‘nondegenerate’ (or
‘nonzero’) if the map v is injective, and otherwise say that the vector is a
‘degenerate’ (or ‘zero’) vector. We typically assume vectors are nondegenerate
unless specified to the contrary.

Given two vectors v0, v1 : [1]→ S with v0(1) = v1(0) their composite is, of
course, the vector z : [1]→ S defined by z(i) = vi(i).

An ordered basis of a vector space is an ordered collection of vectors that
are suitably independent. Analogously, a basis is a set of vectors in a simplex
S such that proper composites of basis vectors are exactly the remaining
non-basis vectors of S. An ordered basis of S is a basis set with an order
such that basis vectors are composable in that order, leading to the following
notion of ‘directed spine’.

Terminology 1.1.13 (Directed spine of an unordered simplex). A ‘di-
rected spine’ of an unordered m-simplex is an ordered set of m nondegenerate
vectors, such that the starting point of each vector is the ending point of
the preceding vector (if one exists) and such that the vectors together cover
every vertex of the simplex.

Note that a choice of directed spine on a given unordered m-simplex S is the
same as an isomorphism of unordered simplices from the standard simplex
[m] to the given simplex S, and thus is also the same as a choice of ordering
of the simplex S. A ‘spine vector’ of a simplex with a directed spine is, of
course, one of the vectors in the ordered collection that is the directed spine.
We may reexpress this notion of spine vector in terms of the corresponding
ordered simplex as follows.

Terminology 1.1.14 (Spine vector of an ordered simplex). A ‘spine
vector’ in an ordered simplex S is an (order-preserving) nondegenerate vector
[1] → S that cannot be written as the composite of more than one (order-
preserving) nondegenerate vector. The ordered collection of spine vectors of
the ordered simplex S is denoted spineS.

Example 1.1.15 (The spine of the standard simplex). The directed
spine spine[m] of the standard simplex [m] is the ordered set ((0→ 1), (1→
2), . . . , (m− 1→ m)). It may be canonically identified with the numeral set
m, by identifying the spine vector (i− 1→ i) ∈ spine[m] with the numeral
element i ∈ m.

In classical linear algebra, an ordered basis of a vector space [Axl24,
Def. 2.26] is, of course, synonymous with a (linearly independent) frame of
that vector space.1 However, a crucial disanalogy between linear algebra
and affine combinatorics is that, though for a vector space, an ordered basis

1At the outset we will take the word ‘frame’ to implicitly include a sense of linear indepen-
dence, though later generalizations of the notion of frame, both linear algebraic and affine
combinatorial, will allow certain dependencies.
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simply is a frame, by contrast for a simplex, a directed spine will not by
itself provide a frame. Recall from Figure 1.1 that there are multiple distinct
‘framed simplices’ built out of the same ordered basis vectors; indeed there
are as many such simplices as there are orders on the already ordered set of
basis vectors. As that figure adumbrates and as defined precisely later, the
further information required for a frame on a simplex with a directed spine
will be an order on the spine.

Classical linearly-independent frames can be generalized by allowing the
frame to be partial, that is, not entirely spanning the vector space, or allowing
the frame to be redundant, that is, spanning but with dependencies, or indeed
allowing both partiality and redundancy at the same time. A convenient
way of encoding a ‘partial frame’ on a vector space V is via an injection
V ←↩ Rk (which, in particular, selects k vectors in V as the images of the
standard basis in Rk). Dually, a convenient way of encoding a redundant
frame on a vector space V is via a projection V Rn. Importantly, if V
has euclidean structure, we may equivalently consider projections V
Rk that split the injections V ←↩ Rk to define partial frames, and similarly,
injections V ↪→ Rn that split the projections V Rn to define redundant
frames [ML98, §I.5]. This splitting perspective not only strongly informs
the formulation of simplicial frames, but is also the reason that we refer to
the above redundant frames instead as ‘embedded frames’. Finally, note that
the pushout of these two notions, that of an ‘embedded partial frame’, comes
from a general map V ←↩ W Rn or alternatively from the corresponding
splitting V W ↪→ Rn.

To motivate and prepare for the corresponding notions of generalized
frames in the simplicial combinatorial case, we will need simplicial analogs of
the notions of projection and injection of vector spaces. Projections pose no
difficulty and correspond to ordinary simplicial degeneracy maps.

Terminology 1.1.16 (Simplicial degeneracies). A ‘degeneracy’ map
S T between unordered simplices S and T is any surjective map of sets
from S to T .

Terminology 1.1.17 (Kernel). The ‘kernel’ ker(S T ) of a degeneracy
map S → T is the subset of the simplicial vectors in S that are mapped to
zero vectors by the degeneracy.

Note that not every subset of simplicial vectors is the kernel of a degeneracy,
which is dissimilar to the case of vector spaces (where every subspace is
the kernel of some projection). Moreover, there is, of course, the usual
companion notion of simplicial ‘face’ map S ↪→ T , that is an injective map of
unordered simplices. However, that notion too is decidedly insufficient as a
combinatorial analog of vector space inclusions. Instead, we must generalize
notions of faces, kernels, and images to appropriate ‘affine’ notions as follows.
These are easiest to phrase in the case of ordered simplices.
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Terminology 1.1.18 (Affine kernel). For a degeneracy S T of ordered
simplices, the ‘affine kernel’ keraff(S T ) is the subset of the spine vectors
in spineS that are mapped to zero vectors by the degeneracy.

Note well that the affine kernel keraff(S T ) need not form the spine
vectors of any subsimplex of the simplex S, and so need not be the image of
a simplicial face map.

The kernel of any linear projection is a subspace, and any subspace is the
kernel of the quotient by that subspace. Similarly, the affine kernel of any
simplicial degeneracy is a subset of the spine, and any subset U ⊂ spineS
is the affine kernel of the degeneracy S T that degenerates exactly those
spine vectors; that correspondence suggests the following notions.

Terminology 1.1.19 (Affine face). An ‘affine face’ map f : S T of
ordered simplices is an ordered map f : spineS ↪→ spineT .

Terminology 1.1.20 (Affine image). The ‘affine image’ of an affine
face map f : S T of ordered simplices is the image imaff(f) := im(f :
spineS ↪→ spineT ) ⊂ spineT in the spine of the target.

Terminology 1.1.21 (Affine cokernel). The ‘affine cokernel’ of an affine
face map f : S T of ordered simplices is the complement cokeraff(f) =
spineT\ imaff(f) ⊂ spineT of the affine image in the spine of the target.

Observation 1.1.22 (Canonical simplicial splittings). Observe that any
affine face map f : S T has a canonical splitting simplicial degeneracy
S T : g whose affine kernel keraff(g) is the affine cokernel cokeraff(f); that
is the splitting map degenerates exactly those spine vectors that are not in
the affine image of the affine face map.

The notions of simplicial degeneracy and affine faces combine to a general
notion of affine simplicial maps.

Terminology 1.1.23 (Affine maps). An ‘affine’ map S → R from an
unordered simplex S to an ordered simplex R is a sequence S T R
consisting of a degeneracy S T from S to an ordered simplex T , and an
affine face T R.

In particular, an affine map S → R is an affine face, written again S R, if
it decomposes into maps S ∼= T R for an ordered simplex T .

Recall from the discussion above that a frame on an unordered m-simplex
S can be described as an isomorphism S ∼−→ [m] to the standard simplex
(providing a directed spine of S) together with a choice of order on the spine
of the standard simplex (providing by the isomorphism an order on the spine
of S). Equipped with the affine simplicial combinatorial analogs of vector
space projections, inclusions, and maps, namely degeneracies, affine faces,
and affine maps, we can provide a compact preview of the simplicial notions of
generalized frames, namely partial frames, embedded frames, and embedded
partial frames on simplices.
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A partial frame of an unordered simplex S will be a degeneracy S [k]
together with an order on the spine of the target simplex. An embedded frame
of an unordered simplex S will be an affine face S [n] (which determines
and is determined by its canonical splitting S [n]) and an order on the
spine of S. An embedded partial frame of an unordered simplex S will be
an affine map S T [n] (whose affine face again determines and is
determined by the corresponding splitting T [n]) and an order on the
spine of T .

The prelude analogy described so far, between elementary structures in
linear algebra (including the earlier description of splitting maps to define
frames on euclidean vector spaces V ) and affine simplicial combinatorics, is
displayed in Figure 1.2. The crucial notions of frames and generalized frames
on simplices are detailed, with further explanation, examples, and illustration,
over the whole of this first section, and a yet more detailed discussion of their
classical linear algebraic counterparts can be found in Chapter A. Frames,
partial frames, and embedded frames on vector spaces and simplices are
illustrated in Figure 1.3, along with a preview of their generalizations to
simplicial complexes and regular cells.

1.1.1.2. The definition of framed simplices. We introduce frames on
simplices, as a combinatorial analog of frames of euclidean vector spaces. The
role of frame vectors will be played by the spine vectors of a simplex. As a
linear frame is an ordered list of its frame vectors, a simplicial frame will be
an ordered collection of spine vectors.

Definition 1.1.24 (Frame on the standard simplex). A frame F of
the standard m-simplex [m] is a bijection F : spine[m] → m from the
set spine[m] of spine vectors of the simplex to the set of numerals m =
{1, 2, . . . ,m}.

We may of course equivalently think of a frame F in terms of the inverse
function F−1 : m→ spine[m] from the set of numerals to the spine, or more
concretely as an ordered list (v1, v2, . . . , vm) of spine vectors vi = F−1(i) ∈
spine[m] of the simplex. That is, the frame is an order on the spine, as
suggested in Figure 1.2. Frames of unordered simplices may then be defined
as follows.

Definition 1.1.25 (Frame on a simplex). A frame of an unordered m-
simplex S is an isomorphism S ∼= [m] together with a frame F on [m].

We usually denote framed simplices S by pairs (S ∼= [m],F). We may also
keep the isomorphism S ∼= [m] implicit, and simply say that F is a frame
on S. Of course, the choice of isomorphism S ∼= [m] is the same as a choice
of spine for S, and the order F on the standard spine gives an order on the
chosen spine for S; we therefore often think of the frame of S simply as a
choice of spine and order on that spine.
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Linear algebra Affine combinatorics

an m-dimensional vector space V an unordered m-simplex S

a nonzero vector v in V a directed edge v in S

the zero vector 0 in V a vertex x in S

an ordered basis of V a directed spine of S
≡ an isomorphism S ∼−→ [m]

a projection V W a degeneracy S T

an injection V ↪→W
an affine face S T :

a choice of directed spines of S and T
and an inclusion of spineS into spineT

a map V W ↪→ U an affine map S T R

the standard vector space Rm the standard simplex [m]

the standard ordered basis of Rm the standard directed spine of [m]

= ̸=
the standard frame of Rm the standard directed spine of [m]

with an order on that spine

a frame of Rm a directed spine of [m]un

with an order on that spine

a frame of V :
an isomorphism V ∼−→ Rm

a frame of S:
an isomorphism S ∼−→ [m]
with an order on the spine of [m]

a k-partial frame of V :
an injection V ←↩ Rk

≡ a splitting projection V Rk

a k-partial frame of S:
a degeneracy S [k]
with an order on the spine of [k]

an n-embedded frame of V :
a projection V Rn

≡ a splitting injection V ↪→ Rn

an n-embedded frame of S:
an affine face S [n]
and an order on the spine of S

an n-embedded partial frame of V :
a map V ←↩ W Rn

≡ a splitting map V W ↪→ Rn

an n-embedded partial frame of S:
an affine map S T [n]
and an order on the spine of T

Figure 1.2. The analogy between notions in linear algebra
and notions in affine combinatorics.

Example 1.1.26 (Frames on simplices). In Figure 1.4 we illustrate a few
framed m-simplices (S ∼= [m],F). The frame F : spine[m]→ m is indicated
in three different ways, as follows.

(1) Numeral labels: the spine vector v ∈ spine[m] is labeled by its
numeral value F(v) ∈ m.
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vector space simplex simplicial complex regular cell

Figure 1.3. Frames in linear algebra and affine combina-
torics.

(2) Arrowheads: the numeral label of the spine vector is specified by
the number of arrowheads along the simplicial vector.

(3) Coordinate frame: the labeled spine vectors, thought of as vectors in
the linear space spanned by the picture of the simplex, are translated
so their sources are coincident, and the resulting labeled ‘coordinate
frame’ is drawn in or near the simplex.

2
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1

1
1

1
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3

3

4
4

3

3 1
1

Figure 1.4. Framed simplices.

Notation 1.1.27 (Frame labels). In subsequent figures, we will primarily
indicate the frame labels by the multi-arrowhead notation, though we some-
times also retain the coordinate frame and occasionally the numeral labels
themselves for emphasis or clarity. (Note that in Figure 1.1 we depicted the
framed 2-simplices and framed 3-simplices using only the coordinate frame
notation.)

A linear embedding of a framed simplex into euclidean space may preserve
the frame structure in the following sense.

Terminology 1.1.28 (The standard oriented components of euclidean
space). For all 1 ≤ i ≤ n, the complement of the linear subspace {0}i ×Rn−i

in {0}i−1×Rn−i+1 (both being subspaces of Rn) has two components ϵ−i and
ϵ+i given by {0}i−1×R<0×Rn−i resp. {0}i−1×R>0×Rn−i. We call ϵ−i and
ϵ+i the ‘ith negative’ resp. ‘ith positive standard component’ of Rn.
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Definition 1.1.29 (Framed realization of a framed simplex). A framed
realization of a framed m-simplex (S ∼= [m],F) with frame vectors vi =
F−1(i) is a linear embedding rF : |S| ↪→ Rm of the geometric simplex |S|
into Rm such that, on associated vector spaces, the translation vectors
v⃗i = vi(1) − vi(0) are mapped into the ith positive standard component
ϵ+i ⊂ Rm, for all i ∈ m.2

Example 1.1.30 (Framed realization of a framed simplex). In Figure 1.5
we illustrate framed realizations of the two framed 2-simplices and the corre-
sponding images vectors of v⃗i based at the origin. See also again Figure 1.1,
where one sees the images of one framed realization of each of the six framed
3-simplices.

2

1

2

1
2 1 1 2

R2

R2

Figure 1.5. Framed realization of framed simplices.

There are problems
with the ambiguity
over whether sim-
plices are ordered or
unordered ... it’s un-
clear what class of
maps is used ...

1.1.1.3. Partial frames. We now introduce a simplicial combinatorial
analog of the notion of linear partial frames. Recall that a partial frame of a
vector space may be seen as an injection V ←↩ Rk [Ste51, §7.7], or considered
instead as a projection V Rk that is split by that injection. Analogously,
instead of having a frame defined on the whole of the spine of a simplex
S, we may consider a frame defined only on part of the spine; that portion
of the spine will be the complement of the affine kernel of a corresponding
degeneracy, and we formulate the definition in terms of that degeneracy, as
follows.

Definition 1.1.31 (Partial frame on a simplex). A k-partial frame on
an unordered m-simplex S is a degeneracy S [k] together with a frame F

on [k].

Note that in an m-partial frame of an m-simplex (S [m],F) the degeneracy
S [m] must be an isomorphism, and thus m-partial frames of m-simplices
are frames on m-simplices.

Terminology 1.1.32 (Unframed subspace of a partially framed simplex).
The ‘unframed subspace’ of a k-partially framed simplex (S [k],F) is the
kernel ker(S [k]). Note that this ‘subspace’ is a subset of the nondegenerate
vectors of the simplex S.

This terminology
does not make
sense / contact
at present. Affine
kernels were only
defined for maps of
ordered simplices,
but partially framed
simplices are defined
on unordered
simplices.

2Technically, by ‘linear map’ |S| ↪→ Rm we mean an ‘affine map’ [Mun18, §1], as discussed
in more detail in Terminology A.2.3.
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Example 1.1.33 (Partial frames on simplices). In Figure 1.6 we illustrate
the two distinct 1-partially framed 2-simplices, and the three distinct 1-
partially framed 3-simplices. Similarly, in Figure 1.7 we illustrate three of the
six distinct 2-partial framings of the 3-simplex; the other three are obtained
by exchanging all the 1 and 2 frame labels. We depict the degeneracies
S [k] by highlighting their unframed subspace (in green) and illustrate
the target framed simplices ([k],F) as in Example 1.1.26. Note that the
partial frame may also be recorded by labeling vectors v in S with i ∈ k
(or with that many arrowheads) whenever w = (S [k])(v) ∈ spine[k] with
F(w) = i.

11

Figure 1.6. The 1-partially framed 2-simplices and 3-
simplices.

1

2

Figure 1.7. Half of the 2-partially framed 3-simplices.

A linear embedding of a partially framed simplex into euclidean space
may preserve the frame structure in the following sense.

Definition 1.1.34 (Framed realization of a partially framed simplex).
Consider a k-partially framedm-simplex (S [k],F) with unframed subspace
U := ker(S [k]). A framed realization of (S,F) is a linear map
rF : |S| → Rk such that, on associated vector spaces, the translation vector
v⃗ = v(1)− v(0) is mapped into the ith positive standard component ϵ+i ⊂ Rk

whenever w = (S [k])(v) ∈ spine[k] and F(w) = i, and to 0 ∈ Rk when
v ∈ U .

This definition had
issues. Old version
commented out. Par-
tially fixed. Still gap
between S and [m].
Rewrite. (This def
is still tentative be-
cause it depends on
the affine kernel that
isn’t well defined.)

Example 1.1.35 (Framed realization of a partially framed simplex). In
Figure 1.8 we illustrate framed realizations of a 1-partially framed 2-simplex
and of a 2-partially framed 3-simplex.
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Figure 1.8. Framed realization of partially framed simplices.

1.1.1.4. Embedded frames. We introduce a simplicial combinatorial ana-
log of the notion of linear embedded frames. Recall, a linear embedded frame
is a vector space embedding V ↪→ Rn. Such frames may alternatively be
considered in terms of a corresponding splitting map V Rn; the image of
the standard basis vectors under this splitting provides a classical redundant
(or ‘overcomplete’) frame in the vector space V [Chr03, Cor. 1.1.3].

Definition 1.1.36 (Embedded frame on the standard simplex). An
n-embedded frame F of the standard m-simplex [m] is an injective
function F : spine[m] ↪→ n from the spine of the simplex into the set of
numerals {1, 2, . . . , n}.

We may of course equivalently think of an n-embedded frame F of [m] in
terms of the partial inverse function F−1 : n → spine[m]+ from the set
of numerals to the ‘augmented spine’ spine[m]+ := spine[m] ⊔ {0}; more
concretely, the n-embedded frame is seen as an ordered list (v1, v2, ..., vn)
where vi = F−1(i) ∈ spine[m] if i ∈ n is in the image of the frame F :
spine[m] ↪→ n, and vi := 0 ∈ spine[m]+ otherwise. Note that an m-embedded
framed standard m-simplex is the same as a framed standard m-simplex
as previously defined. For not-necessarily-standard simplices, we have the
following corresponding notion.

Definition 1.1.37 (Embedded frame on a simplex). An n-embedded
frame of an unordered m-simplex S is an isomorphism S ∼= [m] together
with an n-embedded frame F on [m].

We usually denote n-embedded framed m-simplices S by pairs (S ∼= [m],F),
though may also leave the isomorphism S ∼= [m] implicit. As in the case of
non-embedded frames, the choice of isomorphism S ∼= [m] is the same as a
choice of spine for S (and thus correspondence of the chosen spine with the
standard spine of the standard simplex), so we may think of the embedded
frame of S as a choice of spine together with an injective assignment of
numerals to the spine vectors.

Remark 1.1.38 (Embedded frames via affine subspaces). To make contact
with the analogy displayed earlier in Figure 1.2, note that an n-embedded
frame F of an unordered m-simplex S may alternatively be described by an
affine face S [n] (i.e., an isomorphism S ∼= [m] together with an affine face
[m] [n]) and an ordering of the affine image of that affine face.
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Check whether this
remark does actually
correspond to the ta-
ble
Once the defs are ac-
tually sorted, check
throughout the corre-
spondence with the
table

Example 1.1.39 (Embedded frames on simplices). In Figure 1.9 we
illustrate a few n-embedded framed m-simplices (S ∼= [m],F). As before,
the frame F : spine[m] ↪→ n of [m] is indicated in three ways: the spine
vector v ∈ spine[m] is labeled by its numeral value F(v) ∈ n, that numeral
value is the number of arrowheads along the vector, and the m labeled spine
vectors are translated into a labeled coordinate frame. In that coordinate
frame, we also depict the numerals that are not in the image of the frame
F : spine[m] ↪→ n as infinitesimal ‘curled-up’ dimensions; this evokes the
partial inverse function F−1 : n→ spine[m]⊔{0} which sends those numerals
to zero in the augmented spine.

1
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Figure 1.9. Embedded framed simplices.

A linear embedding of a framed simplex into euclidean space may preserve
the frame structure in the following sense.

Definition 1.1.40 (Framed realization of an embedded framed simplex).
A framed realization of an n-embedded framed m-simplex (S ∼= [m],F)
with nonzero frame vectors vi = F−1(i), i ∈ im(F), is a linear embedding
rF : |S| ↪→ Rn of the geometric simplex |S| into Rn such that, on associated
vector spaces, the translation vectors v⃗i = vi(1) − vi(0) are mapped into
ϵ+i ⊂ Rn, for all i ∈ im(F).

Example 1.1.41 (Framed realization of embedded framed simplices). In
Figure 1.10 we illustrate framed realizations of the three 3-embedded framed
1-simplices. The framed realization of the vector with frame label 3 must
be an affine vector whose associated linear vector (i.e., after translating its
basepoint to the origin) is in ϵ+3 , which is to say a positive multiple of the
basis vector e3. The framed realization of the vector with frame label 2 must
be an affine vector whose associated linear vector is in ϵ+2 , that is the open
half of the plane ⟨e2, e3⟩ with positive e2 coordinate. Similarly the framed
realization of the frame label 1 vector has associated linear vector in ϵ+1 , the
open half of 3-space ⟨e1, e2, e3⟩ with positive e1 coordinate.

Similarly, in Figure 1.11 we illustrate framed realizations of the six 3-
embedded framed 2-simplices. We abuse notation slightly by only depicting
the images of the simplices, and labeling the image vectors by the frame
labels of the implicit corresponding source 2-simplex. As for the 3-embedded
framed 1-simplices in the previous figure, all the vectors with frame label 3
point strictly in the positive e3 direction, all the vectors with frame label 2
point in a positive e2 direction inside the ⟨e2, e3⟩ plane, and all the vectors
with frame label 1 point in some positive e1 direction in 3-space.
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Figure 1.10. Framed realization of the 3-embedded framed
1-simplices.

2

3

1

R3

Figure 1.11. Framed realization of the 3-embedded framed
2-simplices.

While we will be interested ultimately only in non-partial embedded
frames, we also mention the following generalization of embedded frames to
the partial case. Instead of an embedded frame on the ‘complete’ simplex S,
we may consider an embedded frame on S that is defined everywhere but on a
subset of the vectors of S, namely as before those vectors in a corresponding
affine kernel. Following Figure 1.2 embedded partial frames of unordered
simplices can be defined as follows.

Definition 1.1.42 (Embedded partial frame on a simplex). An n-
embedded k-partial frame on an unordered m-simplex S is a degeneracy
S T together with an n-embedded frame (T ∼= [k],F) on the target
k-simplex T .

Since the intermediate simplex T has, as part of the data of its embedded
frame, a given isomorphism to the standard simplex, we usually omit the
simplex T entirely and consider n-embedded k-partially framed simplices S
to be pairs (S [k],F), where F is an n-embedded frame of the standard
simplex [k].

Remark 1.1.43 (Embedded partial frames via affine maps). To make
contact with the earlier analogy of Figure 1.2, note that we may think of the
structure of an embedded partially framed simplex as an affine map S
T [n], together with an ordering of the spine of T .

Check that last re-
mark, and the ear-
lier one referenced
(CXD)
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Terminology 1.1.44 (Unframed subspace of an embedded partially
framed simplex). The ‘unframed subspace’ of an n-embedded partially framed
simplex (S [k],F) is the kernel U = ker(S [k]). As before this ‘subspace’
is actually a subset of the nondegenerate vectors.

Example 1.1.45 (Embedded partial frames on simplices). In Figure 1.12
we illustrate a few n-embedded k-partially framed m-simplices (S [k],F):
we depict degeneracies S [k] by highlighting their unframed subspace (in
green) and illustrate the framed simplices ([k],F) as in Example 1.1.39. Note
that the embedded partial frame F may also be recorded by labeling vectors
v in S with i ∈ n (or with that many arrowheads) whenever w = (S
[k])(v) ∈ spine[k] and F(w) = i.

2 3
1

2
1

3
2

1

Figure 1.12. Embedded partially framed simplices.

A linear embedding of an embedded partially framed simplex into eu-
clidean space may preserve the frame structure in the following sense.

Definition 1.1.46 (Framed realization of an embedded partially framed
simplex). Consider an n-embedded partially framed m-simplex (S [k],F)
with unframed subspace U := ker(S [k]). A framed realization of (S
[k],F) is a linear map rF : |S| ↪→ Rn such that v⃗ = v(1)−v(0) maps to 0 ∈ Rn

when v ∈ U , and into ϵ+i ⊂ Rn when w = (S [k])(v) and F(w) = i.
Whether this is fi-
nal still depends on
fixing the the fact
that affine kernel,
thus unframed sub-
space, isn’t yet de-
fined where it’s being
used. [keraff->ker]

Example 1.1.47 (Framed realization of an embedded partially framed
simplex). In Figure 1.13 we illustrate framed realizations of a 3-embedded
1-partial frame of the 3-simplex and of a 3-embedded 2-partial frame of the
4-simplex.

1.1.2. Mapping frames on simplices. Having defined frame structures
on simplices, we next consider simplicial maps that preserve these frame
structures. The characterization of such maps will require us to consider
their action on frames of individual simplicial vectors.

Synopsis. We first discuss how frames on simplices restrict to their
vectors and, more generally, to their subsimplices. We then define framed
maps of framed simplices as those simplicial maps that preserve embedded
frames on each vector (and equivalently, on each subsimplex) of their domain
simplex. We also define the slightly more general notion of subframed maps.
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Figure 1.13. Framed realization of embedded partially
framed simplices.

1.1.2.1. Restricting frames. A linear isomorphism V ∼−→ Rn (providing
an ordinary frame) or more generally a linear embedding V ↪→ Rn (conceived
of as an embedded frame) can be restricted to any linear subspace W ↪→ V
to obtain another linear embedding W ↪→ Rn (that can again be seen as an
embedded frame). We discuss the combinatorial analog of this process, that
is, how frames and embedded frames of simplices restrict to embedded frames
on simplicial faces. In geometric terms, our definition can be conveniently
expressed as follows.

Remark 1.1.48 (Restricting frames via framed realization). Consider
an n-embedded framed m-simplex (S ∼= [m],F), and a simplicial j-face
f : T ↪→ S. Pick any framed realization r : |S| ↪→ Rn. The ‘frame restriction’
of the n-embedded frame of S to the face T is the unique n-embedded frame
of the simplex T for which the linear embedding r ◦ |f | : |T | ↪→ |S| ↪→ Rn is
a framed realization.

Describing this geometric process of frame restriction in purely combina-
torial terms, without reference to the affine framed structure of Rn, is more
subtle. To properly account for the combinatorial situation, we introduce
the notion of simplicial vectors being ‘akin’, which provides a combinatorial
analog of vectors being non-orthogonal. (We will refer to this relationship of
combinatorial non-orthogonality generally as ‘kinship’ of simplicial vectors.)

Definition 1.1.49 (Akin simplicial vectors). The vectors v = (a → b)
and w = (c→ d) in the simplex [m] ≡ (0→ 1→ · · · → m) are akin, denoted
v⊥̸w, if there is a vector u that is a factor of both, i.e., such that v = ṽ ◦u◦ ˜̃v
and w = w̃ ◦ u ◦ ˜̃w for some possibly degenerate vectors ṽ, ˜̃v, w̃, ˜̃w.

Note that, like the relation of non-orthogonality of linear vectors in a eu-
clidean space, the kinship relation between simplicial vectors is reflexive and
symmetric but not transitive.

Example 1.1.50 (Kinship of simplicial vectors). In Figure 1.14 we il-
lustrate the kinship of vectors in the 3-simplex. To emphasize the informal
conceptual relationship of this notion with the geometry of non-orthogonality,
the simplex is drawn with its three spine vectors (highlighted in red, green,
and blue) being orthogonal in the ambient euclidean 3-space. The three
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red vectors are akin, the four green vectors are akin, and the three blue
vectors are akin; no other vectors are akin. Note that indeed, vectors are akin
precisely when they are non-orthogonal in this geometric 3-simplex.

1 2

3

Figure 1.14. Kinship of simplicial vectors.

Using the notion of kinship, we can describe the restriction of a frame
to any vector of the standard simplex, and subsequently to any face of the
standard simplex. The frame order on the spine of the simplex plays a
paramount role in this process: the frame label of a general vector will be
the lowest numeral among the frame labels of the spine vectors akin to the
given vector.

Construction 1.1.51 (Frame restriction to simplicial vectors of the
standard simplex). Given an n-embedded frame F : spine[m] ↪→ n of the
simplex [m], and a vector v : [1] → [m] of that simplex, the ‘restriction’
F|v : spine[1] ↪→ n of the frame to the vector is the n-embedded frame of the
simplex [1] whose single label is the minimal frame label of the spine vectors
akin to the vector v, i.e., F|v(0→ 1) = min{F(w) |w⊥̸v}.

This restriction procedure produces a plethora of combinatorial arrangements
quite distinct from any permutation of its application to the standard frame
on the simplex.

Example 1.1.52 (Frame restriction to simplicial vectors). In Figure 1.15
we illustrate various embedded framed 3-simplices, along with the correspond-
ing embedded framed restrictions to their 1-faces. In Figure 1.16 we similarly
illustrate restriction to the vectors of embedded framed 4-simplices.

Figure 1.15. Restriction of embedded frames to vectors of
a 3-simplex.
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Figure 1.16. Restriction of embedded frames to vectors of
a 4-simplex.

The restriction of an embedded frame to any j-face of the simplex is
determined directly by the restrictions to the 1-faces, as follows.

Construction 1.1.53 (Frame restriction to simplicial faces of the stan-
dard simplex). Let F : spine[m] ↪→ n be an n-embedded frame of the simplex
[m], and let f : [j] ↪→ [m] be a j-face of that simplex. The ‘frame restriction’
F|f : spine[j] ↪→ n of the frame to the j-face is the n-embedded frame whose
label value on the spine vector v : [1]→ [j] is the numeral F|f◦v ∈ n.

The restriction of an embedded frame of a (not standard) simplex is obtained
by translating the frame restriction for the standard simplex across the given
(by the frame) isomorphism to the standard simplex, as follows.

Notation 1.1.54 (Images of faces under simplicial maps). Given a map
α : S → [m] from an m-simplex S to a standard simplex, and a j-face
f : T ↪→ S, we can construct the commuting diagram

T S

[l] [m]

f

α|f α

f

where α|f : T [l] is surjective, and (abusing notation) f : [l] ↪→ [m] is a
face, called the ‘image face’ of f under α. The construction is, of course,
simply an application of image factorizations, i.e., f ≡ im(α ◦ f).

Definition 1.1.55 (Frame restriction to faces of simplices). The frame
restriction of an n-embedded framed m-simplex (S ∼= [m],F) to a simplicial
j-face f : T ↪→ S is the n-embedded frame (T ∼= [j],F|f ) of T , where T ∼= [j]

is the restricted isomorphism (S ∼= [m])|f and the n-embedded frame F|f is
obtained by restricting F to the image face f : [j] ↪→ [m].

Example 1.1.56 (Frame restriction to faces). In Figure 1.17 we depict
a 4-embedded framed 3-simplex along with the restriction of its frame to
various faces.

One may of course similarly define frame restrictions of embedded partial
frames of simplices, as follows.
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Figure 1.17. Restriction of an embedded frame to faces of
a simplex.

Definition 1.1.57 (Partial frame restrictions to simplicial faces of sim-
plices). The frame restriction of an n-embedded k-partially framed m-
simplex (S [k],F) to a j-face f : T ↪→ S is the n-embedded partial
frame (T [l],F|f ) of T where T [l] equals the restricted degeneracy
(S [k])|f and the n-embedded frame F|f is obtained by restricting F to
the image face f : [l] ↪→ [k].

Remark 1.1.58 (Restricting partial frames via framed realization). As
for embedded frame restrictions in Remark 1.1.48, the notion of embedded
partial frame restriction is characterized geometrically as follows. Consider
an n-embedded partial frame (S [k],F) and a simplicial face f : T ↪→ S;
pick any framed realization r : |S| → Rn. The restriction of the frame to
the face is the unique n-embedded partial frame of the simplex T which is
framed realized by the composite linear map r ◦ |f | : |T | ↪→ |S| → Rn.

1.1.2.2. Framed maps. Given two embeddings W ↪→ Rn and V ↪→ Rn,
thought of as embedded frame structures on the vector spaces W and V ,
there are of course no interesting non-injective maps V →W that commute
with the embeddings, but we may nevertheless consider a map V → W to
respect the frame structure when for every vector v ∈ V , either the vector
is sent to zero by the map V →W or the map V →W commutes with the
embeddings at that vector.

We now introduce the analogous combinatorial notion of framed map,
wherein simplicial vectors are either degenerated or have their embedded
frame preserved.

Definition 1.1.59 (Framed map of framed simplices). Given n-embedded
framed simplices (S ∼= [l],F) and (T ∼= [m],G), a framed map F : (S ∼=
[l],F) → (T ∼= [m],G) is a simplicial map F : [l] → [m] such that for every
vector v : [1] → [l] in the simplex [l], either its frame label is preserved,
i.e., F|v = G|F◦v, or the vector is degenerated, i.e., F ◦ v : [1] → [m] is
constant.

There are two natural subclasses of framed maps worth distinguishing, as
follows, namely those for which the simplicial map is injective or surjective.

Terminology 1.1.60 (Framed faces). A framed map F : (S ∼= [l],F) ↪→
(T ∼= [m],G) such that F : [l] ↪→ [m] is a simplicial face is called a framed
face. Note that this implies G|F = F.
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Terminology 1.1.61 (Framed degeneracies). A framed map F : (S ∼=
[l],F) (T ∼= [m],G) such that F : [l] [m] is a simplicial degeneracy is a
framed degeneracy.

Notation 1.1.62 (Category of embedded framed simplices). Denote by
FrSimpn the category of n-embedded framed simplices and their framed maps.
(Note that the objects of this category are simplices of dimension necessarily
at most n.)

Observation 1.1.63 (Epi–mono factorization of framed maps). As a
map of simplices factors as a degeneracy map (epimorphism) followed by a
face map (monomorphism), similarly any framed map of framed simplices
factors as a framed degeneracy map followed by a framed face map.

Example 1.1.64 (Framed and non-framed maps). In Figure 1.18 we
illustrate three framed maps between 2-embedded framed simplices; the left
one is a simplicial face map (with highlighted image), the middle one is
a simplicial degeneracy (with highlighted affine kernel), the right one is a
general simplicial map (with indicated image and affine kernel). These are
framed as all the frame labels on nondegenerated vectors are preserved.

In Figure 1.19, by contrast, we illustrate three non-framed maps. The
first is again a simplicial face, the second a simplicial degeneracy, and now
the third is an unordered simplicial isomorphism. These are not framed maps,
as some frame label of a nondegenerated vector is not preserved. Note that
in the second case, the map is not framed even though all spine vectors are
either degenerated or have their frame label preserved, because the non-spine
vector frame label is not preserved; framed maps cannot be naively detected
by their frame behavior on spines.

→↪→

Figure 1.18. Framed maps of framed simplices.

−id−−−→↪→

Figure 1.19. Non-framed maps of framed simplices.

Framed maps of n-embedded simplices can also be understood in geometric
terms.
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Remark 1.1.65 (Framed maps in linear algebraic terms). Consider n-
embedded framed simplices (S ∼= [l],F) and (T ∼= [m],G) and a simplicial
map F : S → T . For framed realizations r : |S| ↪→ Rn and q : |T | ↪→ Rn, the
map F is framed if for any vector v⃗ mapped into ϵ+i by r, its image w = F (v)

is mapped into ϵ+i ∪ {0} by q.

Example 1.1.66 (Framed maps via framed realization). For each of
the three framed maps from Figure 1.18, we illustrate, in Figure 1.20, a
framed realization of the source and target, together with an indication of
the associated geometric map of subspaces of euclidean space, showing that
the type of each of the frame vectors is preserved (or degenerated).

2

R2

2

11

R2

2

1

R2

↪→ →

↪→

Figure 1.20. Framed maps via framed realization.

Note that the geometric description of framed maps of embedded framed
simplices immediately generalizes to the case of embedded partially framed
simplices. In combinatorial terms, this may be phrased as follows.

Definition 1.1.67 (Framed maps of embedded partially framed sim-
plices). Given n-embedded partially framed simplices (S [j],F) and (T
[k],G), a framed map F : (S [j],F)→ (T [k],G) is a simplicial map
F : S → T that descends to a framed map of n-embedded framed simplices
Fn : ([j],F)→ ([k],G), that is, Fn : [j]→ [k] commutes with F : S → T and
the degeneracies S [j] and T [k].

Notation 1.1.68 (Category of embedded partially framed simplices).
Denote by PartFrSimpn the category of n-embedded partially framed simplices
and their framed maps.

Framed maps either preserve the frame label of a vector or degenerate
that vector to zero; there is a more general notion of ‘subframed map’ in
which vectors may degenerate not just to the zero vector but to any vector
with more specialized frame label. We first describe this geometric viewpoint,
and then give a purely combinatorial definition of subframed maps.
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Remark 1.1.69 (Subframed maps in linear algebraic terms). Consider
n-embedded framed simplices (S ∼= [l],F) and (T ∼= [m],G) and an unordered
simplicial map F : S → T . For framed realizations r : |S| ↪→ Rn and
q : |T | ↪→ Rn, we say F is ‘subframed’ if for any vector v in S mapped into
ϵ+i by r, its image w = F (v) is mapped into the closure ϵ+i by q.

Note that subframed maps may in particular send vectors from a positive
component ϵ+i into a negative component ϵ−j ⊂ ϵ

+
i (where j > i).

Definition 1.1.70 (Subframed map). Given n-embedded framed sim-
plices (S ∼= [l],F) and (T ∼= [m],G), a subframed map F : (S ∼= [l],F) →
(T ∼= [m],G) is an unordered simplicial map F : S → T such that for every
ordered vector v : [1] ↪→ S ∼= [l], either the frame label of v is preserved in
the sense that F ◦ v : [1]→ T ∼= [m] is an ordered vector with F|v = G|F◦v,
or the frame label of v is specialized in the sense that F ◦ v : [1]→ T ∼= [m] is
a possibly unordered vector with F|v < G|F◦v, or the vector v is degenerated
in the sense that F ◦ v : [1]→ T ∼= [m] is constant.

The definition of subframed maps extends, as with that of framed maps, to
the embedded partially framed case, by insisting that a vector without a
frame label is either mapped to zero or again to a vector without a frame
label.

Example 1.1.71 (Subframed maps). The three maps in Figure 1.19 are,
though not framed, subframed maps. In the first, the vector with frame
label 1 is mapped to the vector with the (more specialized) frame label 2.
Similarly in the second, the non-spine vector with frame label 1 is mapped
to the target vector with frame label 2. In the third, the frame-label-1
vector again specializes to a frame-label-2 vector, but now with reversed
orientation. In Figure 1.21 we illustrate the framed realizations of these
three maps, conveying that a vector with a positive coordinate in the 1-axial
direction may specialize to a 2-axial vector, with either a positive or negative
coordinate, since the closure of the halfplane ϵ+1 contains both the halflines
ϵ+2 and ϵ−2 .

2

1

R2

2

1

R2
←↩

2

R2

1

→

Figure 1.21. Subframed maps via their framed realizations.
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1.2. Framed simplicial complexes

Our goal in this section will be to introduce a combinatorial notion of
framings on simplicial complexes. This is a globalization of the notion of
frames on simplices introduced in the previous section: just as manifolds are
spaces that are locally modeled on euclidean space, simplicial complexes are
modeled on simplices; and just as framed manifolds are locally modeled on
framed euclidean space (i.e., endowed with a continuous choice of frames in
each tangent space), framed simplicial complexes will be modeled on framed
simplices. The notion of framed simplicial complexes has two important
features which distinguish the combinatorial approach to framings from the
classical geometric approach to framings of manifolds.

Firstly, framings of simplicial complexes are not local linear structures
but piecewise affine structures in the following sense. As previously discussed,
simplices are extended affine spaces rather than infinitesimal geometric objects;
frames of simplices are, correspondingly, affine frames, i.e., frames not based
at any specific point of the simplex but defined up to translation. We will
define framings on simplicial complexes by piecing together affine frames of
each of their simplices. This stands in contrast to the classical tangential
notion of framings which defines framings locally, i.e., by picking a frame in
the tangent space of each point.

Secondly, simplicial complexes are naturally singular spaces and generally
not manifolds. As a consequence, framed simplicial complexes will in fact
provide a combinatorial model of framed singular spaces and not just of
classical framed manifolds. Classically, singular spaces are gluings of manifold
strata, and singular spaces themselves need not be manifolds. The question of
framing singular spaces is subtle since the usual machinery of tangent spaces
relies on local euclidean trivializations; these need not exist everywhere in
singular spaces. We will not attempt to geometrically define framed singular
spaces in this chapter, but instead focus on leveraging the tools of affine
combinatorics: namely, in combinatorial terms, individual open simplices
will play the role of manifold strata, and the question of how framings can
transition between strata of different dimension will find an answer using the
notion of ‘n-embedded’ frames developed in the preceding section.

Note that framed singular spaces arise naturally in familiar situations.
Consider for example the map D2 → R2 that folds a 2-disk onto itself as shown
in the bottom row of Figure 1.22. The standard 2-frame of R2 may be pulled
back along this map, but of course this only yields a 2-frame of D2 at points
where the differential is non-singular. If we regard D2 as a stratified space as
indicated on the bottom left, then this yields an example of a framed singular
space with 2-dimensional strata carrying 2-framings, 1-dimensional strata
carrying (2-embedded) 1-framings, and the central 0-dimensional stratum
carrying a (2-embedded) 0-frame. Combinatorially, such framed singular
spaces can be naturally modeled as framed simplicial complexes, a notion
that will globalize the definition of frames on individual simplices from the
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previous section. The framed simplicial complex corresponding to the framed
singular space of the bottom row is illustrated in the top row of the figure.
This analogy between framed topological spaces and framed combinatorial
complexes can be extended to the case of partial frames as well. Indeed, the
figure at the beginning of the Introduction shows how the singular 1-framing
induced by a Morse function D2 → R can be represented combinatorially
using a partial 1-framed simplicial complex.

R2

D2

∼=

∼=

π
−−

π
−−

R2

2

1

1

2

Figure 1.22. A framed simplicial complex representing the
cusp singularity.

Outline. We introduce a combinatorial notion of framed simplicial
complexes in Section 1.2.1, which will be a straightforward generalization
of our earlier notions of framed simplices. In Section 1.2.2 we will then
introduce the important class of collapsible framings which are contractible
by a frame-order respecting sequence of simplicial collapses. Such collapsible
framings provide a natural ‘trivial’ local model for global framings and will
be a key ingredient in the later definition of framed regular cells. Moreover,
local collapsibility yields a condition for combinatorial framings to be at
least locally trivializable, recovering a combinatorial notion of ‘progressive’
framings that is more analogous to the classical singularity-free tangential
framings of manifolds mentioned above.

1.2.1. Framings on simplicial complexes.

Synopsis. We first establish the specific terminology for unordered and
ordered simplicial complexes used throughout this work. We then define
framings on these complexes simply as simplex-wise framings for each simplex
in the complex that consistently restrict to framings on subsimplices.
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1.2.1.1. Unordered and ordered simplicial complexes. Just as order-
ings S ∼= [m] of unordered simplices played a crucial role in our discussion of
framed simplices, they will be relevant for our definition of framed simplicial
complexes. While the transition from unordered to ordered complexes is
intuitively straightforward, a precise treatment requires a degree of technical
bookkeeping. To keep this manageable, we adopt the language of simplicial
sets [Fri08, Rie11], which provides the necessary combinatorial machinery
to handle these orderings consistently.

Terminology 1.2.1 (Simplicial sets). A ‘simplicial set X’ is a presheaf
X : ∆op → Set on the simplex category ∆, mapping simplices [m] to sets
X[m]. The ‘category of simplicial sets’ is the category of presheaves on ∆,
and is usually denoted by SSet.

We will tacitly Yoneda embed ∆ → SSet and, abusing notation, use the
simplex [k] ∈ ∆ to also denote the representable simplicial set that it defines
under this embedding (this is sometimes denoted by ∆[k] in the literature).
By the Yoneda lemma, the set of maps x : [k] → X is naturally identified
with the set X[k] of k-simplices in a simplicial set X.

In piecewise linear topology one commonly uses the weaker notion of
‘simplicial complexes’ in place of simplicial sets, which is better suited to the
construction of piecewise linear realizations. Commonly, simplicial complexes
and their maps are introduced as follows.

Terminology 1.2.2 (Simplicial complexes and their maps). A ‘sim-
plicial complex’ consists of a set of vertices K(0) together with a list of
subsets K(1),K(2), ... of the vertex powerset ℘K(0) with the property that
‘i-simplices’ x ∈ K(i) are sets of cardinality (i + 1) and any subset of an
i-simplex is itself a j-simplex, j ≤ i, of K.

Maps of simplicial complexes K → L, called ‘simplicial maps’, are maps
of vertex sets f : K(0)→ L(0) whose image on each i-simplex x ∈ K(i) yields
a j-simplex f(x) ∈ L(j) (for some j). The category of simplicial complexes
and their simplicial maps will be denoted by SimpCplx.

Like simplicial sets, simplicial complexes may also be characterized as (certain)
presheaves. Recall the category ∆ of unordered simplices (see Notation 1.1.3).

Remark 1.2.3 (Simplicial complexes as presheaves). Every simplicial
complex K gives rise to a presheaf K : ∆op → Set by defining K(S) to be
the set of functions x : S → K(0) whose image im(x) lies in some K(j), and
defining K(f : S′ → S) to act by precomposition with f . This construction
gives rise to a full and faithful embedding of SimpCplx into the category
PSh(∆) of presheaves on ∆.

Again, we will tacitly Yoneda embed simplices in ∆ into presheaves PSh(∆).

Remark 1.2.4 (Simplices are simplicial). Note that the Yoneda embed-
ding ∆ → PSh(∆) lands in the subcategory SimpCplx ↪→ PSh(∆), making
simplices in particular simplicial complexes.
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Equipped with these notions, we are ready to describe what it means to
‘order’, and, conversely, ‘unorder’ simplicial complexes. Recall the ‘unordering’
functor (−)un : ∆ → ∆ which forgets orders (see Terminology 1.1.4). This
first extends to simplicial sets as follows.

Terminology 1.2.5 (Unordering functor). The ‘unordering functor’
(−)un : SSet→ PSh(∆) forgets the order of vertices in each simplex: formally,
this can be defined as the left adjoint to precomposing presheaves with
(−)un : ∆→ ∆.

Rourke and Sanderson introduce ‘ordered simplicial complexes’ as simplicial
complexes with an order on their vertices [RS71, §1]; we will use the same
term for the following more general notion, which requires each simplex in a
simplicial complex to be (consistently) ordered, but this local order need not
induce a global order on the set of vertices.

Terminology 1.2.6 (Ordered simplicial complexes). A simplicial set X
is called an ‘ordered simplicial complex’ if its unordering Xun is an ordinary
simplicial complex.

The phrase ‘a
presheaf map of
ordered simplicial
complexes’ is po-
tentially confusing.
Did this just mean
... . Also in the
next environment
the phrase ‘their
simplicial maps’ is
used.

Terminology 1.2.7 (The category of ordered simplicial complexes). The
‘category of ordered simplicial complexes’ SimpCplxord is the full subcategory
of SSet consisting of ordered simplicial complexes and their simplicial maps.

The unordering functor restricts to a functor (−)un : SimpCplxord → SimpCplx.

Terminology 1.2.8 (Ordering complexes and their maps). An ‘ordering’
of a simplicial complex K (resp. of a simplicial map F : K → L) is a choice of
a preimage Kord of K (resp. a preimage F ord : Kord → Lord of F ) under the
unordering functor. For fixed orderings Kord and Lord of simplicial complexes
K and L, a simplicial map F : K → L is said to be ‘order-preserving’ if there
is a (necessarily unique) preimage F ord : Kord → Lord.

As a trivial example, an ordering of the unordered standard simplex [m]un is,
of course, the ordered standard simplex [m], and so is any other total order
of the set {0, 1, ...,m}.

Remark 1.2.9 (Nondegenerate simplices in simplicial sets and complexes).
A simplex x : [k]→ X in a simplicial set X is ‘nondegenerate’ if there is no
non-identity degeneracy map d : [k]→ [j] through which x factors; otherwise,
x is ‘degenerate’. We write X(k) for the subset of X[k] containing only the
nondegenerate k-simplices of X.

Note that a k-simplex x in an ordered simplicial complex K is nondegenerate
if and only if the presheaf map x : [k]→ K is a (componentwise) injection,
in which case we write x : [k] ↪→ K.

Remark 1.2.10 (Characterizing ordered simplicial complexes). A simpli-
cial set X is an ordered simplicial complex if x : [k]→ X is (componentwise)
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injective for all x ∈ X(k), and, no two x, y ∈ X(k) have the same sets of
0-simplices in X[0].

1.2.1.2. The definition of framed simplicial complexes. We now in-
troduce framings on ordinary simplicial complexes. Recall the definition of
embedded frames F of m-simplices S from Definition 1.1.36 which endows S
with an isomorphism α : S ∼= [m] that orders S, together with an n-embedded
frame F of [m] (given by an injection F : spine[m] ↪→ n). Recall also, for a
j-face f : T ↪→ S, such an n-embedded frame of S restricts to an n-embedded
frame of T (defined by the restricted isomorphism α|f : T ∼= [j] and the
restricted n-embedded frame F|f , see Notation 1.1.54 and Definition 1.1.55).

Definition 1.2.11 (Framings of simplicial complexes). An n-framing
(α,F) of a simplicial complex K endows each m-simplex x : S ↪→ K with an
n-embedded frame (αx : S ∼= [m],Fx) such that, for any j-face f : T ↪→ S,
the restriction of the chosen frame of x to the face f coincides with the chosen
frame of x ◦ f ; that is, αx◦f = αx|f and Fx◦f = Fx|f .

Note that a simplicial complex K cannot contain simplices of dimension
greater than n in order for it to admit an n-framing.

Before we give examples of framed simplicial complexes, we first discuss
an important simplification of the definition, which encodes orderings as part
of the simplicial complex. This hinges on the following observation.

Observation 1.2.12 (Isomorphism data of framings is an ordering). An
n-framing (α,F) of a simplicial complex K gives rise to an ordering of K;
indeed, for each m-simplex x : S ↪→ K in K, an order on the vertices of S is
determined by the isomorphism αx : S ∼= [m] and together (since choices of αx

are compatible with faces) these orderings of vertices of simplices determine
an ordering of K itself. This has an inverse: any ordering of K restricts
to an ordering of each simplex x : S ↪→ K, and thus yields (compatible)
isomorphisms S ∼= [m].

As a consequence of the observation, we obtain the following equivalent way
of phrasing the notion of n-framings.

Alternative Definition 1.2.13 (Framings of ordered complexes). An
n-framing F of a simplicial complex K is an ordering Kord of K together with
an n-embedded frame Fx of [m] for each nondegenerate m-simplex x : [m] ↪→
Kord, such that, for any face f : [k] ↪→ [m], we have Fx◦f = Fx|f .

We will henceforth adopt this more concise reformulation of n-framings in
terms of orderings, recorded by the preceding definition. We refer to the
pair (K,F), of a simplicial complex and an n-framing on it, as an ‘n-framed
simplicial complex’, and keep the ordering of K implicit in our notation.

Convention 1.2.14 (Keeping orderings implicit). When working with a
framed simplicial complex (K,F), we often tacitly consider K as an ordered
simplicial complex (for instance, when working with maps [m]→ K): we will
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always assume this ordering of K to be the ordering of K provided by the
n-framing F via the Alternative Definition 1.2.13.

Terminology 1.2.15 (Frame labels and frame vectors). A ‘frame k-
vector’ v : [1] ↪→ K in a framed simplicial complex (K,F) is a simplicial
vector in K whose ‘frame label’ is F|v(0→ 1) = k.

Note that frame vectors fully determine the frame structure of a framed
simplicial complex (since they comprise, in particular, all spine vectors of all
simplices).

Remark 1.2.16 (Frame vector notation). In later examples, instead of
defining frames Fx separately for each simplex x in K, we usually only give
frame labels of the simplicial vectors in the simplicial complex. But note
well that we cannot define a framing on a complex by arbitrarily labeling
the simplicial vectors of the complex with frame labels in n; we must also
check that the labeling in fact defines a valid frame on each simplex in the
complex.

Example 1.2.17 (Framings and non-framings on simplicial complexes).
In Figure 1.23, we depict two 2-framed simplicial complexes. The framing
is indicated by the notation wherein edges with frame label 1, that is frame
1-vectors, have a single arrow and edges with frame label 2, that is frame
2-vectors, have a double arrow. The left complex is a 2-sphere, and the right
complex is a 2-torus. (Notice that a manifold need not have a tangential
framing in the classical sense in order to have a combinatorial framing in our
sense; the point being that our more general notion of framing allows various
singularities of the framing. The notion of progressive framing described later
is more closely analogous to the classical notion of (nonsingular) tangential
framing.)

In Figure 1.24, we depict first an unordered simplicial complex that admits
no 2-framing whatsoever. (As it happens this is the minimal triangulation of
the real projective plane.) Second, we have an ordered simplicial complex
that admits no 2-framing, though the underlying unordered complex certainly
has other orderings for which there are 2-framings.

Figure 1.23. Simplicial complexes with a 2-framing.

As in the case of framed simplices, framed realizations turn out to
be a convenient tool for visualizing framings of complexes. Generalizing
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Figure 1.24. Simplicial complexes with no 2-framing.

the definition of framed realizations of n-embedded framed simplices (see
Definition 1.1.40) to the case of framed simplicial complexes is straightforward,
as follows.

Definition 1.2.18 (Framed realization of a framed simplicial complex).
Given an n-framed simplicial complex (K,F), a linear map r : |K| → Rn

(that is, a map that is linear on each simplex) is called a framed realization
of K if for each simplex x : [m] ↪→ K the restriction r ◦ |x| is a framed
realization of ([m],Fx).

Example 1.2.19 (Framed realizations of framed simplicial complexes). In
Figure 1.25 we illustrate various 2-framings of the ‘square’ simplicial complex,
along with corresponding framed realizations.

2

1

R2

Figure 1.25. Simplicial complexes with 2-framings and their
framed realizations.

We remark that not all framed simplicial complexes admit framed realizations
in Rn (for example, circularly framing the boundary of the 2-simplex creates
a non-realizable 1-framed simplicial complex).

We next define maps of framed simplicial complexes. This directly gener-
alizes the notion of framed maps of framed simplices from Definition 1.1.59.

Definition 1.2.20 (Framed maps of framed simplicial complexes). Con-
sider n-framed simplicial complexes (K,F) and (L,G). A framed simplicial
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map F : (K,F) → (L,G) (or simply, a ‘framed map’) is a simplicial map
F : K → L that restricts on all simplices x : [k] ↪→ K to a framed map
F : ([k],Fx) → ([l],Gy) where y = im(F ◦ x) : [l] ↪→ L is the image of
F ◦ x.
Note that any framed map F : (K,F)→ (L,G) is order-preserving.

Notation 1.2.21 (The category of framed simplicial complexes). The
category of n-framed simplicial complexes and framed maps will be denoted
by FrSimpCplxn.

Definition 1.2.22 (Unframing framed simplicial complexes). The un-
framing functor Unframe : FrSimpCplxn → SimpCplx takes a framed sim-
plicial complex (K,F) to the simplicial complex K, and a framed map
F : (K,F)→ (L,G) to the simplicial map F : K → L.

Definition 1.2.23 (Restricted framings). Given an n-framed simplicial
complex (K,F) and a simplicial subcomplex L ↪→ K, the restricted framing
F|L of F to L is the n-framing of L obtained by restricting the ordering of
K to L, and setting (F|L)x = Fx for simplices x : [k] ↪→ L ↪→ K.

Note that a subcomplex L ↪→ K of a framed simplicial complex as in the
preceding definition induces a framed simplicial map (L,F|L) ↪→ (K,F).

Finally, the following generalization of subframed maps of framed simplices
which, later on, will naturally resurface in the context of framed cellular maps
when passing to the barycentric subdivision of cells.

Remark 1.2.24 (Subframed maps of framed simplicial complexes). The
notion of subframed maps of simplices described in Definition 1.1.70 general-
izes to framed simplicial complexes: a ‘subframed map of framed simplicial
complexes’ F : (K,F)→ (L,G) is a simplicial map F : K → L that restricts
on all simplices x : [k] ↪→ K to a subframed map F : ([k]un ∼= [k],Fx) →
([l]un ∼= [l],Gy) where y = im(F ◦x) : [l] ↪→ L is the image of F ◦x. Note that,
unlike framed maps, subframed maps need not be order-preserving.

Our discussion of framing structures on simplicial complexes would not
be complete without mentioning the following the following generalization to
partial framings.

Definition 1.2.25 (Partial framings of simplicial complexes). A partial
n-framing (α,F) of a simplicial complex K endows each m-simplex x : S ↪→
K with an n-embedded partial frame (αx : S [k],Fx) such that, for any
j-face f : T ↪→ S, the restriction of the chosen n-embedded partial frame of
x to the face f coincides with the chosen n-embedded partial frame of x ◦ f ;
that is, αx◦f = αx|f and Fx◦f = Fx|f .

Note that a ‘partial n-framed simplicial complex’ (K,F) may havem-simplices
of any dimension m. Note also that Observation 1.2.12 no longer holds: a
partial framing need not determine an ordering on a simplicial complex.
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Going forward, we will be mostly interested in the case of (non-partial)
embedded framings; nonetheless, all subsequent definitions have analogs in
the partial case as well.

1.2.2. Collapsible framings. We now develop a combinatorial notion
that guarantees triviality of framings on framed simplicial complexes. Our
definition will be analogous to the classical notion of collapsibility of simplicial
complexes [Coh12, §2] [Whi39], but will impose additional conditions to
ensure collapses respect the framing structures: intuitively, these conditions
recover the geometric idea that collapses should happen along frame flow
lines (i.e., lines that ‘integrate’ the framing’s k-vector fields, cf. [For02, §3]).

Synopsis. Recall, classically, a collapsible simplicial complex admits a
sequence of elementary collapses of individual simplices, forming altogether
a contraction of the complex. We will similarly define a framed simplicial
complex to be framed collapsible if it admits a contracting sequence of
elementary collapses, but which are required to consecutively collapse all the
simplices containing a vector of highest frame label, before proceeding to
collapse the simplices with next highest frame label, and so forth. Applying
the condition of framed collapsibility locally in general simplicial complexes,
we define a notion of progressive framings on simplicial complexes, whose
role is analogous to classical tangential frameability of manifolds.

It would still be nice
to get in some idea
about the combina-
torial ‘flow lines’ of
the framing, which
are necessitated by
framed collapsible?
But I’m not sure
what to say. The
‘rigid geometry’ view-
point ... intuition
about this ... .
What’s written now
is a bit too techni-
cal for the intro para-
graph, maybe.

1.2.2.1. The definition of framed collapse. Classically, the notion of
collapse provides a transformation of a simplicial complex into a homotopically
equivalent complex by removing simplices. The notion is useful since, unlike
for simplicial sets, there is no good notion of ‘taking quotients’ for simplicial
complexes that guarantees that the resulting complex will, in fact, be another
simplicial complex. For framed collapse we will impose the stronger condition
that the collapse of frame k-vectors (inductively for each k) is equivalently a
quotient map that quotients along the frame vector ‘flow lines’.

The inductive nature of the collapse process hinges on the observation
that framed simplices have a unique highest frame vector.

Terminology 1.2.26 (Highest frame vectors). Given an n-embedded
framed m-simplex ([m],F), its ‘highest frame vector’ is the unique frame
k-vector hF : [1] → [m] such that k is maximal among all frame vectors
of the framed m-simplex. Given a framed simplicial complex (K,F), its
‘highest frame number’ k is the maximal k such that (K,F) contains a frame
k-vector.

Example 1.2.27 (Highest frame vectors of framed simplices). In Fig-
ure 1.26 we depict a 4-framed 3-simplex and a 4-framed 4-simplex, highlighting
in each case the highest frame vector.

Construction 1.2.28 (Elementary collapse of frame k-vectors). Given
an n-framed simplicial complex (K,F) with highest frame number k and a
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Figure 1.26. Highest frame vectors of 4-framed simplices.

frame k-vector v : [1] ↪→ K, the elementary k-collapse qv : K → K ′ of v is
the quotient of simplicial sets that, on each simplex x : [m] ↪→ K containing
v = x ◦ vx, is induced by the degeneracy dvx(0) : [m]→ [m− 1].3

Note that the preceding construction works with simplicial sets. We are
interested in the case where the quotient itself is a simplicial complex.

Observation 1.2.29 (Framed elementary collapse). Given an elementary
k-collapse qv : K → K ′ of (K,F) such that K ′ is a simplicial complex, there
is a unique framing (K ′,F′) such that qv becomes a framed simplicial map.
We call qv the ‘framed elementary k-collapse’ of v in this case.

Example 1.2.30 (Elementary collapse of frame vectors). In Figure 1.27
we illustrate four 2-framed simplicial complexes with highest frame number 2,
highlighting a frame 2-vector in each of them. In each case, we indicate the
elementary k-collapse qv. This yields a framed elementary k-collapse in all
but the last case, in which the codomain of qv fails to be a simplicial complex.

qv−−→

qv−−→ qv−−→

qv−−→
v

v v

v

Figure 1.27. Elementary collapse of frame 2-vectors.

Definition 1.2.31 (Framed collapsible complex). A framed simplicial
complex (K,F) with highest frame number k is framed collapsible if, either,
k = 0 and K is the point, or, k > 0 and the following conditions hold:

3More formally, we can construct the elementary collapse map of a vector v ∈ K(1) as
follows. Recall, K = colim(D) where D is a diagram of all simplices in K: technically,
this is the Yoneda embedding of the forgetful functor el(K)→ ∆ from the category of
elements el(K) of K. There is a unique natural transformation α : D → D′ to some
D′ defined such that on x : [m] → K, αx is the degeneracy dvx(0) : [m] → [m − 1] if x
contains v = x ◦ vx and id : [m]→ [m] otherwise. The collapse map q is the induced map
of colimits colim(α) : colim(D)→ colim(D′).
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(1) Inductive collapsibility . K admits a sequence of framed elementary k-
collapses to a framed collapsible (K ′,F′) with highest frame number
< k. (Denote by qk : (K,F) → (K ′,F′) the canonical induced
‘framed k-collapse map’.)

(2) Flow section existence. For every framed m-simplex x : ([m],G) ↪→
(K ′,F′) in the collapsed complex K ′, and every vertex z in K
whose collapse qk(z) lies in x, there exists some ‘flow section lift’
l : ([m],G) ↪→ (K ′,F′) containing z and such that qk ◦ l = x.

(3) Flow continuation uniqueness. For any simplex x : [m] ↪→ K and
any frame k-vector v whose source (resp. target) lies in x, there exists
at most4 one ‘flow continuation’ (m+ 1)-simplex c : [m+ 1] ↪→ K
containing both l and v.

We say a framing of a simplicial complex is ‘collapsible’ when that framed
simplicial complex is framed collapsible, and we refer to a framed collapsible
framed simplicial complex simply as a ‘collapsible framed simplicial complex’.

Example 1.2.32 (Collapsible framings). In Figure 1.28 we depict col-
lapsible 1-framed simplicial complexes: these are all of ‘linear’ form.

Figure 1.28. Collapsible 1-framed simplicial complexes.

In Figure 1.29 we depict collapsible 2-framed simplicial complexes with
highest frame number 2, together with their respective 2-collapses onto
collapsible 2-framed simplicial complexes with highest frame number 1.

Figure 1.29. Collapsible 2-framed simplicial complexes with
their 2-collapse maps.

Example 1.2.33 (Non-collapsible framings). In contrast, in Figure 1.30,
we depict framed complexes that are not collapsible.

Similarly, none of the 2-framed complexes in Figure 1.27 are collapsible:
the first complex fails the flow continuation uniqueness condition; the sec-
ond fails the flow section existence condition; the third is not inductively
collapsible; the fourth does not admit a simplicial k-collapse.

4The condition turns out to be equivalent to there being ‘exactly one’ such continuation
simplex.
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Figure 1.30. Non-collapsible 1-framed simplicial complexes.

Two more non-collapsible 2-complexes are shown in Figure 1.31. The first
fails the ‘flow continuation uniqueness condition; the circled edge has two
different 2-simplices that would collapse downward onto it. The second has
no elementary collapse that is simplicial. In fact, the unordered simplicial
complex underlying these 2-framed complexes admits no collapsible 2-framing.

Figure 1.31. 2-Framed complexes which are not collapsible.

Notation 1.2.34 (Category of collapsible framings). We denote the
full subcategory of FrSimpCplxn consisting of collapsible framings by
CollFrSimpCplxn.

Remark 1.2.35 (Contractibility of collapsible framings). Note that
framed collapsibility of framed simplicial complexes implies, in particular,
their contractibility in the classical sense.

Isn’t the contractibil-
ity an immediate
consequence of the
fact that framed
collapsible implies
unframed collapsible
implies contractible.
Ie doesn’t depend
on the classification.
I think the content
of this remark, if it
exists, would need
to be something
about /framed/
contractibility. But
what is that? cf
my unease with the
intro paragraph in
1.2.2. Ie I feel like
a notion of framed
contractibility
could both form
the content of a
remark, and serve
as the motivation
/ intuitive idea in
that intro. [both
changed]

Nowhere except in
the intro text is it
stated that collapsi-
ble complexes have
framed realizations
that are framed con-
tractible, or any-
thing similar (ie that
there’s some nice
contractibility prop-
erty). Add remark?
[YES]

1.2.2.2. Progressive framings. We may further impose collapsibility lo-
cally, and will refer to the resulting notion as ‘progressivity’. The existence
of a progressive framing on a triangulation of a manifold makes contact with
classical notions of tangential frameability (in the sense of parallelizability, cf.
[MS74, §2]).

Notation 1.2.36 (Stars). Recall, given a simplicial complex K, the
‘star of a vertex’ x in K, denoted star(x), is the minimal subcomplex of K
containing all simplices that have x as a vertex.

Definition 1.2.37 (Framed progressive complex). We say an n-framing
(K,F) of the simplicial complex K is framed progressive if for each vertex
x ∈ K(0) the restricted n-framing (star(x),F|star(x)) is collapsible.

Remark 1.2.38 (Collapsibility implies progressivity). Every collapsible
framing is, in particular, progressive.

Example 1.2.39 (Progressive and non-progressive framed manifolds). In
Figure 1.32, we depict two progressive framings on simplicial complexes, both
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of which happen to be manifolds. The left image is a progressive framing
on the annulus, and similarly the right image is a progressive framing on
the torus. Note that the earlier framing of the torus in Figure 1.23 was not
progressive, and had no progressive sub-annulus.

In Figure 1.33, we depict two non-progressive framings, one on the
circle and one on the Möbius band. In fact, the Möbius band admits no
triangulation that has a progressive 2-framing. Another example of a non-
progressive framing was the one on the 2-sphere in Figure 1.23. Indeed
that complex contains as a star subcomplex the left complex in Figure 1.31,
which we observed was not collapsible. Again, in fact no triangulation of the
2-sphere will have a progressive 2-framing.

Figure 1.32. Progressive framed simplicial manifolds.

Figure 1.33. Non-progressive framed simplicial manifolds.
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1.3. Framed regular cell complexes

In the final section of this chapter, we will introduce n-framings on regular
cell complexes. Our goal will be the definition of a category of ‘n-framed
regular cell complexes’ FrCellCplxn, fitting into the following diagram of
categories (in which vertical arrows are fully faithful embeddings of categories,
while horizontal arrows forget framing structures):

FrSimpCplxn SimpCplx

FrCellCplxn CellCplx

Unframe

Unframe .

Regular cell complexes, as we recall in Section 1.3.1, are complexes whose
cellular attaching maps are injective; informally, these complexes are gluings
of cells of general ‘polytopic shape’. Despite their generality, regular cell
complexes, unlike their non-regular counterpart, are combinatorializable. The
fundamental property of regular cell complexes that enables this combinato-
rialization is the homotopical triviality of their closed cells. This entails that
one can describe a class of so-called cellular posets, which are exactly the
face posets of regular cell complexes; geometric realizations of cellular posets
recover the (cellular) homeomorphism type of their corresponding regular
cell complexes. The resulting translation between regular cell complexes
and cellular posets provides the claimed combinatorialization of regular cell
complexes.

Crucially, however, this combinatorialization is computably intractable
in that, given a poset, there can be no general algorithm to determine if
that poset is cellular [VKF74, CL06]. In particular, it is impossible to
algorithmically write down a list classifying ‘all the shapes’ of regular cells
up to some general bound in, say, the number of boundary cells. By framing
regular cells this intractability will find a natural resolution.

The definition of framed regular cell complexes will directly rely on our
previous work on framings of simplicial complexes. Namely, an n-framed
regular cell complex will be an n-framing of the simplicial complex that
underlies the cellular poset of the complex, together with the additional
condition that the framing is collapsible on each cell. This approach combines
two ingredients: firstly, use the correspondence of regular cells and cellular
posets to endow regular cells with canonical simplicial structure; secondly,
require simplicial framings on cells to be collapsible. The second condition
assures that framings of cells are trivial (in the sense that the framed cell is
framed realizable as a subspace of Rn) which, intuitively, reflects that framed
regular cells, just like framed simplices, will play the role of small, trivializable
framed pieces from which larger framed spaces will be built. An example
of a framed regular cell complex, with its corresponding framed simplicial
complex is given in Figure 1.34.
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Figure 1.34. A framed regular cell complex and its corre-
sponding framed simplicial complex.

In contrast to the case of nonframed regular cells, framed regular cells
can now be computably recognized and classified. The classification will
be constructed in Chapter 3. At the same time, the generality of framed
regular cells, as opposed to mere framed simplices, will be at the very heart of
fundamental results in framed combinatorial topology—for instance, working
with framed cells will enable the construction of canonical (namely, coarsest)
cellulations of tame stratifications, as we will explain in Chapter 5. This
highlights that the passage from framed simplices to framed regular cells is
not incidental, but of central importance in framed combinatorial topology.

I don’t think there’s
enough in place to
use this as an ex-
ample of a canon-
ical cellulation (as
nice as that would
be). It would have
to be embedded, for
instance. As is
it sounds like the
canonical cellulation
applies to the man-
ifold itself, which is
confusing / not the
case.
Maybe the thing to
do is refer to the fig-
ure inside or at the
end of the previous
paragraph (’The def-
inition of ...’) —
just as a picture of
a framed regular cell
complex as a framing
of its simplicial com-
plex.

Also later we don’t
generally use the
words ‘canonical
cellulation’ which
makes it difficult
for the reader to
figure out what
is meant. Maybe
independently of
the example, that
sentence can be
reconsidered or
specified.

Outline. In Section 1.3.1, we recall various concepts from the classi-
cal theory of regular cell complexes, interpreting the latter notion both in
combinatorial terms and as (cell-wise) stratified spaces. In Section 1.3.2, we
then introduce the notion of framings on regular cell complexes, illustrate
examples of framed regular cells, define framed maps of their complexes,
and provide the aforementioned comparison functor from framed simplicial
complexes.

Need to rewrite the
outline, and possi-
bly flesh it out, after
the necessary refac-
tor of 1.3.2. [rewrit-
ten + added synopsis
to 1.3.1/2]

1.3.1. Regular cell complexes.

Synopsis. We recall the classical definition of regular cell complexes from
the perspective of stratified spaces and discuss several related constructions,
such as their fundamental posets. We introduce the category CellCplx of com-
binatorial regular cell complexes, which provides a combinatorial counterpart
to the category of geometric regular cell complexes and their cellular maps,
and generalizes the category of simplicial complexes SimpCplx; in particular,
we construct a fully faithful embedding SimpCplx ↪→ CellCplx.

Add text here that
starts with regular
cells, refer to figure.

1.3.1.1. Regular cell complexes as cellular posets. Regular cell com-
plexes generalize simplicial complexes, but are better behaved than CW
complexes in that attaching maps are required to be ‘regular’, extending open
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interiors of cells to closed topological balls. Several illustrative examples of
regular cells in dimension 2 and 3 are shown in Figure 1.35.

Figure 1.35. An illustration of regular 2-cells and 3-cells.

Regular cell complexes are commonly defined in terms of their homeomor-
phic attaching maps [LW69]. For us, it will be convenient to formulate the
definition in terms of stratified spaces, and we begin with a brief recollection
the latter notion as well as key concepts adjacent to it.

Recall, a stratified space is a space equipped with a decomposition into
disjoint subspaces called strata (see Definition B.1.9).

Terminology 1.3.1 (Fundamental posets of stratifications). Each strati-
fied space has an associated ‘fundamental poset’ whose elements are its strata
s and whose arrows are generated by the boundary relation between strata,
recording an arrow s→ t when s’s boundary intersects t. (The definition of
stratified spaces requires that no cycles appear in that relation.)

Conversely, we can turn posets into stratifications by a process of stratified
realizations as we now describe.

Terminology 1.3.2 (Upper and strict upper closures). Given a poset P
and an element x ∈ P , then the ‘strict upper closure’ P>x of x in P is the
full subposet with objects y ∈ P with y > x. Similarly, the ‘upper closure’
P≥x is the full subposet of objects y ∈ P with y ≥ x.

Terminology 1.3.3 (Nerve and realizations of posets). Recall, the nerve
NP of a poset P is the ordered simplicial complex whose k-simplices are the
k-chains in P . The ‘geometric realization’ |P | of a poset P is obtained by
applying the standard geometric realization to NP .

Construction 1.3.4 (Stratified realizations of posets). Given a poset
P , the stratified realization ∥P∥ of P is the stratification of |P | whose
strata are the subspaces str(x) :=

∣∣P≥x
∣∣ \ |P>x| for x ∈ P .

Recall, a stratified map of stratified spaces is a map of their underlying spaces
such that strata in the domain are mapped into strata of the codomain.
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Construction 1.3.5 (Stratified map realizations of poset maps). Given
a poset map F : P → Q, the stratified map realization ∥F∥ : ∥P∥ → ∥Q∥
is the stratified map that maps 0-simplices p ∈ |P | to 0-simplices F (p) ∈ |Q|,
and linearly extends this mapping to all other simplices in |P |.
Note, as a map of underlying spaces, the stratified map realization ∥F∥
coincides with the usual geometric realization |F |. An alternative, explicit
construction of stratified realizations of posets and their maps, based on a
construction of geometric realizations in terms of convex combinations, can
be found in Construction B.1.51 (for maps, see Construction B.2.14).

With a notion of stratifications at hand, we now formally introduce
regular cell complexes.

Definition 1.3.6 (Regular cell complexes). A regular cell complex
is a stratification whose strata are open disks (called the ‘open cells’ of the
complex) while closures of strata are closed disks (also called the ‘closed cells’
of the complex).

Notation 1.3.7 (Fundamental posets of regular cell complexes). The
fundamental poset ΠX of a regular cell complex X is its fundamental
poset as a stratification: explicitly, that poset has objects that are the cells x
of X, with arrows x→ y whenever the closure x contains y.

The fundamental poset is the opposite category of the classical ‘face poset’ of
a regular cell complex, cf. [Bjö84, Bjö95]. (See Remark B.1.5 for why we
work with opposite posets here.)

Fundamental posets of regular cell complexes are graded by dimension,
that is, they admit a functor dim : ΠX → Nop with discrete preimages,
mapping each cell to its dimension. Cells of a regular cell complex X which
are minimal elements in ΠX will be called ‘facets’—these are exactly cells
which are not contained in any other cell’s boundary.

Convention 1.3.8 (Local finiteness). We assume all our regular cell
complexes to be locally finite, that is, any cell is contained in the closure of
finitely many other cells.5

Terminology 1.3.9 (Maps of regular cell complexes). A map of regular
cell complexes F : X → Y is a stratified map, mapping cell strata into cell
strata.

Remark 1.3.10 (Functoriality of fundamental posets). Note that the
fundamental poset construction is functorial: for any map of regular cell
complexes F : X → Y we obtain a poset map Π(F ) : Π(X)→ Π(Y ), mapping
a cell x of X to the cell in Y that contains the image F (x).

5As discussed in Chapter B local finiteness arises as a natural condition in the theory of
stratifications: it implies continuity of a regular cell complex’s ‘characteristic map’ X →
ΠX and ensures that regular cell complexes belong to the class of ‘conical’ stratification.
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We now describe the class of posets that can be obtained as fundamental
posets of regular cell complexes.

Definition 1.3.11 (Cellular posets). A poset (X,≤) is called cellular if
the realization |X>x| of the strict upper closure of any x ∈ X is homeomorphic
to a sphere.

Example 1.3.12 (Cellular and non-cellular posets). In Figure 1.36 the
three posets are cellular, while in Figure 1.37 the three posets fail to be
cellular. (For simplicity, we only draw the generating arrows of the posets.)
Note that even if the upper closures P≥x realize to topological balls it need
not be the case that the strict upper closures P>x realize to spheres.

Figure 1.36. Cellular posets.

Figure 1.37. Non-cellular posets.

Centrally, stratified realizations of cellular posets are exactly regular cell
complexes as recorded in the following result.

Proposition 1.3.13 (Regular cell complexes are stratified realizations of
cellular posets). Regular cell complexes are exactly stratified realizations of
cellular posets, in the following sense.

(1) The stratified realization of a cellular poset is a regular cell complex.
(2) The fundamental poset of a regular cell complex is a cellular poset.
(3) Every regular cell complex X is stratified homeomorphic to the strat-

ified realization of its fundamental poset, that is, X ∼= ∥ΠX∥.6
(4) Every cellular poset X is canonically isomorphic to the fundamental

poset of its stratified realization, that is, X ∼= Π ∥X∥.
Proof. Statement (1) and (3) are discussed in [Bjö84, §3] (see also

[LW69]). Statement (2) and (4) follow from these and the definitions. □

The correspondence of regular cell complexes (up to stratified homeomor-
phism) and cellular posets provides the combinatorialization of regular cell
complexes by cellular posets. In light of this correspondence we introduce
the following terminology.

6The isomorphism is canonical up to stratified homotopy.
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Terminology 1.3.14 (Combinatorial complexes, depth, cells, dimension,
closures, boundaries). Going forward, a cellular poset X may alternatively
be referred to as a ‘combinatorial regular cell complex’.

Recall, the ‘depth’ of an object x in a poset measures the maximal length
m of chains x0 → x1 → ...→ xm in the poset starting at that object, x = x0.
An element x ∈ X is called a ‘m-cell‘ if it is of depth m in X. We refer to
X≥x as the ‘closure’ of x, and to X>x as its ‘boundary’.

Moreover, if X has an initial object which is an m-cell, then we call
X itself a ‘combinatorial regular m-cell’ (or simply, a ‘regular m-cell’ if no
confusion arises). We often denote such an initial element by ⊥X .

The term ‘combinatorial regular cell complex’ is used merely as a synonym
for cellular posets (the choice of this terminology will be further motivated
below). To contrast this with ordinary regular cell complexes, we may refer
to the latter as ‘geometric regular cell complexes’.

1.3.1.2. Cellular maps of regular cell complexes. We next extend the
combinatorialization of regular cell complexes to a class of maps between
complexes which are ‘cellular’ in the following sense.

Terminology 1.3.15 (Closure preservation for stratifications). A strati-
fied map is said to be ‘closure preserving’ if it maps closures of strata onto
closures of strata.

Definition 1.3.16 (Cellular maps of regular cell complexes). A cellular
map of regular cell complexes F : X → Y is a map of (geometric) regular
cell complexes that is closure preserving.7

Notation 1.3.17 (The category of geometric regular cell complexes).
Denote by CellCplxS the category whose objects are (geometric) regular cell
complexes and whose morphisms are cellular maps.

Similarly, we define cellular maps for cellular posets.

Terminology 1.3.18 (Closure preservation for posets). A map of posets
F : P → Q is ‘upper-closure preserving’ if for each x ∈ P , the image FP≥x

equals Q≥Fx.

Definition 1.3.19 (Cellular maps of cellular posets). A cellular map
of cellular posets is a poset map that is upper-closure preserving.

Concern: check if
this terminology is
sufficiently standard.
A priori cellular
would normally
mean just taking
cells into cells.

7Cellular maps in the sense of Definition 1.3.16 have also been called ‘regular cellular maps’
in the literature and were introduced for general CW complexes, see [LW69, Def. 4.1].
We omit the qualifier ‘regular’ from our terminology as we only care about regular cell
complexes, for which cellular maps in the sense of Definition 1.3.16 provide a natural
definition of well-behaved maps (in particular, generalizing the case of simplicial maps).
However, the definition is stricter than that of ‘cellular maps of CW complexes’ in the
classical sense.
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Notation 1.3.20 (The category of combinatorial regular cell complexes).
Denote by CellCplx the category whose objects are cellular posets and whose
morphisms are cellular maps.

Example 1.3.21 (Cellular and non-cellular maps). In Figure 1.38 we
depict two cellular maps of regular cells, along with the corresponding maps
of cellular posets. In each case we indicate the mapping by coloring images
and preimages in the same color. In Figure 1.39, we similarly depict two
maps of regular cells that are not cellular.

→

→

→

→

Figure 1.38. Cellular maps of regular cells.

→

→

→

→

Figure 1.39. Non-cellular maps of regular cells.

The two definitions of cellular maps can be related by the following functors.

Observation 1.3.22 (Fundamental poset and stratified realization func-
tors). The fundamental poset construction (see Remark 1.3.10), as well as
the stratified realization construction (see Construction 1.3.4 and Construc-
tion 1.3.5), yield functors

CellCplxS CellCplx
Π

∥−∥
.

Cellular posets and their cellular maps provide a combinatorial analog of
geometric regular cell complexes as we now explain.
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Observation 1.3.23 (The equivalence of topological and combinatorial
regular cell complexes). For locally finite stratifications, the fundamental
poset construction yields a functor of topologically enriched categories Π :
Stratlf → Pos lf (see Construction B.2.21); this enrichment provides the right
setting to study the homotopical equivalence of our two conceptions of regular
cell complexes.

Denote by CellCplx S the topological subcategory of Stratlf given by (geo-
metric) regular cell complexes and their cellular maps.

Similarly, consider the subcategory of Pos lf given by (combinatorial)
regular cell complexes, i.e., cellular posets, and their cellular maps: in fact,
due to the cellularity condition on maps, this subcategory has discrete hom
spaces, and simply recovers the ordinary category CellCplx.

The fundamental poset functor Π : CellCplx S → CellCplx yields a weak
equivalence of topologically enriched categories; intuitively, the morphisms in
the CellCplx capture the morphisms in CellCplx S up to stratified homotopy
and the space of such homotopies is contractible.8

We will not prove the preceding observation nor make direct use of it; rather
it motivates that CellCplx is a good combinatorial model for geometric regular
cell complexes.

As is, this is a
change of notation
from CellPos to
CellCplx. That
should be made
clear, and maybe
somehow avoided
(by not using Cell-
Pos before?). [Just
CellCplx everywhere,
then motivate]

Finally, we make brief contact with the classical notions of triangulations
and simplicial complexes.

Terminology 1.3.24 (Cellulations). In analogy to the notion of trian-
gulation, we speak of ‘cellulation’ when decomposing a given space into the
cell stratification of a regular cell complex.9

Observation 1.3.25 (Simplicial complexes are regular). A (geometric)
simplicial complex, i.e. the geometric realization of a simplicial complex,
is a simple type of (geometric) regular cell complex when stratified by its
simplices. In the resulting complex, each m-dimensional cell has exactly
(m+ 1) faces of dimension (m− 1).

Based on this observation, we can construct the following embedding of
categories.

Construction 1.3.26 (Simplicial complexes embed in combinatorial
regular cell complexes). Given a simplicial complex K, its fundamental poset
ΠK (as a regular cell complex |K|) is, of course, the poset whose objects are
simplices x in K with an arrow x → y whenever the simplex y is a face of
the simplex x.

8A similar observation can be shown to hold in the case of PL cell complexes and PL
cellular posets as introduced later in Definition 1.3.30, since Alexander’s trick still holds
in that case, see [Lur09b, §23 Lem. 2].

9This terminology finds a slightly more general meaning in the context of cellulable
stratifications, see Section B.3.
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For a simplicial map of unordered simplicial complexes F : K → L, we
obtain a map of fundamental posets ΠF : ΠK → ΠL mapping a simplex x in
K to the simplex Fx in L.

This yields the functor from simplicial complexes to combinatorial regular
cell complexes

Π : SimpCplx→ CellCplx

which is a fully faithful embedding of categories.

Note that, if we were to allow non-cellular poset maps in CellCplx the claim
of ‘full faithfulness’ would fail to hold in the preceding construction.

Remark 1.3.27 (Underlying simplicial complexes and barycentric subdi-
vision). Each geometric regular cell complex X has an ‘underlying simplicial
complex’ obtained by taking the nerve NΠX (see Terminology 1.3.3) and
forgetting its order. Passing to the geometric realization of that simplicial
complex, we obtain a canonical ‘barycentric subdivision’ map |NΠX| → X
(which, when stratifying the domain and codomain, respectively, by simplices
and cells, is unique up to stratified homotopy); this is a consequence of
Proposition 1.3.13.

There’s an issue that
leads to confusion,
which is the use of
CellCplx to refer to
cellular posets some-
times, and CellStrat
and CellPos other
times, etc. Is there
a way to clean this
up without messing
up other things?

The next notation
environment and il-
lustration was moved
from the framed sec-
tion (though it in-
volves no framing). I
think it will go well
here, where the com-
binatorial, and topo-
logical, and simpli-
cial views are all in
play. But this all can
use a bit of scrub-
bing when I do a fi-
nal pass on this sec-
tion.

Summarizing the preceding discussion, we introduce the following (abuse
of) notation, which will reduce the amount of symbols needed in subsequent
sections.

Notation 1.3.28 (Associated simplicial and geometric structures). A
combinatorial regular cell complex X ∈ CellCplx, besides being itself a cellular
poset, has several associated structures which we organize as follows.

(1) The nerve NX of X yields an ordered simplicial complex which we
refer to as the ‘ordered simplicial complex representation of X’.

(2) By unordering the ordered simplicial complex representation we
obtain the ‘underlying simplicial complex of X’ (cf. Remark 1.3.27).
Abusing notation, this may itself be denoted by X.

(3) The geometric regular cell complex ∥X∥ realizing X will, abusing
notation, usually be referred to simply as the ‘(geometric) regular
cell complex of X’, and may be denoted X if no confusion arises.

The abuse of notation similarly applies to maps of combinatorial regular cell
complexes F : X → Y , which context-dependently may be used to denote
maps of corresponding geometric regular cell complexes and of underlying
simplicial complexes.

Example 1.3.29 (Visualizing cellular posets). In Figure 1.40 we illustrate
a regular cell complex X, together with its corresponding cellular poset X
and its corresponding ordered simplicial complex representation NX of X
obtained by taking the nerve of X.

CLD to consider
those last two
headers [considered
and improved]To end this section, let us briefly address the discrepancy between ‘topol-

ogy’ and ‘piecewise linear topology’ which is, in fact, also visible at the level
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Figure 1.40. A geometric regular cell complex and its corre-
sponding cellular poset and ordered simplicial complex.

of combinatorial regular cell complexes. For this, we introduce the following
piecewise linear (PL) analog of the definition of cellular posets.

Definition 1.3.30 (PL cellular posets). A poset (X,≤) is called PL
cellular if the realization |X>x| of the strict upper closure of any x ∈ X is
PL homeomorphic to the standard PL sphere [HS69, §I.5].

The following two
remarks could
probably be cleaned
up a bit. The first
has immediate
content. The second
mostly repeats and
forward references.
Unless they are
distinguished by
being about cells
respectively cell
complexes.

Maybe this remark
can be more explicit:
you can have a regu-
lar cell whose bound-
ary is not a PL
sphere. [added]

Remark 1.3.31 (Cellular is not always PL cellular). While ‘PL cellular’
trivially implies ‘cellular’ the converse is in general not true, i.e., you can
have regular cells whose boundary is not a PL sphere. Indeed, there exist
triangulations of the sphere which are not PL spheres (see [Edw80], [Bry02,
Thm. 9.1]). Adjoining a new minimal element to the fundamental poset of
such a triangulation yields a poset that is cellular but not PL cellular. In
contrast, we will later on find that in the framed setting the adjectives ‘cellular’
and ‘PL cellular’ can be used interchangeably (see Remark 1.3.62).

Terminology 1.3.32 (The category of combinatorial regular PL cell
complexes). Denote by CellCplxPL the category of PL cellular posets and
their cellular maps.

By the preceding remark, we have CellCplxPL ⊊ CellCplx. We will find that
‘framed’ analogs FrCellCplxPLn and FrCellCplxn of these categories are in fact
the same category, and we therefore need not distinguish them notationally
(cf. Remark 1.3.62).

1.3.2. Framings on regular cell complexes. In this section we investigate
framings on combinatorial regular cells and cell complexes. This will combine
our discussion of framings on simplices and simplicial complexes, with the
notion of combinatorial regular cell complexes, and their category CellCplx,
as discussed in detail in the previous section.

Synopsis. We define framings on regular cell complexes as framings of
their underlying simplicial complexes that are required to be collapsible on
each cell, and give several examples of the resulting notion. Foreshadowing
later chapters and results, we also briefly discuss the ‘reasonableness’ of the
class of framed regular cells, including their algorithmic constructibility and
piecewise linearity. We introduce maps of framed regular cell complexes as
cellular maps that (in the absence of spine vectors of simplices) preserve
so-called axel vectors of cells. Finally, we demonstrate how framed simplicial
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complexes as defined in the previous section faithfully include into our newly
defined category of framed regular cell complexes.

1.3.2.1. The definition of framed regular cell complexes. We can
define the notion of framings on a combinatorial regular cell complex in
terms of framings on its unordered underlying simplicial complex. Though
combinatorial regular cell complexes are gluings of their individual cells, there
is no economy in defining framings cell by cell rather than all at once.

Definition 1.3.33 (Framed regular cell complex). An n-framing F of a
combinatorial regular cell complex X is an n-framing F of its underlying
simplicial complex such that, for each cell x ∈ X, the framing restricts to a
collapsible framing F|X≥x on the cell’s closure X≥x.

Probably the defini-
tion should be rewrit-
ten so that inside it,
perhaps in the nota-
tion as well, is the in-
dication of which or-
der is meant.
This definition uses
the notation Xun,
but in the previous
notation, the nota-
tion NXun is used,
and then it’s said
that abusing nota-
tion that will be
just called X. Even
abused, there’s a mis-
match here, needs
fixing. Not sure if
this propagates else-
where.

We will refer to the pair (X,F), of a combinatorial regular cell complex X
together with an n-framing F on it, as an ‘n-framed regular cell complex’.
Similarly, a ‘framed regular cell’ is simply a combinatorial regular cell with a
framing in the above sense.

Remark 1.3.34 (The framing induced ordering of the simplicial complex
X). Given an n-framed regular cell complex (X,F), the framing F itself
induces an order (on the underlying simplicial complexX) which will generally
differ from the ordered simplicial complex NX.

This notation is now
a bit out of place
or redundant. This
all needs smoothing
out.
Write text of this
eg: have regular cell
complex depicted as
an ordered simplicial
complex on the left,
the framing on the
right, and both at
once in the middle.

Example 1.3.35 (A 2-framed regular cell complex). In Figure 1.41 we
depict the data of a framed regular cell complex (X,F): on the left, we depict
a regular complex X represented as an ordered simplicial complex NX (see
Figure 1.40), whose order is indicated by arrows in blue with solid heads.
On the right of the figure, we depict a framing on the underlying simplicial
complex X using multi-headed arrow notation as introduced earlier (see
Example 1.1.26). In the center of the figure, these structures are combined
into a single picture.

A verification that the resulting data (X,F) is indeed that of a framed
regular cell complex is illustrated in Figure 1.42: we depict the framed
subcomplex induced by the subcell inclusions X≥x ↪→ X for four different
elements x ∈ X (corresponding to two 2-cells, and two 1-cells, respectively).
In each case one recursively verifies that the restricted framings induce framed
regular cell structures for these subcells.

Figure 1.41. A 2-framed regular cell complex.

Note that framed re-
alization of a framed
regular cell complex
has not been defined
or introduced, and
needs to be before it
is used.
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Figure 1.42. The collapsible subcomplexes of a 2-framed
regular cell complex.

Terminology 1.3.36 (Framed realizations of framed regular cell com-
plexes). A ‘framed realization’ of an n-framed regular cell complex (X,F)
is a map |X| → Rn which is a framed realization of the underlying framed
simplicial complex of (X,F) (in the sense of Definition 1.2.18), and which
restricts to an embedding on each cell.

Framed realizations in Rn provide a convenient way to illustrate framings on
regular cell complexes.

Example 1.3.37 (Framed regular cell complexes via framed realization).
In Figure 1.43, on the left, we re-illustrate the framed simplicial complex from
Example 1.3.35 together with a map to R2 that provides a framed realization
of the corresponding framed simplicial complex, and thus fully determines
the framing. On the right of that figure we depict the corresponding map
for the associated geometric regular cell complex. (While this map is not
linear, one can reconstruct the left map in a ‘framing-preserving’ way up to
contractible choice of homotopy; we forego detailing this reconstruction, but
appeal to the readers intuition for now and often use regular cell complex
realizations like the shown map as a convenient way of depicting framings
on regular cell complexes. We will come to fully understand the relation of
topological, piecewise linear, and linear framed realizations in later chapters.)

See description in
Eg ‘2-framed regu-
lar cells’ a bit later,
referring to the cell
picture as schematic
notation suggestive
of the other picture.
The description here
should be compati-
ble with that.
The terminology
here can be the
simplicial picture is
a ‘framed simplicial
realization’ and
the cell picture
is a ‘framed cell
realization’.
That’s only true
up to contractible
choice.

1

2

1

2

Figure 1.43. A 2-framed regular cell complex with a framed
realization.

As another example, consider the ‘front half’ of the cell complex in
Figure 1.34. That complex with three cells projects homeomorphically into
the plane of the paper, and that projection provides a framed realization; the
image of that realization, and the image of the corresponding realization of
the associated simplicial complex, are shown in Figure 1.44.
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R2

1

2

R2

1

2

Figure 1.44. Framed realization of a 2-framed regular cell
complex.

This whole discus-
sion remains a bit
sketchy because
there hasn’t been
complete clarity on
the meaning of the
notations and such.
But it shouldn’t
take too much to
clean it up.

Framings of regular cell complexes are framings of the corresponding
simplicial complex in which every cell (of the regular cell complex) corresponds
to a framed collapsible subcomplex of the framed simplicial complex; we will
be mostly concerned with framed regular cell complexes that are not just
locally but in fact globally collapsible, as follows.

Terminology 1.3.38 (Collapsible and progressive framed regular cell
complexes). An n-framed regular cell complex (X,F) is called ‘framed col-
lapsible’ if the framing F of the underlying simplicial complex is framed
collapsible in the sense of Definition 1.2.31. Similarly, the framed regular cell
complex is called ‘framed progressive’ if the framing of the simplicial complex
is framed progressive in the sense of Definition 1.2.37. Usually we abbreviate
these terms to simply ‘collapsible’ and ‘progressive’.

Example 1.3.39 (Collapsible and non-collapsible framed regular cell
complexes). In Figure 1.45 we illustrate two framings of the same regular
cell complex. The left framing is collapsible, while the right framing is not
collapsible (and indeed not even progressive). Note this latter framed regular
cell complex is a coarsening of the framed simplicial complex illustrated in
Figure 1.22.

Notice that in the left figure, we use the previously established framed
realization notation for framed regular cell complexes, see Figure 1.44. We also
denote (some) pertinent axel vectors, that we’ll formally introduce shortly. In
the right figure, we indicate the framing of the regular cells only by specifying
(all) their axel vectors, but without a framed realization.

1.3.2.2. Examples of framed regular cells. We now focus attention on
the nature of individual framed regular cells.
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1

2

Figure 1.45. Collapsible and non-collapsible framed regular
cell complexes.

Example 1.3.40 (2-Framed regular cells). In Figure 1.46 and Figure 1.47
we illustrate several examples of 2-framed regular cells (X,F). In each case we
give three distinct representations. The first picture type 1○ is of the regular
cell, seen as a simplicial complex together with its framing. The second
picture type 2○ is of a framed realization of that framed complex. (In both
pictures, we indicate the poset order ≤ of X by small blue arrows.) The third
picture type 3○ is of the regular cell together with an embedding in euclidean
space; this third picture type is a schematic notation suggestive of the second
picture. Henceforth we will typically depict framed regular cells simply by the
last type of picture, that is of the cell embedded in euclidean space. Further
examples of 2-framed regular cells can be found in Figure C.1.

1

2

1

2

1

2

1

2

1 2 3

321

Figure 1.46. 2-Framed regular 1-cells.

Example 1.3.41 (Failures of framings on regular cells). Reusing the
conceptual notation introduced in the previous example, in Figure 1.48 we
depict two combinatorial regular 1-cells with framings of their underlying
simplicial complexes which fail to be framed regular cells. Indeed, in both
cases the provided framings fail to be collapsible. In Figure 1.49 we similarly
depict 2-cells with framings of their underlying simplicial complexes that fail
to yield framed regular cells. In the first case, the failure arises from both
of the 2-cell’s 1-dimensional subcells failing to be framed regular 1-cells. A
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Figure 1.47. 2-Framed regular 2-cells.

similar failure arises in the second example. In the third case, the 2-cell itself
fails to have collapsible framing.

1

2

1

2

1

2

1

2

Figure 1.48. Framings of simplicial complexes underlying
regular 1-cells that are not framed regular cells.

Edit the text of this
exampleExample 1.3.42 (The simplest 3-framed regular 3-cell). In Figure 1.50,

we depict the 3-globe as a framed regular cell. As before, the framed regular
cell is represented in three ways: first as an ordered simplicial complex with
a framing, second as an ordered simplicial complex with a framed realization,
and third as a schematic realization of the regular cell itself.

Example 1.3.43 (A failure to 3-frame the simplest regular 3-cell). In
Figure 1.51, on the left we depict a framing, on the ordered simplicial
complex corresponding to a 3-globe, that does not yield a framed regular
3-cell. Notice that the framed simplicial complex is identical to the framed
simplicial complex from Figure 1.50, but the ordering is crucially different.
That ordering controls which simplices combine into the cells of the regular
cell complex, and thus how the framing interacts with those cells; though
represented by tiny blue arrows, the ordering cannot be ignored. The given
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Figure 1.49. Framings of simplicial complexes underlying
regular 2-cells that are not framed regular cells.
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1
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1

Figure 1.50. The simplest framed regular 3-cell.

framing fails to be collapsible on the upper closures of the four circled vertices.
On the right is a corresponding schematic realization of the regular cell itself,
which is again crucially distinct from the schematic realization in Figure 1.50,
and does not represent a framed cell.

2
3

1

Figure 1.51. A framing of the simplicial complex underlying
the regular 3-globe that does not yield a framed regular cell.

The previous Example 1.3.42 is the simplest example of a 3-framed regular
3-cell (indeed, its underlying regular cell complex is the simplest regular cell
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complex of the 3-ball). In general, 3-framed regular 3-cells can be of various
shapes as the next example illustrates.

Example 1.3.44 (Framed regular 3-cells). Using framed realizations to
encode framings as explained in Figure 1.46 we now illustrate, in Figure 1.52,
framings on the remaining three regular cells previously shown in Figure 1.35.

2
3

1

2
3

1

2
3

1

Figure 1.52. Simple framed regular 3-cells.

Example 1.3.45 (Realizations of 3-cells that are not framed regular cells).
In Figure 1.53 we depict two regular 3-cells, simplices in fact, embedded in
euclidean space, which, though, are not the framed realizations of any framed
regular cells. Consider any linear barycentric subdivision of one of these
embedded simplices. For the initial embedded simplex to be a framed regular
cell, the embedded subdivision would have to be the framed realization of a
framed simplicial complex. However, no matter the subdivision chosen, there
will be a 2-simplex of the subdivision all of whose edges would have to have
frame label 1; that is of course impossible for a framed 2-simplex.

2 3

1

2 3

1

Figure 1.53. Realizations of 3-cells that are not framed
regular cells.

Example 1.3.46 (More 3-framed regular 3-cells). We depict a few more
3-framed regular 3-cells in Figure 1.54 and Figure 1.55. An even larger
collection of framed regular 3-cells can be found in Figures C.2, C.3, C.4,
and C.5.

The first two framed regular 3-cells from Figure 1.55, together with a
reflection of each, can be combined into an intriguing and fundamental framed
complex, as follows.
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Figure 1.54. More framed regular 3-cells.
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3
1

Figure 1.55. Yet more framed regular 3-cells.

Example 1.3.47 (A more elaborate collapsible framed regular cell com-
plex). In Figure 1.56 we depict a collapsible 3-framed regular cell complex
made up of four framed 3-cells. This complex is geometrically dual to the
Hopf circle [GWZ86, Fig. 1], as illustrated in the figure and as will be
explained much later on in Example 5.2.36.

1.3.2.3. Framed cellular maps. We next define framed maps of framed
regular cell complexes, and so in particular of framed regular cells.

Recall, in the case of framed simplices, we defined framed maps as maps
that preserve frames on each vector; the setup crucially relied on vectors in
m-simplices being generated by their m spine vectors (which provided a basis
for the affine space of the simplex). Unfortunately, there is a priori no good
analog for spine vectors in the context of regular cells in general; however, for
framed regular cells, we may recover a notion of ‘highest frame vectors’ for
any given framed regular cell as explained below; this turns out to be just
enough to define framed maps of framed regular cells.
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2
3

1

Figure 1.56. The cell complex dual to the Hopf circle.

Recall, the highest frame vector of a framed simplex is the unique simpli-
cial vector whose frame label is maximal among the set of labels of frame
vectors in that framed simplex.

Terminology 1.3.48 (Highest frame vectors of framed regular cells).
Given a n-framed regular cell complex (X,F) and a cell x ∈ X, the ‘highest
frame subcomplex’ axlx (also called simply the cell’s ‘axel’ or ‘axel vector’,
see below) is the simplicial subcomplex of X comprising 1-simplices that
contain x and whose frame label is maximal among the labels of all such
1-simplices.

Remark 1.3.49 (Highest frame vectors form a vector). The complex
axlx always contains exactly two vectors. Moreover, it is isomorphic to the
linear simplicial complex ( ). As as full subposet of the poset X
(determined on vertices) it is isomorphic to (• ← • → •) (which matches
the fundamental poset of a 1-simplex). In this sense the highest frame
vector set may be regarded itself as forming a single vector, which motivates
the terminology ‘axel vector’. We will revisit and establish this claim in
Observation 3.3.16.

Example 1.3.50 (Highest frame vectors and axel vectors of framed regular
cells). In Figure 1.57 we illustrate the highest frame vectors and axel vectors
of some framed regular 1-cells and 2-cells. In the first row we show the framed
ordered simplicial complex, and circle the highest frame vectors. Note that
in every case, there are exactly two highest frame vectors, one that ends in
the initial vertex and one that starts at it. In the second row we introduce
a compact notation for this situation, by drawing a single red vector in the
corresponding realized cell, now representing the single ‘axel vector’ of that
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cell. Note that the common framing label of the two highest frame vectors is
again represented using multi-arrowhead notation (see Example 1.1.26).

In Figure 1.58, we similarly depict highest frame vectors for several framed
regular 3-cells. Here we only use the axel vector notation. We also indicate
the axel vectors for selected cells on the boundary of these 3-cells.
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2

Figure 1.57. Highest frame vectors and axel vectors of
framed regular 1-cells and 2-cells.
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Figure 1.58. Axel vectors of framed regular 3-cells.

The definition of framed maps of framed regular cells mirrors the definition
of framed maps of framed simplices (see Definition 1.1.59), and is as easily
stated for all framed regular cell complexes, as follows.

Definition 1.3.51 (Framed maps of framed regular cell complexes).
Given n-framed regular cell complexes (X,F) and (Y,G), a framed cellular
map F : (X,F)→ (Y,G) is a cellular map of cellular posets F : X → Y , such
that for all x ∈ X, either F preserves axlx, that is, F restricts to a framed
simplicial isomorphism (axlx,F|axlx) ∼= (F (axlx),G|F (axlx)), or degenerates
it, i.e., F (axlx) is a point.

We often refer to ‘framed cellular maps’ simply as ‘framed maps’.

Example 1.3.52 (Framed maps of framed regular cells). In Figure 1.59
we illustrate examples of framed maps of 2-framed regular cells; in each case
we highlight image and preimage cells in the same color. On the left each
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map is depicted via its framed cellular realization; on the right each map
is also depicted as a map of framed simplicial complexes. In each case, a
key axel vector is depicted in a cell and the corresponding highest frame
vectors circled in the simplicial complex; these vectors are either preserved or
degenerated by the maps.
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1

2

1

→ →

2

1

2

1

→ →

2

1

2

1

→ →

Figure 1.59. Framed cellular maps.

In Figure 1.60 we similarly depict cellular maps that are not framed.
These maps fail to preserve the axel vector, correspondingly the highest frame
vectors, in the required sense; the failures are circled. In the first case, the
map sends the indicated frame 1-vectors to the inverse of frame 2-vectors;
in the second case, the indicated frame 2-vectors are sent to the inverse of
frame 2-vectors; in the third case, the indicated frame 2-vectors are sent to
frame 1-vectors.

Remark 1.3.53 (Framed maps of cells are subframed on simplices). Note
that framed maps of framed regular cells need not descend to framed maps
of their corresponding framed simplicial complexes, but they do descend to
subframed maps of those framed simplicial complexes (see Remark 1.2.24);
that is, the map need not preserve the simplicial ordering and may specialize
frame labels of vectors. This is illustrated in Figure 1.61; the circled frame
1-vectors are mapped to frame 2-vectors or inverse frame 2-vectors.

Notation 1.3.54 (Categories of framed regular cell complexes). The
category of n-framed regular cell complexes and their framed maps will be de-
noted by FrCellCplxn. The full subcategory of FrCellCplxn on n-framed regular
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Figure 1.60. Cellular maps that are not framed.
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Figure 1.61. A framed cellular map and its corresponding
subframed simplicial map.

cell complexes that are framed collapsible will be denoted by CollFrCellCplxn.
The full subcategory of FrCellCplxn on n-framed regular cells will be denoted
by FrCelln.

1.3.2.4. Framed simplicial complexes as framed regular cell com-
plexes. We now complete our earlier quest to construct a fully faithful
embedding from framed simplicial complexes into framed regular cell com-
plexes, which descends to the ordinary embedding of (nonframed) simplicial
complexes into regular cell complexes. The embedding is obtained as a framed
version of the fundamental poset construction, which we outline as follows.

Construction 1.3.55 (Framed fundamental posets). Given an n-
embedded framed simplicial complex (K,F), we construct a framed regular
cell complex (ΠK,ΠfrF), referred to as the ‘framed fundamental poset’ of
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(K,F), where ΠK is constructed via Construction 1.3.26 and ΠfrF is an
n-framing constructed as follows.

First assume K is an m-simplex, m > 0. Given an n-embedded framed
m-simplex (K ∼= [m],F), consider any framed realization r : |K| ↪→ Rn. Then
ΠfrF is the unique framing of Π |K| such that there exists an injective framed
realization e : |Π |K|| ↪→ Rn (cf. Definition 1.2.18) which factors through r
by a barycentric subdivision |Π |K|| → |K| (see Remark 1.3.27)

Next assume K is any simplicial complex with framing F. The framing
ΠfrF is determined by requiring that, for each simplex x : [m] ↪→ K, ΠfrF

restricts on Π(x) : Π[m] ↪→ Π |K| to the framing (ΠfrF)
∣∣
Π(x)

= Πfr(F|x).

Construction 1.3.56 (The framed fundamental poset functor). The
framed fundamental poset functor

Πfr : FrSimpCplxn → FrCellCplxn

takes n-embedded framed simplicial complexes (K,F) to their framed funda-
mental poset (ΠK,ΠfrF), and framed simplicial maps F : (K,F)→ (L,G) to
the cellular poset map ΠF : ΠK → ΠL.

Example 1.3.57 (The framed regular cell complex of a framed simplicial
complex). In Figure 1.62, we depict two framed simplicial complexes and
their associated framed cell complexes. On the far left are the two framed
simplicial complexes depicted directly with their framings. In the middle
left are the same two complexes depicted via their framed realizations. In
the middle right are the two associated framed cell complexes depicted via
their framed realizations. Note these associated complexes have the same set
of cells as the set of simplices; the cells are depicted with curved boundary
simply to remind us that they are conceived of as cells rather than simplices.
On the far right are those framed cell complexes depicted directly via the
framing on the corresponding ordered simplicial complexes.

1

2

Figure 1.62. Framed simplicial complexes and their associ-
ated framed cell complexes.

We omit a detailed verification of correctness for Construction 1.3.55 and
Construction 1.3.56. The punchline is recorded in the following observation.
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Observation 1.3.58 (Framed simplicial complexes are framed regular cell
complexes). The functor Πfr : FrSimpCplxn → FrCellCplxn is a fully faithful
embedding of categories.

In this sense, we may think of framed simplicial complexes as a special case
of framed regular cell complexes, and think of the latter notion as being a
generalization of the former notion.

Moved this sec to
the end. I think
works better as here
as a big picture
send off from C1,
and transition to
C2, where the com-
binatorics providing
the tractability will
come in.
Rephrasing in terms
of ‘tractability’
rather than ‘reason-
ableness’ may keep
things closer to the
mathematics & intro
narrative?

1.3.2.5. Tractability of framed regular cells. The zoo of framed regular
cells illustrated in Section 1.3.2.2, and especially the more extensive menagerie
of Chapter C, raises the question of the tractability of this class as the basic
shapes of a computable combinatorial theory. Forward-referencing later key
results, we briefly mention several of the properties making framed regular
cells ‘tractable’.

Recall, a manifestation of the computational intractability of unframed
regular cells and cell complexes is that there cannot be an algorithm to
recognize whether a poset is cellular (thus realizes to a regular cell complex),
and therefore it is impossible to decidably enumerate the unframed regular
cells.10 The framed situation provides a stark contrast.

Above motivational
paragraph has
the logic: can’t
recognize therefore
can’t enumerate.
Then below remark
has the logic: can
enumerate therefore
can recognize. Of
course they are
closely related,
but anyway is
this mathemati-
cally/motivationally
best?

Remark 1.3.59 (Recognizability of framed regular cells). There is an al-
gorithm for recognizing framed regular cells among all framed posets (that is,
posets with framings of their underlying simplicial complexes). We can there-
fore algorithmically (and decidably) enumerate framed regular cell complexes.
This will be shown in Corollary 3.3.29.

What’s an instance
of a class of cells of
the sort mentioned,
ie that can be enu-
merated but only by
an expensive search?
[convex cells]

Remark 1.3.60 (Efficient enumerability of framed regular cells). The
enumeration can be made efficient by an inductive process that generates
new n-framed cells by extending previous (n− 1)-framed cells. This roots
in the classification of framed regular cells in Chapter 3 characterizes their
precise combinatorial structure by a ‘bottom up’ generation process via the
notion of n-trusses introduced in Chapter 2.

I think this remark
on constructibility
can be sharpened.
Still feels vague even
by remark standards.
Of course the idea is
good, and I think it
belongs.

Oh, below comes
the answer to the
question about a
contrasting class,
but after it already
felt missing. CLD to
consider a light re-
order/reformulation
here.

As a contrasting example, the class of convex polytopes is well-known to
be enumerable but the known enumeration requires an expensive search:
namely, the enumeration must search the space of all abstract complexes
testing for convex geometric realizations using the Tarski-Seidenberg theorem
[GKPS67, §5.5].

However, not every framed regular cell need be a convex polytope. Thus,
results in the convex case do not immediately carry over to the framed regular
case.

The content of the
following remark ap-
pears to be the oppo-
site of the heading.

Remark 1.3.61 (Framed regular cells need not be convex). Framed
regular cells need not be convex. The simplest examples of non-convex cells
include the n-globes, such as the 3-globe in Figure 1.50.

10Here, we say a set is ‘decidably enumerable’ relative to a larger set of combinatorial
objects (such as the set of all framed posets in our specific case) if it is decidable whether
a given object from the larger set will eventually appear in the enumeration.
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Finally, recall from Remark 1.3.31 that a fundamental source of unman-
ageability of unframed regular cells and cell complexes is the fact that regular
cells or cell complexes need not be regular PL cells or PL cell complexes—that
is, their links need not be piecewise linear spheres. We remark now that this
failure cannot happen in the framed context.

Remark 1.3.62 (Framed cells and cell complexes are piecewise-linear).
If a regular cell or cell complex admits a framing, then it is necessarily
piecewise-linear—this will be shown in Corollary 3.3.31. Thus the notion of
framed regular cells is identical to the notion of framed regular PL cells.

Re the next, last
comment: this says
again an analogy can
be made, but be-
fore it was a dis-
analogy/contrast to
the convex polytope
case, and now it
seems to be an align-
ment. (The formu-
lation makes it seem
like they’d have the
same relation.)

We remark that a similar result holds for convex polytopes: any convex
polytope is automatically a PL cell (see [Bjö84, Prop. 4.5ff, Thm. 6.1]).

Indeed, both framed regular cells and convex polytopes can be regarded
as ‘tame’ classes of cells (though only framed regular cells can efficiently
understood). In light of our earlier mention of the role of the Tarski-Seidenberg
theorem in showing the enumerability of convex polytopes, this observation
makes contact with the broader relation of framed combinatorial topology
and o-minimal topology, both of which are incarnations of tame topology:
we will revisit this relation later again in ??, by which time a wealth of other
structure surrounding framed regular cells will have emerged.

In next pass, keep
clear which things
are about cell com-
plexes, or cells, or
both, and with what
logically implication
between. [headings
clarify that now]

6 : Here below is
new but has not been
polished, I’ll do that
during the final C1
pass

We have mentioned so far results about the tractibility (specifically
recognizability and enumerability) of framed regular cells. We may wonder
more generally about framed regular cell complexes. Indeed, we have already,
albeit obliquely, encountered an especially well-behaved class of framed regular
cell complexes, whose algorithmic tractibility we will investigate much later.
We introduce this class and preview its properties as follows.

Terminology 1.3.63 (n-Directed graphs). We will use the term n-
directed graph as a synonym for ‘n-framed regular cell complex’. This
term is meant to evoke that such an object is a higher-dimensional graph i.e.
complex together with a suitably compatible choice of n directions on its cells.
The terminology also implicitly claims that this notion is a robust higher-
dimensional generalization of the classical notion of (1-)directed graphs.11

When directedness is sufficiently clear from context, we may abbreviate ‘n-
directed graph’ to ‘n-graph’, but this latter term should not be confused with
the notion of unframed regular n-dimensional cell complex.

Definition 1.3.64 (n-Directed acyclic graphs). An n-directed acyclic
graph is an n-directed graph that admits a framed realization in n-
dimensional euclidean space.

11For convenience, we take the word ‘graph’ to allow multiple edges between the same pair
of vertices, and to exclude loops; that choice avoids the proliferation of the modifiers
‘simple’ and ‘multi’. In the higher-dimensional case, of course, the notion of ‘n-directed
graph’ similarly allows multiple cells with the same boundary, and excludes non-regular
complexes.
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Unpacking this definition via Terminology 1.3.63 and Terminology 1.3.36,
with Definition 1.2.18 and Definition 1.1.40 yields: an n-directed acyclic graph
is an n-framed regular cell complex (X,F) that admits a map |X| → Rn from
the geometric realization to euclidean space, which is linear on each simplex,
respects the frame vectors (by sending them into the corresponding positive
standard components), and is an embedding on each cell.

Terminology 1.3.65 (n-DAGs). We will further abbreviate ‘n-directed
acyclic graph’ to ‘n-DAG’. Of course, the term ‘n-directed acylic graph’ im-
plicitly and boldly claims that this notion is itself a robust higher-dimensional
generalization of the classical notion of (1-)directed acyclic graph.12 We will
leave defending that claim to another time.

Example 1.3.66 (1-Directed and 1-directed acyclic graphs). In Fig-
ure 1.63, we depict on the lower left a 1-directed graph and on the upper left
a 1-directed acyclic graph. Their non-acyclicity and acylicity, respectively,
are witnessed by the non-existence and exitence of a framed realization in R1.
For better visualizability, we may consider both 1-complexes as 2-directed
graphs and consider whether they admit a framed realization in R2. The R1-
realization of the upper graph lifts along the projection to an R2-realization
as shown. The lower graph, necessarily, also fails to have a 2-dimensional
realization.

1

1

2

Figure 1.63. Acylicity of 1-directed graphs via framed real-
ization.

⋄ New fig: a 2-DAG
(actually 2-cell com-
plex) and a 2-framed
2d rcc that isn’t a
2-DAG [I personally
think this is scope
creep, graphs are a
different paper, tbd]

⋄ New fig: a 3-DAG
(actually 3-cell com-
plex) and a 3-framed
3d rcc that isn’t a
3-DAG [I personally
think this is scope
creep, graphs are a
different paper, tbd]

Remark 1.3.67 (n-DAGs have coarsest cell structures). A space that
admits a regular cell complex structure has in no sense a minimal or coarsest
such cell structure; equivalently, given a regular cell complex, there is no
coarsest complex in that homeomorphism class. Adding directedness is not
enough to improve the situation: given an n-directed graph, there is no
coarsest n-directed graph in its framed homeomorphism class. Remarkably

12As in the previous footnote we have suppressed the modifer ‘multi’, but do allow parallel
edges or more generally cells. If for some reason one really wanted to exclude such, one
can simply add the condition that cells are determined by their boundaries.
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though, adding both directedness and acyclicity affects a qualitative change:
every n-directed acyclic graph is framed homeomorphic to a unique coarsest
such graph. This result will be established as Theorem 5.3.82.

Remark 1.3.68 (Framed homeomorphism of n-DAGs is decidable). As
a consequence of the existence of coarsest cell structures for n-DAGs, and
(as we will eventually find) the computable combinatorializability of those
cell structures, we show it is algorithmically decidable whether two n-DAGs
are framed homeomorphic. This result will be established as Theorem 5.1.31.



CHAPTER 2

♢Constructible framed combinatorics: trusses

In this chapter, we develop the theory of trusses.13 Trusses are iterated
constructible combinatorial bundles of framed fence posets. In Chapter 3,
we will prove that trusses yield a tractable, computable combinatorial clas-
sification of the framed regular cell complexes introduced in Chapter 1.
Furthermore, the stratified geometric realizations of trusses are iterated con-
structible bundles of framed stratified intervals, called meshes, and conversely
the stratified fundamental posets of meshes are trusses. The theory of meshes
will be developed in Chapter 4, and trusses will provide, via an equivalence
with meshes, a concrete combinatorial model of all possible local structures
of constructible framed stratified topological spaces.

We begin this chapter, in Section 2.1, by introducing 1-trusses, 1-truss
bordisms and their composition, and 1-truss bundles. We then, in Section 2.2,
define a scaffold order on section and spacer simplices, and thus establish the
method of truss induction for reasoning about simplices in the total posets of
1-truss bundles. Finally, in Section 2.3, we define n-trusses as iterated 1-truss
bundles, describe the combinatorial category of n-truss blocks, and present
block sets as presheaves on truss blocks.

13The substantial foundational components of the theory of trusses were first formulated
in [Dor18] under the name ‘singular cubes’.

64
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2.1. ♢1-Trusses, bordisms, and bundles

For a typical stratified space, the fundamental poset of its strata and
their incidence relations is a coarse representation of the space, at best. But
when the strata are contractible and arranged in a sufficiently nice way, the
fundamental poset can be, in fact, a faithful encoding. The simplest such
case is that of stratified 1-manifolds: a stratified 1-manifold (say with at
least three strata to avoid degenerate cases) is actually homeomorphic to
the geometric realization of its fundamental poset. The fundamental posets
so arising are fences, that is, roughly speaking, linear or circular posets
with no composable arrows. In fact, we care in the first instance about
framed stratified 1-manifolds, and will restrict attention to contractible such,
i.e., intervals, for simplicity; a framing of a stratified interval provides its
fundamental poset fence with a total ‘frame’ order. A fence with a framing
is the essence of our combinatorial notion of a 1-truss. An example 1-truss is
illustrated on the left in Figure 2.1, where the framing direction is indicated
by a small purple arrow and the blue and red dots indicate strata with 1-
and 0-dimensional realizations, respectively.

The entertainments and intricacies of framed stratified intervals, and
their combinatorial encoding by 1-trusses, begin to emerge when considered
in stratified families. The simplest such case is of a stratified bundle of
framed stratified intervals over the standard stratified 1-simplex. In such
a family there is a generic fiber (over the open bulk of the 1-simplex), and
a special fiber (over the closed endpoint of the 1-simplex), and some kind
of transformation from the generic to special fiber. A sufficiently nice such
stratified bundle of framed stratified intervals is, like the intervals themselves,
faithfully encoded by its fundamental poset bundle over the standard stratified
combinatorial 1-simplex 0→ 1. A triple of a generic fiber 1-truss and a special
fiber 1-truss and a suitable transformation between them, will be called a
1-truss bordism; here suitable will be a collection of combinatorial conditions
(namely ‘bimonotone bifunctional functorial relation’) ensuring, eventually,
that the bordism arises as the fundamental poset of a corresponding stratified
bundle. An example 1-truss bordism is illustrated in the middle of Figure 2.1,
where the generic fiber 1-truss is depicted on the left, the special fiber 1-truss
is depicted on the right, and the transformation relation between them is
depicted by the intermediate arrows.

Two bundles over unstratified 1-simplices may be composed by concatena-
tion to form another bundle over a 1-simplex. However, the concatenation of
two stratified intervals is not another stratified interval; it is therefore not just
evident how one should or can go about composing stratified bundles over
1-simplices. By contrast, a striking, transparent property of the combinatorial
encoding here is that 1-truss bordisms compose simply as their underlying
relations. An example 1-truss bordism composition is illustrated on the right
in Figure 2.1, where the two composable 1-truss bordisms are depicted in
gray, and their composite bordism is depicted in black. As is discernible in



2.1. ♢1-TRUSSES, BORDISMS, AND BUNDLES 66

the illustration, this situation of two composable bordisms may equivalently
be considered as a 1-truss bundle over the standard stratified combinatorial
2-simplex 0→ 1→ 2. Of course, as the dimension of the base poset grows,
it becomes increasingly difficult to depict or decipher the whole poset of a
1-truss bundle over the base. Precisely because the composite bordisms are
combinatorially determined by their factors, it will always suffice to provide
the 1-truss bordisms covering a collection of generating morphisms of the
base poset; for instance, Figure 2.2 depicts (everything we need to encode)
the total poset of a 4-dimensional 1-truss bundle over the 3-simplex.

Figure 2.1. A 1-truss, a 1-truss bordism, and a 1-truss
bordism composition.

Figure 2.2. The total poset of a 1-truss bundle.

Outline. In Section 2.1.1, we introduce 1-trusses as framed fences and
maps of 1-trusses as those preserving both the framing and the fence order.
In Section 2.1.2, we define 1-truss bordisms as functorial relations that
are singular functional, regular cofunctional, and frame-order bimonotone,
describe and illustrate assorted local behaviors of 1-truss bordisms, and
observe that 1-truss bordisms compose. Finally in Section 2.1.3 we describe
1-truss bundles as collections of 1-truss bordisms, and show that a category
of 1-trusses and their bordisms is a classifying category for 1-truss bundles.
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2.1.1. ♢1-Trusses.

Synopsis. We introduce 1-trusses as framed fences, differentiate trivial,
linear, and circular 1-trusses, reformulate the notion of linear 1-trusses in
terms of a set with two interacting order relations, and distinguish singular
and regular elements. We then introduce maps of 1-trusses as those preserving
both orders, delineate the notions of singular, regular, and balanced maps,
and classify the balanced isomorphism classes of 1-trusses according to the
singularity and regularity of their endpoints. Finally we observe that there is
an involutive dualization functor swapping singular and regular elements and
interchanging open and closed 1-trusses.

2.1.1.1. ♢1-Trusses as framed fences. Recall the classical combinatorial
notion of fences [Sta11]; 1-trusses will be finite fences with the additional
structure of a suitable choice of dimension for objects and a consistent choice
of framing for morphisms.

Definition 2.1.1 (Fence). A fence is a connected category with count-
ably many objects and morphisms, such that there are no composable (non-
identity) morphisms, and such that there are at most two (non-identity)
morphisms with source or target any given object.

Terminology 2.1.2 (Types of fences). Fences fall neatly into three types
based on the topology of their geometric realization. Recall the geometric
realization of a category is the topological space associated to the simplicial
set obtained by taking the nerve of the category. Notice that the geometric
realization of any fence is either a connected 0-manifold or a connected
1-manifold.

››››› When the geometric realization is a point, we say the fence is ‘trivial’.
››››› When the geometric realization is an interval, we say the fence is ‘linear’.
››››› When the geometric realization is a circle, we say the fence is ‘circular’.

We call a fence ‘finite’ if it has finitely many objects and finitely many
morphisms.

Example 2.1.3 (Fences). In Figure 2.3, we illustrate fences of different
types. Each fence is depicted by its geometric realization, and the direction
of morphisms in the fence is indicated by directing the edges of the geometric
realization.

trivial linear circular

Figure 2.3. Fences of different types.
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Observation 2.1.4 (Dimension functor). Every non-trivial fence T has
a unique functor T → [1]op whose preimages are discrete categories; this
functor ‘folds the fence onto a single fence post’. We refer to such a functor
as a ‘dimension’ functor, because the value of the functor on an object will be
the dimension of a corresponding stratum in an associated stratified interval.
Note that for a trivial fence, there are two distinct discrete-preimage functors
T → [1]op, and so an ambiguity regarding the dimension of the object.

The notion of 1-truss strengthens the notion of fence in two ways: firstly,
a 1-truss includes the data of a ‘progressive framing’ of the edges of its
geometric realization; secondly, a 1-truss comes equipped with a specified
dimension functor, resolving the dimension ambiguity for trivial fences.

Terminology 2.1.5 (Progressive framing of a fence). A ‘progressive
framing’ of a fence is a choice of direction of each edge of the geometric
realization of the fence such that every vertex has at most one edge directed
towards it and at most one edge directed away from it.

Definition 2.1.6 (General 1-trusses). A 1-truss (T, dim,F) is a finite
fence T , together with a dimension functor dim : T → [1]op and a progressive
framing F.

Terminology 2.1.7 (Types of general 1-trusses). A 1-truss is ‘trivial’
whenever its underlying fence is. A 1-truss is ‘linear’ whenever its underlying
fence is either linear or trivial; in the latter case we refer to it as a ‘trivial
linear’ 1-truss. (This terminology is convenient because the two trivial linear
1-trusses will correspond to the trivially stratified linear interval and the
degenerate interval.) Similarly, a 1-truss is ‘circular’ whenever its underlying
fence is either circular or trivial; in the latter case we refer to it as a ‘trivial
circular’ 1-truss.14 (Again this is convenient because, in the context of
circular trusses, the two trivial circular 1-trusses will correspond to the
trivially stratified circle and the degenerate circle.) Note that this means
that trivial 1-trusses are both linear and circular.

Example 2.1.8 (General 1-trusses). In Figure 2.4, we illustrate 1-trusses
of the different types. In each case we depict the underlying fence; we indicate
the dimension map by coloring preimages of 0 in red, and preimages of 1 in
blue, and record the progressive framing by purple frame vectors adjacent to
each edge.

Henceforth we will focus exclusively on the case of linear trusses. Much
of the theory developed here, including the higher-dimensional notion of n-
trusses, does generalize to the case of general (particularly circular) 1-trusses,
but our main interest and applications will be in the linear case. Simplicity
and brevity of exposition thus dictate the following convention.

Convention 2.1.9 (Linear 1-trusses by default). We will use the term
‘1-truss’ to mean ‘linear 1-truss’ unless otherwise noted.
14Circular truss ⇝ circus.
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trivial linear circular

Figure 2.4. 1-Trusses of different types.

We may reformulate the definition of (linear) 1-trusses, without reference
to fences, in terms of a set with two interacting order relations. First, note
that any linear or trivial fence is a poset.15 We usually denote the poset order
of linear (or trivial) fences by (T,⊴), though in illustrations we exclusively
use the arrow notation (T,→) inspired by the categorical, rather than partial
order, interpretation. (The order notation ⊴ will be convenient for expressing
strictly less or strictly greater relations with the symbols ◁ and ▷.) Second,
a progressive 1-framing F of a linear fence T may be equivalently encoded
by a total order on the objects; we usually denote this order by ⪯. Together
these orders provide the basis of our canonical definition, as follows.

Definition 2.1.10 (1-Trusses). A (linear) 1-truss (T,⊴, dim,⪯) is a
finite non-empty set T together with the following structures:

(1) a partial order ⊴, called the ‘face order’ of T ;
(2) a poset map dim : (T,⊴)→ [1]op, called the ‘dimension map’ of T ;
(3) a total order (T,⪯), called the ‘frame order’ of T , for which either a

succeeds b or b succeeds a if and only if either a◁ b or a▷ b.

Notation 2.1.11 (1-Trusses). We will usually keep the face orders, dimen-
sion maps, and frame orders implicit, abbreviating the 1-truss (T,⊴, dim,⪯)
simply by T .

The terminology ‘face order’ for the partial order ⊴ reflects the relationship
between 1-trusses and stratified intervals: elements a of a 1-truss will corre-
spond to strata of dimension dim(a) in a corresponding stratified interval,
and the existence of an arrow a ◁ b of the 1-truss will correspond to the
stratum b being a face of the stratum a. This motivational relationship of
1-trusses and stratified intervals is illustrated in the following example.16

Example 2.1.12 (1-trusses and corresponding stratified intervals). In
Figure 2.5, we depict two 1-trusses and two stratified intervals. For the

15Every preorder, in particular every poset, (X,≤) can be considered a category with
object set X and a single morphism x→ y whenever x ≤ y. Every map of preorders can
be considered as a functor of the corresponding categories.

16Note that the correspondence of 1-trusses and stratified intervals is fundamentally different
from the earlier depiction in Example 2.1.8 of fences via their geometric realization as
regular cell complexes.
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1-trusses, we color blue the elements whose dimension map value is 1 and
we color red the elements whose dimension map value is 0; we depict the
face order by black arrows; and we indicate the overall direction of increasing
frame order by a single purple vector. For the stratified intervals, the 0-strata
are indicated by small black dots, and the 1-strata are indicated by black
open intervals. Each 1-truss and its adjacent stratified interval correspond
in the sense that the face order of the 1-truss is the fundamental poset of
the stratified interval. Note that each object of the truss corresponds to a
stratum of the same dimension. (The frame order of the truss corresponds to
a framing of the stratified interval provided by an implicit embedding in the
real line.)

Figure 2.5. 1-Trusses and their corresponding stratified in-
tervals.

Inspired by much later applications to singularity theory, we adopt the
following terminology.

Terminology 2.1.13 (Singular and regular elements). An element a ∈ T
of a 1-truss T is called ‘singular’ if dim(a) = 0, and ‘regular’ if dim(a) = 1.
We denote the subset of singular elements of T by sing(T ), and the subset of
regular elements of T by reg(T ).

Remark 2.1.14 (Orders on singular and regular elements). Note that,
considered with the face order, the singular set (sing(T ),⊴) and regular set
(reg(T ),⊴) are discrete orders, while, considered with the frame order, the
singular set (sing(T ),⪯) and regular set (reg(T ),⪯) are total orders.

Since 1-trusses may be considered as fence categories or as sets with partial
face orders, going forward we will refer interchangeably to either ‘elements’
or ‘objects’ of 1-trusses.

2.1.1.2. ♢Maps of 1-trusses. We next define maps of 1-trusses and dis-
tinguish certain specific classes of maps based on their behavior on singular
and regular objects. As 1-trusses have two partial orders, the face and frame
orders, maps thereof are conveniently and succinctly expressed in terms of
diposets as follows.

Definition 2.1.15 (Diposets and their maps). A diposet (X,⊴,⪯) is a
set X with two partial orders ⊴ and ⪯. A diposet map F : (X,⊴,⪯) →
(Y,⊴,⪯) is a map of sets F : X → Y that independently respects both orders,
i.e., induces poset maps F : (X,⊴)→ (Y,⊴) and F : (X,⪯)→ (Y,⪯).
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Definition 2.1.16 (1-Truss maps). A map of 1-trusses T → S is a
diposet map (T,⊴,⪯)→ (S,⊴,⪯).

Note that the definition of a 1-truss map does not impose any conditions
on how the map interacts with the dimension maps of the trusses. Indeed,
there are several distinct such potential interactions, depending on the map’s
behavior on singular and regular objects.

Definition 2.1.17 (Singular, regular, and balanced maps). Let F : T →
S be a map of 1-trusses.

››››› The map F is singular if it sends singular objects of T to singular
objects of S. In other words, for all a ∈ T , dim(a) ≥ dim(Fa).

››››› The map F is regular if it sends regular objects of T to regular objects
of S. In other words, for all a ∈ T , dim(a) ≤ dim(Fa).

››››› The map F is balanced if it is both singular and regular. In other
words, for all a ∈ T , dim(a) = dim(Fa).

Example 2.1.18 (Maps of 1-trusses). In Figure 2.6, we depict a singular,
a regular, and a balanced map of 1-trusses, and one that is neither singular
nor regular.

balanced

singular regular

neither singular nor regular

Figure 2.6. Types of maps of 1-trusses.

Notation 2.1.19 (Category of 1-trusses). The category of 1-trusses
and their maps is denoted Trs1. The wide subcategory containing only
singular, respectively regular, respectively balanced maps will be denoted
Trss1, respectively Trsr1, respectively Trsrs1 .

Since a map of 1-trusses that is neither singular nor regular does not abide
any condition on the dimension map, a priori in the category of 1-trusses, the
trivial truss of dimension 0 (i.e., with one element a ∈ T having dim(a) = 0)
is isomorphic to the trivial truss of dimension 1 (i.e., with one element
a ∈ T having dim(a) = 1); however as we typically want to distinguish these
1-trusses, we adopt the following convention.

Convention 2.1.20 (Balanced isomorphism by default). The term ‘iso-
morphism of 1-trusses’ will refer, unless otherwise noted, to isomorphism in
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the category Trsrs1 , that is, to balanced bijective 1-truss maps. (Note that
balanced isomorphisms preserve all the structural data of 1-trusses, namely
the face order, the frame order, and the dimension map.)

Remark 2.1.21 (Balanced isomorphisms of 1-trusses are unique). If two
1-trusses are balanced isomorphic, there is a unique balanced isomorphism
between them. There is therefore never any need to distinguish between
distinct but balanced isomorphic 1-trusses. Also, in particular, there are no
nontrivial balanced automorphisms of 1-trusses. (In fact, a not-necessarily-
balanced isomorphism between 1-trusses is also unique, but by the previous
convention we care about and concentrate on balanced isomorphism.)

As intervals are crucially distinguished by whether they are open or
closed or half-open half-closed or degenerate, similarly for stratified intervals
and thus correspondingly for 1-trusses. For 1-trusses, these distinctions are
controlled by whether the endpoints are singular or regular.

Terminology 2.1.22 (Endpoints of 1-trusses). For a 1-truss
(T,⊴, dim,⪯), we refer to the minimal element of the frame order (T,⪯)
as the lower endpoint and denote it by end−T ; similarly we refer to the
maximal element as the upper endpoint and denote it by end+T .

Terminology 2.1.23 (Endpoint types of 1-trusses). There are six ‘end-
point types’ of balanced isomorphism classes of 1-trusses, distinguished and
referred to as follows. Let T be a 1-truss.

(1) If T has a single element and that element is regular, then T is the
trivial open 1-truss and is denoted by T̊0.

(2) If T has a single element and that element is singular, then T is the
trivial closed 1-truss and is denoted by T̄0.

For the remaining cases, assume the 1-truss T has more than one element.
(3) If both endpoints end±T are regular, then T is open. When T has

2k + 1 elements, it is denoted by T̊k.
(4) If both endpoints end±T are singular, then T is closed. When T

has 2k + 1 elements, it is denoted by T̄k.
(5) If end−T is regular and end+T singular, then T is left-open right-

closed. When T has 2k elements, it is denoted by ›
Tk.

(6) If end−T is singular and end+T regular, then T is left-closed right-
open. When T has 2k elements, it is denoted by ⊸Tk.

The last two cases are both referred to as ‘half-open’ 1-trusses.

Example 2.1.24 (Types of 1-trusses). In Figure 2.7 we depict an example
of each of the six types of 1-trusses, distinguished by their endpoints.

We will mainly be concerned with the cases of entirely closed trusses and of
entirely open trusses, as opposed to the half-open cases, and so we introduce
notation for the following subcategories.

Notation 2.1.25 (Open and closed 1-trusses). The subcategory of Trs1
whose objects are open trusses (including the trivial open truss) and whose
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trivial open

left-open right-closed left-closed right-open

open

trivial closed

closed

Figure 2.7. Endpoint types of 1-trusses.

morphisms are regular maps, will be denoted by T̊rs1. The subcategory of
Trs1 whose objects are closed trusses (including the trivial closed truss) and
whose morphisms are singular maps, will be denoted by T̄rs1.

2.1.1.3. ♢Dualization of 1-trusses. There is a natural dualization opera-
tion taking closed trusses to open trusses and vice versa.

Construction 2.1.26 (Dualization of 1-trusses). There is a covariant
involutive functor, called the ‘dualization functor’, denoted

† : Trs1 ∼= Trs1

and defined as follows. Given a 1-truss T = (T,⊴, dim,⪯), its dual is the
1-truss T † = (T,⊴op, dimop,⪯). That is, the face order of T † is opposite to
the face order of T ; the dimension map of T † is the opposite of the dimension
map of T (post-composed with the identification [1] ∼= [1]op); and the frame
order of T † is the same as the frame order of T . The dual F † : T † → S† of a
1-truss map F : T → S is the map whose underlying map of sets is equal to
the underlying map of sets T → S of the map F .

Example 2.1.27 (Dualization of 1-trusses and 1-truss maps). In Fig-
ure 2.7, the 1-trusses in the left column are dual, respectively, to the 1-trusses
in the right column. In Figure 2.6, the singular map dualizes to the regular
map.

Observation 2.1.28 (Singular and regular are dual). Given a 1-truss
T , an element a ∈ T is singular, respectively regular, if and only if the
corresponding element a ∈ T † is regular, respectively singular. Similarly, a
map of 1-trusses F : T → S is singular, respectively regular, if and only if
the dual F † : T † → S† is regular, respectively singular.

Observation 2.1.29 (Closed and open are dual). Since singular and
regular elements are exchanged by dualization, the endpoint types are similarly
exchanged. In particular open 1-trusses dualize to closed 1-trusses and vice
versa; the dualization functor restricts to an isomorphism † : T̊rs1 ∼= T̄rs1.

2.1.2. ♢1-Truss bordisms. As described and illustrated in the previous
section, 1-trusses provide a combinatorial model of (framed) stratified intervals.
Next we introduce 1-truss bordisms, which provide a combinatorial model of
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certain families of stratified intervals. More specifically, 1-truss bordisms will
model suitably constructible stratified bundles, of framed stratified intervals,
over the standard stratified 1-simplex.17 Two such bundles are illustrated
in Figure 2.8. In the first bundle, the generic fiber is a stratified open
interval with two point strata; those point strata collide into a single point
stratum when entering the special fiber. In the second bundle, the generic
fiber again has two point strata, but when entering the special fiber, a third
point stratum spontaneously appears. In both cases, we also depict the
fundamental poset of the total space of the stratified bundle, and the map
of posets to the fundamental poset of the stratified interval; these ‘stratified
bundles of 1-truss posets’ are the ‘1-truss bordisms’ corresponding to the
geometric stratified bundles. The notion of 1-truss bordism encodes a unified
combinatorial description of the possible changes between the 1-truss fibers
in such stratified fundamental poset bundles.

p Π(p) Π(p)p

Figure 2.8. Stratified bundles of stratified intervals and their
corresponding fundamental posets as 1-truss bordisms.

Synopsis. We begin by giving the crucial definition of 1-truss bordisms
as functorial relations that are functional on singular elements, cofunctional
on regular elements, and bimonotone in the frame orders. We then illustrate
various local phenomena that occur in 1-truss bordisms, along with an
assortment of 1-truss relations that fail to be 1-truss bordisms. We observe
that there is a composition operation of 1-truss bordisms, and therefore a
category of 1-trusses and their bordisms. We describe a dualization operation
of 1-truss bordisms, and the resulting contravariant involutive dualization
functor on the category. We then show that subject to suitable boundary
conditions, a 1-truss bordism is completely determined by either of its function
on singular elements or its cofunction on regular elements. Finally, we explain
the relationship between 1-truss maps and 1-truss bordisms, namely that
singular 1-truss maps have associated mapping cylinder 1-truss bordisms and
regular 1-truss maps have associated mapping cocylinder 1-truss bordisms.
17Recall stratified bundles generalize fiber bundles by allowing the fibers to change when

passing between strata of the base; see Definition B.2.25. The condition of constructibility
controls what sort of fiber changes are allowed; see Remark B.2.30.



2.1. ♢1-TRUSSES, BORDISMS, AND BUNDLES 75

2.1.2.1. ♢1-Truss bordisms as bimonotone bifunctional functorial
relations. Inspired by the behavior of fundamental posets of stratified
bundles of stratified intervals, we develop the combinatorial notion of 1-
truss bordisms. In the stratified bundles illustrated above in Figure 2.8,
from a given stratum of the generic fiber, there may be entrance paths (see
Definition B.1.6) leading to multiple distinct strata of the special fiber. Thus
in the corresponding fundamental posets, there may be an order relation
between a single element of the generic fiber and multiple elements of the
special fiber. The combinatorial change from generic to special fiber is
therefore in no way a function of posets; rather, it is a specific sort of relation
of posets.

Again in the stratified bundles of Figure 2.8, when there is an entrance
path r0 → s0 within the generic fiber and an entrance path s0 → s1 from the
generic fiber to the special fiber, then there is always a direct entrance path
r0 → s1 from the source generic stratum to the special stratum. Similarly
when there is an entrance path r0 → r1 from the generic fiber to the special
fiber and an entrance path r1 → s1 within the special fiber, then there
is a direct entrance path r0 → s1 from the generic stratum to the target
special stratum. In this sense, the relation between the fundamental poset
of the generic fiber and the fundamental poset of the special fiber respects
composition with the poset arrows of both source and target; such a relation
is called ‘functorial’.

Terminology 2.1.30 (Functorial relation). For preorders X and Y , a
‘functorial relation’ R : X −7−→ Y is a relation R ⊂ X × Y (between the object
sets of the preorders) for which, if there is an arrow r0 → s0 of X and a
relation R(s0, s1), then there is a relation R(r0, s1), and for which, if there
is a relation R(r0, r1) and an arrow r1 → s1 of Y , then there is a relation
R(r0, s1).

Of course, not any functorial relation can arise from the entrance paths on
stratified bundles of stratified intervals, because the arrangements of generic
and special, singular and regular strata are quite constrained. Notice in
particular that generic singular strata converge to special singular strata, and
so, on fundamental posets, there is always a relation between any singular
object of the source and some singular object of the target; in this sense
the relation is ‘functional’ on singular objects. Furthermore, notice that any
special regular stratum has a nearby generic regular stratum, and so, on
fundamental posets, there is always a relation between some regular object
of the source and any given regular object of the target; in this sense the
relation is ‘cofunctional’ on regular objects.

Terminology 2.1.31 (Functional and cofunctional relations). For sets
(i.e., discrete preorders) X and Y , a function f : X → Y induces the
associated relation Rf := {(x, f(x))|x ∈ X} ⊂ X × Y . A ‘functional relation’
is one that is associated to a function in this sense.
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Similarly, a cofunction f : X ← Y induces the associated relation Rf :=
{(f(y), y)|y ∈ Y } ⊂ X×Y . A ‘cofunctional relation’ is one that is associated
to a cofunction in this sense.

Finally, since a stratified bundle of stratified intervals is in particular a
continuous bundle of intervals, the linear order of strata within the generic
fiber is weakly preserved when entering into the special fiber, and the linear
order of strata within the special fiber is weakly preserved when exiting into
the generic fiber; in particular the relation on fundamental posets is weakly
(frame) order preserving or ‘bimonotone’ in the following sense.

Terminology 2.1.32 (Bimonotone relation). For total orders X and Y ,
a relation R ⊂ X × Y (between the object sets of the orders) is ‘bimonotone’
if, given relations R(x, y) and R(x′, y′), there is an arrow x→ x′ in X if and
only if there is an arrow y → y′ in Y .

A pair of arrows x→ x′ in X and y → y′ in Y is called a ‘transposition’ of
the relation if both R(x, y′) and R(x′, y). A relation is bimonotone exactly
when it has no transpositions.

Altogether, we can finally define the fundamental notion of 1-truss bor-
disms. Recall from Remark 2.1.14 that the singular objects, and separately
the regular objects, of a truss T form discrete subposets (sing T,⊴) and
(reg T,⊴) of the face order (T,⊴).

Definition 2.1.33 (1-truss bordisms). A 1-truss bordism R : T −7−→ S
between 1-trusses T and S is a non-empty functorial relation R : (T,⊴) −7−→
(S,⊴) of the face orders of T and S satisfying the following two conditions.

(1) Bifunctionality : On singular elements, the restricted relation R :
(sing T,⊴) −7−→ (sing S,⊴) is functional, and on regular elements, the
restricted relation R : (reg T,⊴) −7−→ (reg S,⊴) is cofunctional.

(2) Bimonotonicity : The relation R ⊂ T ×S is bimonotone with respect
to the frame orders (T,⪯) and (S,⪯).

Terminology 2.1.34 (Singular and regular functions of a truss bor-
dism). The bifunctionality condition requires that for each singular element
a ∈ sing T there is a unique singular element singR(a) ∈ sing S such that
R(a, singR(a)), and for each regular element d ∈ reg S there is a unique regu-
lar element regR(d) ∈ reg T such that R(regR(d), d). The resulting function
singR : sing T → sing S is called the ‘singular function’ of R. Similarly, the
function regR : reg S → reg T is called the ‘regular function’ of R.

Example 2.1.35 (A 1-truss bordism). In Figure 2.9, we depict a 1-truss
bordism R : T −7−→ S. The domain 1-truss T is drawn on the left, the codomain
1-truss S is drawn on the right, and elements of the relation R are indicated
by rightward arrows between objects of T and S. That the relation R is
bimonotone is visible from there being no crossings among its edges. That the
relation R is bifunctional is witnessed by the left-to-right singular function
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singR : sing T → sing S highlighted in red, and the right-to-left regular
function regR : reg S → reg T highlighted in blue.

Figure 2.9. A 1-truss bordism.

Example 2.1.36 (A bifunctional functorial relation that is not a truss
bordism). In Figure 2.10, we depict a bifunctional functorial relation R :
T −7−→ S, between the same two 1-trusses as in the previous example, which
though is not bimonotone and therefore not a truss bordism.

Figure 2.10. Not a 1-truss bordism.

Remark 2.1.37 (Truss bordisms are really half-bordisms). Recall that
an elementary manifold bordism [Sto15], that is one with a single Morse
critical point, can be considered as a cospan of two mapping cylinders of
maps from the source and target manifolds onto a common intermediate
singular manifold. See the left side of Figure 1.34 for an illustration. What
we have called a ‘truss bordism’ is really analogous to only half of a classical
geometric bordism, that is to the mapping cylinder of a single map from a
manifold to an intermediate singular manifold. To obtain a truss structure
more completely deserving of the name ‘bordism’, we would need to consider



2.1. ♢1-TRUSSES, BORDISMS, AND BUNDLES 78

a cospan of truss bordisms. Such a cospan is illustrated in Figure 2.11. This
structure indeed has the symmetric character typical of a geometric bordism,
with the source and target both mapping onto an intermediate ‘singular’ slice.
And indeed, these cospans will be the ubiquitous structure in the subsequent
theory. Nevertheless, to have a concise and suggestive and familiar term
for the core notion of half of such a cospan, and to avoid an interminable
repetition of the prefix ‘half-’, we refer to what is defined above as truss
bordisms simply as ‘truss bordisms’ and not as ‘truss half-bordisms’.

Figure 2.11. A 1-truss bordism cospan.

We may recast the above notions regarding 1-truss bordisms in more
abstract categorical terms, as follows. (Less categorically-inclined readers
may freely skip ahead to Section 2.1.2.2.) Recall that the category Bool
of boolean values has two objects ‘true’ ⊤ (also written 1 or ∗) and ‘false’
⊥ (also written 0 or ∅), with a single non-identity morphism from false to
true. Moreover, this category is monoidal under logical conjunction (i.e.,
multiplication on {0, 1}, i.e., cartesian product on {∅, ∗}). Considering Bool
as {∅, ∗} provides a fully faithful monoidal functor Bool ↪→ Set, which we
may use to think of Bool-enriched categories as ordinary categories. Observe
that Bool-enriched categories are precisely preorders. These formalities
are defensible because boolean-enriched profunctors concisely and precisely
encode functorial relations and their composition, as follows.

Definition 2.1.38 (Boolean profunctors). Given two preorders X and Y ,
a boolean profunctor R : X −7−→ Y is a functor R : Xop × Y → Bool.

Notation 2.1.39 (Category of boolean profunctors). Preorders and their
boolean profunctors form a category denoted BoolProf.

Terminology 2.1.40 (Underlying relations of boolean profunctors).
The ‘underlying relation functor’ rel : BoolProf → Rel takes preorders to
their object sets, and boolean profunctors R : X −7−→ Y to the relation
R−1(⊤) ⊂ X × Y .

The underlying relation functor is faithful; that is, a boolean profunctor
R : Xop × Y → Bool is completely determined by its underlying set relation
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relR ⊂ X × Y . However the functor is not full, but has image exactly those
relations that are functorial for the preorder structure.

Remark 2.1.41 (Boolean profunctors are functorial relations). Given a
boolean profunctor R : Xop × Y → Bool between preorders, the underlying
relation relR ⊂ X × Y is functorial, and any functorial relation is the
underlying relation of a boolean profunctor.

Terminology 2.1.42 (Representability of boolean profunctors). A
boolean profunctor R : X −7−→ Y is called ‘representable’ if it is of the form
HomY (f−,−) for a functor f : X → Y , and ‘corepresentable’ if it is of the
form HomX(−, f−) for a functor f : Y → X.

Remark 2.1.43 (Discrete representability is functionality). If X and Y
are discrete preorders, then a (co)representable boolean profunctor X −7−→ Y
is simply a (co)functional relation.

Remark 2.1.44 (1-Truss maps and 1-truss bordisms as functors and
profunctors). A 1-truss map T → S is in particular a functor (T,⊴)→ (S,⊴)
of the face order posets, while a 1-truss bordism T −7−→ S is in particular a
(boolean) profunctor (T,⊴) −7−→ (S,⊴) of the face order posets.

2.1.2.2. ♢Local phenomena in 1-truss functorial relations. We de-
scribe and illustrate various local phenomena that occur in functorial relations
between 1-trusses: first examples of local forms that are indeed 1-truss bor-
disms, then examples that violate either bifunctionality or bimonotonicity
and so fail to be 1-truss bordisms.

Example 2.1.45 (Local forms of 1-truss bordisms). In Figure 2.12 we
illustrate some local behaviors in 1-truss bordisms. The top three are ‘colli-
sions’ in the sense that two singular elements of the domain truss converge
to the same singular element of the codomain truss. The bottom three are
‘creations’ in the sense that a new singular element appears in the codomain
truss, with no singular element of the domain truss converging to it. The
right two are also ‘collapses’ in the sense that the domain truss degenerates
into the single singular element of the codomain truss.

The topological counterparts of each of these behaviors (which also inform
the choice of terminology for these cases), in the context of stratified bundles
of stratified intervals, are illustrated later in Figure 4.7.

Example 2.1.46 (Functorial relations that are only partially bifunctional).
In Figure 2.13 we illustrate three functorial relations between trusses that
are not truss bordisms because they fail to be bifunctional. However, these
failures are rather mild and fixable. Mild in the sense that the issue is that
the singular function or regular function is only partially defined. Fixable in
the sense that, by extending either the source or target truss, the relation can
be completed to a truss bordism; in other words, the relation is a subrelation
of an actual truss bordism.
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interior
collision

boundary
collision

closed interval
collapse

interior
creation

boundary
creation

open interval
collapse

Figure 2.12. Local forms of 1-truss bordisms.

In the first case, the regular upper endpoint of the special fiber is not
related to any regular element of the generic fiber; this is an ‘upward discon-
tinuity’ of the boundary of the truss. In the second case, the singular upper
endpoint of the generic fiber is not related to any singular element of the
special fiber, and moreover the special fiber has a singular upper endpoint;
this is a ‘downward discontinuity’ of the boundary of the truss. In the third
case, the singular upper endpoint of the generic fiber is not related to any
singular element of the special fiber, but the upper endpoint of the special
fiber is regular; this is a ‘boundary disappearance’ of the singular endpoint
of the truss.

The topological counterparts of each of these relations, in the context of
stratified bundles of stratified intervals, are illustrated later in Figure 4.8.

upwards
discontinuity

downwards
discontinuity

boundary
disappearance

Figure 2.13. Fixable failures of truss bifunctionality.

Example 2.1.47 (Functorial relations that are not bifunctional). In Fig-
ure 2.14 we illustrate three more functorial relations between trusses that are
not truss bordisms, again because they fail to be bifunctional. Unlike the
cases in the previous example, these failures should be considered unrecov-
erable, most immediately because a singular element of the generic fiber is
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related to a regular element of the special fiber, violating the fundamental
nature of truss bordisms.

In the first case, the interior singular element of the generic fiber is not
related to any singular element of the special fiber, violating functionality,
and worse is related to a regular element of the special fiber; furthermore, the
regular element of the special fiber is related to two regular elements of the
generic fiber, violating cofunctionality; this is an ‘interior evaporation’ of the
singular element of the truss. In the second case, now a boundary singular
element of the generic fiber is not related to any singular element (violating
functionality) and indeed is related to a regular element of the special fiber;
this is a ‘boundary evaporation’ of the singular endpoint of the truss. In the
third case, the singular element of the generic fiber is related to two singular
elements of the special fiber, violating functionality, and the regular element
of the special fiber is not related to any regular element of the generic fiber,
violating cofunctionality; this is a ‘point divergence’ of the singular element
of the truss.

The topological counterparts of these relations, in the context of stratified
bundles of stratified intervals, are illustrated later—the first and second
relations here correspond to the first and second images in Figure 4.9, and
the third relation here corresponds to the first image in Figure 4.10.

interior
evaporation

boundary
evaporation

point
divergence

Figure 2.14. Irredeemable infractions of truss bifunctional-
ity.

Example 2.1.48 (Bifunctional functorial relations that are not bimono-
tone). In Figure 2.15 we illustrate two functorial relations between trusses
that are bifunctional but are still not truss bordisms because they are not
bimonotone. In the first case, the relation between the singular element of the
generic fiber and the regular element of the special fiber causes a violation of
bimonotonicity, despite not explicitly contravening bifunctionality; we refer
to this situation as a ‘boundary dislocation’. (Note that by removing the
relation between that singular element and that regular element, one obtains
a subrelation that is in fact a truss bordism.) In the second case, the relation
between the singular elements and the relation between the regular elements
already violates bimonotonicity; we refer to this situation as a ‘boundary
divergence’. (Note that this case is especially pathological as it contains no
subrelation whatsoever that is a truss bordism.)
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The topological counterparts of these relations (which especially in this
case clarify the terminology), in the context of stratified bundles of stratified
intervals, are again illustrated later—the first relation here corresponds to
the third image in Figure 4.9, and the second relation here corresponds to
the second image in Figure 4.10.

boundary
dislocation

boundary
divergence

Figure 2.15. Brutal breakdowns of truss bimonotonicity.

2.1.2.3. ♢Composition and dualization of 1-truss bordisms. 1-Trusses
provide a combinatorial model of stratified intervals, and 1-truss bordisms
provide a combinatorial model of suitable stratified bundles of stratified
intervals, over the stratified 1-simplex. We may imagine stacking such
stratified bundles end to end in an attempt to compose them, but unlike
ordinary intervals, the union of two stratified intervals is not itself a stratified
interval. In this case, in fact the combinatorial viewpoint provides a more
evident composition than the geometric viewpoint. We need only observe
that functorial relations compose and that the defining properties of 1-truss
bordisms are preserved under this composition.

Observation 2.1.49 (Functorial relations compose). Given preorders X,
Y , and Z, and functorial relations R : X −7−→ Y and S : Y −7−→ Z, the composite
relation S ◦R : X −7−→ Z is given by having a relation (S ◦R)(x ∈ X, z ∈ Z)
if and only if there is an element y ∈ Y for which there are both relations
R(x, y) and S(y, z). Note that the functoriality of R and S ensures that the
composite relation S ◦R is also functorial.

Observation 2.1.50 (Bifunctionality and bimonotonicity compose). The
properties of bifunctionality and bimonotonicity in Definition 2.1.33 are
preserved under composition of functorial relations. Indeed, given 1-truss
bordisms, R : T −7−→ T ′ and R′ : T ′ −7−→ T ′′, the functorial relation R′ ◦
R : T −7−→ T ′′ is again bifunctional: its singular function is the composite
singR′ ◦ singR, and its regular function is the composite regR ◦ regR′ . The
relation R′ ◦ R : T −7−→ T ′′ is also bimonotone: if there is a transposition of
the composite R′ ◦ R (with respect to the frame orders of T and T ′′) then
there would necessarily be a transposition in at least one of the relations R
or R′.

Thus altogether, the composite of two 1-truss bordism functorial relations
is itself a 1-truss bordism, as desired.
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Definition 2.1.51 (Composition of 1-truss bordisms). Given two 1-truss
bordisms R : T −7−→ T ′ and R′ : T ′ −7−→ T ′′, the composite 1-truss bordism
R′ ◦R : T −7−→ T ′′ is the composite of R and R′ as functorial relations.

Example 2.1.52 (Composition of 1-truss bordisms). In Figure 2.16 we
illustrate a composition of two 1-truss bordisms. The bimonotonicity and
bifunctionality of the composite relation are evident.

R′ ◦ RR R′

⇝

Figure 2.16. Composition of 1-truss bordisms.

There is an identity idT : T −7−→ T for this composition of truss bordisms,
namely the relation given by the hom functor Hom(T,⊴)(−,−). Thus 1-truss
bordisms are morphisms of the following category.

Notation 2.1.53 (The category of 1-trusses and their bordisms). The
‘category of 1-trusses and their bordisms’, whose objects are 1-trusses and
whose morphisms are 1-truss bordisms, will be denoted TBord1. The full sub-
category containing only open, respectively closed, 1-trusses will be denoted
T̊Bord1, respectively T̄Bord1.

Observation 2.1.54 (The terminal and initial 1-trusses). The terminal
object of TBord1 is the trivial closed 1-truss T̄0. The unique bordism R :
T −7−→ T̄0 has a relation between every element of T and the unique (singular)
element of T̄0.

The initial object of TBord1 is the trivial open 1-truss T̊0. The unique
bordism R : T̊0 −7−→ T has a relation between the unique (regular) element of
T̊0 and every element of T .

Observation 2.1.55 (Isobordisms of 1-trusses are unique). We call a
1-truss bordism with an inverse a ‘1-truss isobordism’. Given two 1-trusses
T and S, if there is an isobordism R : T −7−→ S, then there is a unique such
isobordism. There is therefore never any need to distinguish between distinct
1-trusses that are isomorphic in the category TBord1. Also, in particular
there are no nontrivial automorphisms in TBord1.

Remark 2.1.56 (Isobordism classes of 1-trusses). Note that the isomor-
phism classes of 1-trusses in TBord1, that is the classes of 1-trusses up to
invertible bordism, are the same as the balanced isomorphism classes of
1-trusses, namely T̊k, T̄k,

›
Tk, and ⊸Tk; see Terminology 2.1.23.
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Recall the dual T † of a 1-truss T has the same elements and frame order,
but the opposite face order and dimension. As noted in Construction 2.1.26,
this dual extends to a covariant involutive functor † : Trs1 ∼= Trs1 on the
category of 1-trusses and their maps. The same dual on 1-trusses also extends
to a contravariant involutive functor on the category of 1-trusses and their
bordisms, as follows.

Construction 2.1.57 (Dualization of 1-truss bordisms). Given a 1-truss
bordism R : T −7−→ S, the dual 1-truss bordism R† : S† −7−→ T † is the transpose
relation:

R†(s, t) = R(t, s).

This transposed relation is functorial (since the face orders of the trusses have
been reversed), bifunctional (since the singular and regular elements have been
switched and so the roles of functionality and cofunctionality interchanged),
and bimonotone (since the transpose introduces no transpositions of the frame
order). Thus dualization provides an involutive isomorphism of categories

† : TBord1 ∼= (TBord1)op

This dualization restricts to an isomorphism † : T̊Bord1 ∼= (T̄Bord1)op between
the category of open 1-trusses and their bordisms and the (opposite of the)
category of closed 1-trusses and their bordisms.

Example 2.1.58 (Dual 1-truss bordisms). In Figure 2.17 we depict a
1-truss bordism (the first one in the cospan of Figure 2.11) together with
its dual 1-truss bordism. Notice how the transposed relation appears as a
horizontal flip in this illustration, and the flipped singular function becomes
the regular function, while the flipped regular function becomes the singular
function.

Figure 2.17. Dual 1-truss bordisms.
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2.1.2.4. ♢Determination of 1-truss bordisms. Functoriality, bifunction-
ality, and bimonotonicity collude to rigidly constrain the structure of 1-truss
bordism relations. So much so that, subject to certain boundary conditions,
these relations are completely determined either by their singular function
or by their regular function. We collate a few features of 1-truss bordisms,
leading up to this determination property.

Observation 2.1.59 (1-truss bordism relations weakly decrease dimen-
sion). Given a 1-truss bordism R : T −7−→ S with a relation R(a, b) between
elements a ∈ T and b ∈ S, then dim(a) ≥ dim(b). In all preceding examples
of 1-truss bordisms, it is visibly the case that relations are from singular to
singular, regular to regular, or regular to singular elements, but never from
singular to regular elements.

To prove that this is always the case, suppose by contrast that there
were a relation R(a, b) for singular a ∈ T and regular b ∈ S. Consider
the singular element singR(a); since b is regular and frame orders are total,
either b ≺ singR(a) or singR(a) ≺ b. Assume the former; the latter case
is similar. By bimonotonicity, we have regR(b) ≺ a; thus there is at least
one element below a in the frame order, and so there is a face order arrow
a − 1 ◁ a in (T,⊴). (Here a − 1 denotes the predecessor of a in the total
frame order (T,⪯).) By the functoriality of the relation R, this implies that
R(a− 1, singR(a)) holds. Since a− 1 ≺ a, and b ≺ singR(a), and we assumed
R(a, b), this contradicts bimonotonicity.

Recall from Terminology 2.1.22 that the minimal and maximal elements
of the frame order of a truss are called the lower and upper endpoints.

Observation 2.1.60 (1-truss bordisms relate endpoints). Given a 1-truss
bordism R : T −7−→ S, the lower endpoint of T is related to the lower endpoint
of S, and the upper endpoint of T is related to the upper endpoint of S.
In all the examples we have seen, this property is visible from the relation
arrows between the bottommost and topmost elements.

To prove that this always holds, consider the lower endpoint case, as
follows; the upper endpoint case is similar. Suppose the target lower endpoint
end−S is regular. Set a := regR(end−S). If a = end−T , then the endpoint
relation is satisfied. Otherwise there is a predecessor of a, necessarily singular,
and a relation R(a − 1, singR(a − 1)); bimonotonicity, and the regularity
of end−S, forces singR(a − 1) ≺ end−S, contradicting end−S being a lower
endpoint. If instead we suppose the source lower endpoint end−T is singular,
a dual argument shows that singR(end−T ) = end−S, ensuring the endpoint
relation is satisfied.

The only remaining case is when end−T is regular and end−S is singular.
If both trusses have just one element, they are related, and the lower endpoints
preserved, since the relation is non-empty by definition. Suppose T has at
least two elements; the case when S has at least two elements is similar. Since
T has some element above its lower endpoint, there is a singular successor
(end−T ) + 1 and a face order end−T ◁ (end−T ) + 1. If there is a relation
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R((end−T ) + 1, end−S), then by functoriality R(end−T, end−S), as desired.
Otherwise R((end−T ) + 1, singR((end−T ) + 1)) with singR((end−T ) + 1) ≻
end−S. That forces there to be a regular successor (end−S) + 1 and a
face order (end−S) + 1 ◁ end−S. By cofunctionality and bimonotonicity,
there is a relation R(end−T, (end−S) + 1) and so by functoriality a relation
R(end−T, end−S), as required.

The previous observation ensures that bordisms always relate endpoints.
The singularity or regularity of these endpoints are interdependent, as follows.

Observation 2.1.61 (1-truss bordisms preserve singular endpoints and
copreserve regular endpoints). Let R : T −7−→ S be a 1-truss bordism. If the
lower (resp. upper) endpoint of T is singular, then the lower (resp. upper)
endpoint of S is singular. If the lower (resp. upper) endpoint of S is regular,
then the lower (resp. upper) endpoint of T is regular.

For the lower case (the upper case is similar), it suffices of course to
confirm that it cannot happen that end−T is singular while end−S is regular;
assume by contrast that this were the situation. If either T or S has only
one element, the relation necessarily violates either singular functionality
or regular cofunctionality. Thus there are face orders (end−T ) + 1◁ end−T
and end−S ◁ (end−S) + 1. By Observation 2.1.60, there is an endpoint
relation R(end−T, end−S). Functoriality implies R((end−T ) + 1, end−S) and
R(end−T, (end−S) + 1) and R((end−T ) + 1, (end−S) + 1), violating bimono-
tonicity and reproducing the (vertical flip of the) boundary divergence of
Figure 2.15.

Combining the previous two observations, note that in particular, for
a 1-truss bordism R : T −7−→ S, the singular function singR : (sing(T ),⪯) →
(sing(S),⪯) preserves singular endpoints, and the regular function regR :
(reg(S),⪯)→ (reg(T ),⪯) preserves regular endpoints, in the following sense.

Terminology 2.1.62 (Preserving singular or regular endpoints). Given
1-trusses T and S, a function f : (sing(T ),⪯)→ (sing(S),⪯) on the (frame
ordered) singular elements is said to ‘preserve singular endpoints’ if any
singular lower (resp. upper) endpoint of T is sent by the function to a
singular lower (resp. upper) endpoint of S; i.e., if end−(T ) ∈ sing(T ) then
f(end−(T )) = end−(S) ∈ sing(S), and similarly with end+ in place of end−.

Correspondingly, a function g : (reg(S),⪯) → (reg(T ),⪯) is said to
‘preserve regular endpoints’ if any regular lower (resp. upper) endpoint of S
is sent by the function to a regular lower (resp. upper) endpoint of T ; i.e., if
end−(S) ∈ reg(S) then g(end−(S)) = end−(T ) ∈ reg(T ), and similarly with
end+ in place of end−.

In fact, finally, we can see that a function on the (frame ordered) singular
elements determines a truss bordism, provided just that it is singular-endpoint
preserving, and similarly a function on the (frame ordered) regular elements
determines a truss bordism, provided just that it is regular-endpoint preserv-
ing, as follows.
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Lemma 2.1.63 (Bordisms determined by singular or regular functions).
Let T and S be 1-trusses.

Singular determined: Given a function f : (sing(T ),⪯)→ (sing(S),⪯)
that preserves singular endpoints, there is a unique 1-truss bordism R :
T −7−→ S with singular function singR = f .
Regular determined: Given a function g : (reg(S),⪯)→ (reg(T ),⪯)
that preserves regular endpoints, there is a unique 1-truss bordism R : T −7−→
S with regular function regR = g.

Proof. For the singular determined case, define the relation R(a, b) to
hold if and only if either (1) the element a is singular, and b = f(a), or (2)
the element a is regular, and both f(a+ 1) ⪰ b (whenever a+ 1 ∈ T ) and
b ⪰ f(a− 1) (whenever a− 1 ∈ T ).

For the regular determined case, define the relation R(a, b) to hold if and
only if either (1) the element b is regular, and a = g(b), or (2) the element
b is singular, and both g(b+ 1) ⪰ a (whenever b+ 1 ∈ S) and a ⪰ g(b− 1)
(whenever b− 1 ∈ S). □

Since 1-truss bordism singular functions preserve singular endpoints,
and 1-truss bordism regular functions preserve regular endpoints, all 1-truss
bordisms are determined as in this lemma, and thus constructed as in the proof.
That construction has the following consequences regarding the structure of
1-truss bordisms.

Terminology 2.1.64 (Fully relating elements). We say a relation R :
T −7−→ S ‘fully relates elements’ if for each a ∈ T there exists a′ ∈ S with
R(a, a′), and for each b ∈ S there exists b′ ∈ T with R(b′, b).

Observation 2.1.65 (1-Truss bordisms fully relate elements). Every
1-truss bordism fully relates elements.

Corollary 2.1.66 (Correspondence of singular functionality and regular
cofunctionality). Let T and S be 1-trusses, and let R : (T,⊴) −7−→ (S,⊴) be
a functorial relation, that fully relates elements, and such that the relation
R ⊂ (T,⪯) × (S,⪯) is bimonotone. The relation is functional on singular
elements and preserves singular endpoints, if and only if it is cofunctional on
regular elements and preserves regular endpoints. In this case, it is a 1-truss
bordism.

Proof. If the relation is functional on singular elements and preserves
singular endpoints, its singular function determines a 1-truss bordism by the
first case of Lemma 2.1.63. Observe that the given relation agrees with the
1-truss bordism constructed in the proof of that result, using crucially the
assumptions of functoriality, fully relating elements, and bimonotonicity. The
other direction is entirely similar. □

2.1.2.5. ♢Mapping cylinder 1-truss bordisms. As (stratified) manifolds
are the objects of two rather different looking categories, namely manifolds
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with maps between them, and manifolds with bordisms between them, simi-
larly we now have 1-trusses as the objects of these two distinct categories,
namely 1-trusses and their maps Trs1, and 1-trusses and their bordisms
TBord1. However, these categories are not entirely unrelated; the mapping
cylinder of a suitable map of manifolds is a (singular, stratified, half) bordism,
and similarly there is a mapping cylinder construction taking certain 1-truss
maps to 1-truss bordisms.

The relevant 1-truss maps are those that respect the singularity or regu-
larity of the boundary in the following sense.

Notation 2.1.67 (Categories of endpoint-preserving truss maps). A
singular 1-truss map F : T → S is said to preserve singular endpoints if the
restriction of the map to singular elements F : sing(T )→ sing(S) preserves
singular endpoints (see Terminology 2.1.62). Let Trss,∂1 denote the category
of 1-trusses and their singular maps that preserve singular endpoints.

Similarly, a regular 1-truss map G : S → T is said to preserve regular
endpoints if the restriction of the map to regular elements G : reg(S)→ reg(T )

preserves regular endpoints. Let Trsr,∂1 denote the category of 1-trusses and
their regular maps that preserve regular endpoints.

Construction 2.1.68 (Mapping cylinders of singular and regular 1-truss
maps). Given a singular map of 1-trusses F : T → S, that preserves singular
endpoints, Lemma 2.1.63 defines a (uniquely determined) 1-truss bordism
T −7−→ S with singular function F : sing(T ) → sing(S). We denote that
bordism Cyl(F ) : T −7−→ S and refer to it informally as the ‘mapping cylinder’
of the 1-truss map F . This construction assembles into a functor

Cyl : Trss,∂1 → TBord1

Similarly, given a regular map of 1-trusses T ← S : G, that preserves
regular endpoints, Lemma 2.1.63 defines a (uniquely determined) 1-truss
bordism T −7−→ S with regular function reg(T ) ← reg(S) : G. We denote
that bordism coCyl(G) : T −7−→ S and refer to it informally as the ‘mapping
cocylinder’ of the 1-truss map G. This construction assembles into a functor

coCyl : (Trsr,∂1 )op → TBord1

Example 2.1.69 (Mapping cylinders of 1-truss maps). In Figure 2.18 we
illustrate 1-truss maps and their mapping (co)cylinders. The top left corner
is a singular map, preserving singular endpoints. The top right corner is the
mapping cylinder 1-truss bordism associated to that singular map. The lower
left corner is the dual regular map (of the singular map), and it preserves
regular endpoints. The lower right corner is both the mapping cocylinder
1-truss bordism associated to that regular map, and the dual 1-truss bordism
of the top right bordism.

Observation 2.1.70 (Mapping cylinders commute with dualization).
Given a singular map F : T → S of 1-trusses that preserves singular endpoints,
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Figure 2.18. 1-truss maps and their mapping (co)cylinder
1-truss bordisms.

we may take its mapping cylinder 1-truss bordism Cyl(F ) : T −7−→ S, and then
form the dual 1-truss bordism Cyl(F )† : T † −7−← S†. Or we may take the dual
regular map F † : T † → S† of 1-trusses, which preserves regular endpoints,
and then form the mapping cocylinder 1-truss bordism coCyl(F †) : T † −7−← S†.
As illustrated in the previous example, the resulting bordisms are identical.
That is, mapping cylinders respect dualization in the sense that the following
diagram commutes:

Trss,∂1 TBord1

Trsr,∂1 (TBord1)op

Cyl

† †

coCyl

Remark 2.1.71 (Mapping cylinders as represented functorial relations).
When a singular or regular map of 1-trusses is more-or-less surjective, its
mapping (co)cylinder is the relation (co)represented by the map, in the
following sense (cf. Terminology 2.1.42).

Let F : T → S be a singular map of 1-trusses, such that the face order
functor F : (T,⊴) → (S,⊴) is initial, i.e., for every element s ∈ S there
is an element t ∈ T and a face order relation F (t) ⊴ s; note that initiality
implies this map preserves singular endpoints. In this case (only), the 1-truss
bordism Cyl(F ), defined by Lemma 2.1.63, is precisely the functorial relation
Hom(S,⊴)(F−,−) : (T,⊴) −7−→ (S,⊴) represented by the 1-truss map F .

Similarly, let T ← S : G be a regular map of 1-trusses, such that the
face order functor (T,⊴)← (S,⊴) : G is final, i.e., for every element t ∈ T
there is an element s ∈ S and a face order relation t ⊴ G(s); note that
finality implies this map preserves regular endpoints. In this case (only),
the 1-truss bordism coCyl(G), defined by Lemma 2.1.63, is precisely the
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functorial relation Hom(T,⊴)(−, G−) : (T,⊴) −7−→ (S,⊴) corepresented by the
1-truss map G.

2.1.3. ♢1-Truss bundles. In the previous section, we developed the notion
of 1-truss bordisms, providing a combinatorial model of constructible bundles
of stratified intervals over the stratified 1-simplex. Now we describe the notion
of 1-truss bundle, which will provide a combinatorial model of constructible
bundles of stratified intervals over not just the 1-simplex but over more
general stratified spaces.

Synopsis. We begin by defining 1-truss bundles as diposets each of
whose point fibers is a 1-truss and each of whose arrow fibers is a 1-truss
bordism. We introduce maps of 1-truss bundles, which are just base poset
maps together with total diposet maps, and so in particular are maps of
1-trusses on each fiber. We show that the category of 1-trusses and their
bordisms is a classifying category for 1-truss bundles; to any 1-truss bundle
there is an associated classifying functor into the classifying category, and to
any functor into the classifying category there is an associated total 1-truss
bundle. Finally, we mention pullbacks of 1-truss bundles, observe that the
dualization functors on 1-trusses extend to 1-truss bundles, and describe
suspensions of 1-truss bundles.

2.1.3.1. ♢1-Truss bundles as collections of 1-truss bordisms. A 1-
truss bundle over a poset will be a compatible collection of 1-truss bordisms,
one over each arrow of the base poset. To describe the compatibility, it is
convenient to encode the total object of the bundle itself as a poset, and to
do that we need to recast the total object of a bordism as a poset, rather
than as a relation.

Terminology 2.1.72 (The associated total poset of a 1-truss bordism).
By definition, a 1-truss bordism between 1-trusses T and S is a (bifunctional,
bimonotone) functorial relation R : (T,⊴) −7−→ (S,⊴) of the face order posets.
The ‘associated total poset’ of the 1-truss bordism R is the partial order
(T ⊔ S,⊴), whose underlying set is the disjoint union of the 1-truss elements,
and whose order relation ⊴ has restriction to T being the face order (T,⊴),
has restriction to S being the face order (S,⊴), and satisfies (t ∈ T )⊴ (s ∈ S)
if and only if the relation R(t, s) holds.

Of course, only very special partial orders on the union of the source and
target 1-trusses arise as the associated total posets of 1-truss bordisms; note
that, for fixed domain and codomain 1-trusses, a partial order so arising
completely determines the 1-truss bordism of which it is the associated total
poset. Thus, we may and will lightly abuse terminology as follows.

Notation 2.1.73 (Total poset of a bordism). For a 1-truss bordism R
(given by definition as a functorial relation), we refer without decoration to
its associated total poset also simply as R.
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Notice that already in our first illustration of a 1-truss bordism in Fig-
ure 2.9, we denoted each relation R(t, s) by an arrow t → s; as such, the
collection of all arrows drawn (including those in the domain and codomain)
is precisely the associated total poset of the 1-truss bordism.

We may now define 1-truss bundles, as suitably structured poset bundles,
that restrict to 1-trusses over elements and to 1-truss bordisms over arrows.

Definition 2.1.74 (1-Truss bundle). Let (B,→) be a poset, and consider
it to be a diposet (B,→,=) using the discrete order =. A 1-truss bundle
(T,⊴, dim,⪯, p) over (B,→) is a diposet (T,⊴,⪯), together with a poset
map dim : (T,⊴) → [1]op, and a diposet map p : (T,⊴,⪯) → (B,→,=),
satisfying the following two conditions.

(1) Truss point fibers: For every element x ∈ B, the fiber
(p−1(x),⊴,dim,⪯) ⊂ (T,⊴, dim,⪯) is a 1-truss.

(2) Truss bordism arrow fibers : For every arrow x→ y in the base poset
(B,→), the fiber (p−1(x → y),⊴) ⊂ (T,⊴) is the total poset of a
1-truss bordism.

We call (B,→) the ‘base poset’, call (T,⊴,⪯) the ‘total diposet’ and (T,⊴)
the ‘total poset’, and as for 1-trusses, refer to ⊴ as the ‘face order’, to ⪯ as
the ‘frame order’, and to dim as the ‘dimension map’.

Notation 2.1.75 (1-Truss bundles). When referring to 1-truss bundles,
we will usually keep the face orders, frame orders, and dimension maps, as
well as the base poset order, implicit; we thus denote 1-truss bundles simply
by maps p : T → B. When then referring to the structures of such a 1-truss
bundle, we will use the symbol ‘⊴’ for the face order, ‘⪯’ for the frame order,
‘dim’ for the dimension map, and ‘→’ for the base poset order. We will also
freely use an arrow ‘→’, instead of ⊴, to indicate a face order relation, as
this corresponds to our graphical illustration convention and is also nicely
compatible with the order → of the base poset.

Note that in a 1-truss bundle p : T → B, two elements a, b ∈ T are related
in the frame order if and only if they are in the same fiber a, b ∈ p−1(x): no
elements of distinct fibers can be frame-order related since p : (T,⪯)→ (B,=)
is a poset map, and frame orders are total on each fiber 1-truss.

Terminology 2.1.76 (Singular and regular elements of 1-truss bundles).
Given a 1-truss bundle p : T → B, we call an element a ∈ T ‘singular’ if
dim(a) = 0 and ‘regular’ if dim(a) = 1. We denote by sing(T ), respectively
reg(T ), the full subposet of (T,⊴) containing all singular, respectively regular,
elements. (We also freely think of sing(T ) and reg(T ) as the full subdiposets
of (T,⊴,⪯) on the same elements.)

Terminology 2.1.77 (Open and closed 1-truss bundles). A 1-truss
bundle for which all fibers are open, respectively closed, 1-trusses, will be
called an ‘open’, respectively ‘closed’, 1-truss bundle.

Example 2.1.78 (1-Truss bundle). In Figure 2.19, on the left we illustrate
a 1-truss bundle p : T → B. As before, singular elements are shown as red
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dots, and regular elements as blue dots. The face order of the total poset
(T,⊴) is indicated by arrows, as is the poset order of the base. The total
frame order of each fiber is indicated by a purple coordinate axis vector.
(Note that we choose all such axes to point in the same, upwards direction.
Flipping all these frame axes to point downward would produce a distinct
1-truss bundle.)

Terminology 2.1.79 (Generating arrows of 1-truss bundles). A ‘gener-
ating arrow’ of a 1-truss bundle is an arrow in the covering relation of the
total poset of the bundle, i.e., a non-identity arrow that is not a composite
of other non-identity arrows.

Example 2.1.80 (Generating arrows of a 1-truss bundle). As pictures of
1-truss bundles can quickly become difficult to parse, from so many arrows,
we often illustrate them more sparsely by only drawing the generating arrows.
On the right of Figure 2.19, we depict the same bundle as on the left, but
omit all composite arrows.

Figure 2.19. A 1-truss bundle and its generating arrows.

Construction 2.1.81 (Generating arrows in 1-truss bundles). Given
a 1-truss bundle p : T → B, its set of generating arrows is completely and
concisely determined as follows. Let cov(B) denote the covering relation of
the base poset. An arrow a→ b of the total poset (T,⊴) is generating if and
only if:

››››› either p(a→ b) = id (i.e., the arrow lies in a fiber of the projection p),
››››› or p(a → b) ∈ cov(B) and either (a → b) ∈ sing(T ) ∪ reg(T ) (i.e., the

arrow has source and target singular or source and target regular) or
a → b is the unique arrow of the fiber over the arrow p(a → b) of the
base.

Remark 2.1.82 (Flip action on frame orders). As mentioned in Exam-
ple 2.1.78, there is a Z2 action on the collection of 1-truss bundles by flipping
the frame order of every fiber. As this flip tends to not alter the essential
behavior in question, we usually depict frame orders of bundles only up to
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this action; specifically, we position the fibers of the bundle parallel, and
assume the fiber frame orders run in the same direction, but typically do not
fix which direction.

Observation 2.1.83 (Arrows lift in 1-truss bundles). Let p : T → B be
a 1-truss bundle. Given an arrow x → y in the base B, and a lift of x to
an element a ∈ T , the arrow lifts to some arrow a → a′ of the total poset.
Similarly, given a lift of y to an element b ∈ T , the arrow lifts to some arrow
b′ → b. Both properties follow immediately from Observation 2.1.65.

Observation 2.1.84 (Unique singular or regular lifts in 1-truss bundles).
The lifts in the previous observation become unique if we insist they are
singular (in the first case) or regular (in the second case). Specifically, given
a 1-truss bundle p : T → B, an arrow x→ y in the base, and a lift of x to a
singular element a ∈ T , there is a unique lift to an arrow a→ a′ in sing(T ).
(In categorical terms, the functor p : sing(T )→ B is a ‘discrete opfibration’
[LR20, MM12].) Similarly, given a lift of y to a regular element b ∈ T , there
is a unique lift to an arrow b′ → b in reg(T ). (The functor p : reg(T ) → B
is a ‘discrete fibration’.) These properties follow from the bifunctionality of
1-truss bordisms.

The definition of 1-truss bundles has a natural generalization allowing
the base to be a category, not just a poset.

Remark 2.1.85 (Categorical 1-truss bundles). Our Definition 2.1.74
restricts attention to base posets, as that context will be our exclusive concern,
and so gives a notion of posetal 1-truss bundle. However, the definition can
be recast to accommodate base categories, yielding a notion of categorical
1-truss bundles. To wit, a ‘categorical 1-truss bundle’ is a functor p : T→ B
to a base category B, equipped with 1-truss structures on the fibers over
objects, such that the fibers over morphisms are 1-truss bordisms.

Example 2.1.86 (Categorical 1-truss bundle). In Figure 2.20 we illustrate
a 1-truss bundle over a category that is not a poset. Note that the 1-truss
bordisms over the two parallel morphisms of the base are crucially distinct.
A topological counterpart of this categorical 1-truss bundle is illustrated in
Figure 4.6.

2.1.3.2. ♢Maps of 1-truss bundles. Recall that a map of 1-trusses is a
diposet map, that is, a map of sets that respects both the face order and the
frame order. A map of 1-truss bundles is simply a map of the total diposets,
which in particular then is a map of 1-trusses on each fiber, as follows.

Definition 2.1.87 (Maps of 1-truss bundles). For 1-truss bundles p : T →
B and q : S → C, a map of 1-truss bundles F : p→ q is a (base) poset map
G : (B,→) → (C,→) and a (total) diposet map F : (T,⊴,⪯) → (S,⊴,⪯),
commuting with the projections to the bases; that is, the following square
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Figure 2.20. A 1-truss bundle over a category.

commutes:

T S

B C

F

p q

G

When the base map is the identity, G = idB , we say that F : p→ q is a map
of 1-truss bundles ‘over the base B’ or that it is ‘base preserving’.

Note that in a 1-truss bundle map, the base poset map G : (B,→)→ (C,→)
is uniquely determined by the total diposet map F : (T,⊴,⪯)→ (S,⊴,⪯).
Also note that a 1-truss bundle map F : p→ q is a 1-truss map on each fiber;
that is, for each x ∈ B, the restriction F : p−1(x) → q−1G(x) is a 1-truss
map.

Terminology 2.1.88 (Singular, regular, and balanced 1-truss bundle
maps). Let F : p→ q be a map of 1-truss bundles. If the total diposet map
F : (T,⊴,⪯)→ (S,⊴,⪯) sends the singular subposet sing(T ) to sing(S), we
call F a ‘singular’ bundle map; similarly if it maps reg(T ) to reg(S), we call
it a ‘regular’ bundle map; if F is both singular and regular, then we call it a
‘balanced’ bundle map. (Equivalently, a bundle map is singular or regular or
balanced if it is so on every fiber.)

Example 2.1.89 (1-Truss bundle maps). In Figure 2.21 we illustrate
two 1-truss bundle maps. In the first case on the left, the base poset map
is indicated by grey arrows; its source is the open truss with five elements
and its target is the open truss with three elements. The total poset map is
also indicated with grey arrows, of corresponding tonal densities. Note that
this 1-truss bundle map is singular: the seven central singular elements of
the source all collapse to the single central singular element of the target.

In the second case on the right, the base poset map is the identity of the
open truss with five elements. The total poset map is again indicated with
correspondingly grey arrows. Note that this 1-truss bundle map is regular: in
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the central slice all three regular elements of the source merge into the central
regular element of the target, while in each of the adjacent slices, two regular
elements of the source merge into a regular element of the target.

p

q

p

q

Figure 2.21. A singular and a regular 1-truss bundle map.

Notation 2.1.90 (Categories of 1-truss bundles). The category of 1-truss
bundles and their maps is denoted TrsBun1. The subcategory of bundles over
a fixed base poset B and their base-preserving maps is denoted Trs1(B). The
subcategory of Trs1(B) containing open truss bundles and their regular maps
is denoted T̊rs1(B); similarly the subcategory of Trs1(B) containing closed
truss bundles and their singular maps is denoted T̄rs1(B).

Terminology 2.1.91 (Restriction of 1-truss bundles). Given a 1-truss
bundle p : T → B and a subposet A ↪→ B, the ‘restriction’ of the bundle to
the subposet is the 1-truss bundle p|A : T |A → A with total set T |A := p−1A,
and with the diposet structure, dimension map, and projection restricted
accordingly. This process provides a restriction functor −|A : Trs1(B) →
Trs1(A).

2.1.3.3. ♢Classification and totalization for 1-truss bundles. Essen-
tially by definition, 1-truss bundles over a point are 1-trusses, 1-truss bundles
over the interval poset [1] are 1-truss bordisms, and 1-truss bundles over
general base posets B are characterized by their behavior over points and
intervals of the base. It follows, as we will describe in detail presently, that
the category of 1-trusses and their bordisms TBord1 is a classifying category
for 1-truss bundles (see [Bén06]); that is, there is a correspondence between
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1-truss bundles p : T → B over a base poset B and functors F : B → TBord1

from the base poset into the category of 1-trusses and their bordisms.

Construction 2.1.92 (Classifying functors of 1-truss bundles). We
describe a map

(p : T → B) 7→ (χp : B → TBord1)

that takes a 1-truss bundle p to an associated classifying functor χp.
We construct χp on elements and arrows of the poset B, as follows. For

each element x ∈ B, the classifying element χp(x) ∈ TBord1 is the point fiber
1-truss p−1(x); for each arrow x→ y in the base B, the classifying morphism
χp(x→ y) of TBord1 is the arrow fiber 1-truss bordism p−1(x→ y) (as given
in Definition 2.1.74).

To see that the given χp is indeed a functor, one checks that the 1-truss
bordism composite p−1(y → z) ◦ p−1(x→ y) is equal to the 1-truss bordism
p−1(x → z). By the definition of composition of functorial relations, and
because the total poset (T,⊴) is closed under composition of arrows, the
bordism p−1(y → z)◦p−1(x→ y) is a subrelation of the bordism p−1(x→ z);
however, 1-truss subbordisms are necessarily identities.

Construction 2.1.93 (Total 1-truss bundles of classifying functors).
We describe a map

(F : B → TBord1) 7→ (πF : TotF→ B)

that takes a functor F : B → TBord1 from a poset B to the category of
1-truss bordisms to an associated total 1-truss bundle πF : TotF→ B.

We construct the bundle πF as follows.
››››› The total poset (TotF,⊴) has elements the pairs (x ∈ B, a ∈ F(x)) of an

element of the poset and an element of the associated 1-truss; the total
poset has a morphism (x, a)⊴ (y, b) exactly when the 1-truss bordism
F(x→ y) has a relation between the element a ∈ F(x) and b ∈ F(y).

››››› The frame order (TotF,⪯) has a relation (x, a) ⪯ (x, b) exactly when
a ⪯ b in F(x).

››››› The diposet map πF : (TotF,⊴,⪯)→ (B,→,=) is of course the projec-
tion sending (x, a) to x.

››››› The dimension map dim : (TotF,⊴) → [1]op is given on each fiber by
the dimension map of that 1-truss fiber; that this defines a poset map on
(TotF,⊴) follows from Observation 2.1.59 that 1-truss bordisms weakly
decrease dimension.

Example 2.1.94 (Classification for a 1-truss bundle). In Figure 2.22 we
illustrate on the left a 1-truss bundle p : T → B (over a 1-truss as it happens),
along with on the right its associated classifying functor χp : B → TBord1.
(The inverse association taking that functor F : B → TBord1 to its total
bundle πF : TotF→ B is also indicated.) In the classifying category TBord1,
we only depict the image of this particular functor, namely the trusses T̊1
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and T̄1 and the morphisms between them. The functor χp is indicated by
color matching the morphisms of the base poset B with their images.

p∼=

πF
F := χp

T̊1 T̄1

TBord1

Figure 2.22. A 1-truss bundle and its classifying functor.

Example 2.1.95 (The composition of 1-truss bordisms as a 1-truss
bundle over the 2-simplex). Two composable 1-truss bordisms R : T → T ′

and R′ : T ′ → T ′′, together with their composite R′ ◦ R : T → T ′′, define
a functor F : [2] → TBord1 from the 2-simplex poset [2] to the category of
1-trusses and their bordisms. By the previous construction, this functor has
an associated total 1-truss bundle πF : TotF→ [2] over the 2-simplex.

In Figure 2.16 we illustrated two composable 1-truss bordisms along with
their composite. In Figure 2.23 we illustrate the associated total 1-truss
bundle over the 2-simplex.

Figure 2.23. 1-Truss bordism composition as a bundle over
the 2-simplex.

The above correspondence, between 1-truss bundles and functors into
the category of 1-trusses and their bordisms, is functorial, with respect to a
notion of bordism of 1-truss bundles, as follows.
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Definition 2.1.96 (Bordisms of 1-truss bundles and their composition).
Given 1-truss bundles p : T → B and q : S → B over a poset B, a 1-truss
bundle bordism u : p ⇒ q is a 1-truss bundle u : U → B × [1] such that
u|B×{0} = p and u|B×{1} = q.

The composition of two 1-truss bundle bordisms u : p⇒ q and v : q ⇒ r
is the bordism v ◦ u : p⇒ r whose restriction (v ◦ u)|{x}×[1] is the composite
bordism v|{x}×[1] ◦ u|{x}×[1], for all elements x ∈ B.

When the base poset B is trivial, a 1-truss bundle bordism is simply a 1-truss
bordism.

Notation 2.1.97 (Category of 1-truss bundles and their bordisms). For
a fixed base poset B, the ‘category of 1-truss bundles and their bordisms’,
whose objects are 1-truss bundles over B and whose morphisms are 1-truss
bundle bordisms, will be denoted TBord1(B).

Observation 2.1.98 (Isobordisms of 1-truss bundles are unique). A 1-
truss bundle bordism that has an inverse is called a ‘1-truss bundle isobordism’.
As a bundle analog of Observation 2.1.55, note that, given two 1-truss bundles,
if there is an isobordism between them, then there is a unique such isobordism.
There is therefore no need to distinguish between distinct 1-truss bundles
that are isomorphic in the category TBord1(B).

Remark 2.1.99 (Isobordism classes of 1-truss bundles). As a bundle
analog of Remark 2.1.56, note that the isomorphism classes of 1-truss bundles
in TBord1(B), that is the classes of 1-truss bundles up to invertible bordism,
are the same as the classes of 1-truss bundles up to base-preserving balanced
isomorphism.

Of course there is a category of functors from a base poset B to the
category TBord1 of 1-trusses and their bordisms, whose morphisms are natural
transformations of functors; note that a natural transformation N : F⇒ G
between functors F : B → TBord1 and G : B → TBord1 is simply itself a
functor N : B × [1]→ TBord1.

Having now a suitable category of 1-truss bundles and their bordisms,
and a suitable category of classifying functors, we can describe the functorial
correspondence.

Observation 2.1.100 (Classification and totalization functors for 1-truss
bundles). Given a poset B, there is an equivalence of categories

χ− : TBord1(B)⇄ Fun(B,TBord1) : π−

specified as follows.
The ‘classification functor’ χ− takes a 1-truss bundle p : T → B to

its classifying functor χp : B → TBord1, and a 1-truss bundle bordism
u : p⇒ q (by definition a 1-truss bundle over B× [1]) to its classifying functor
χu : B × [1]→ TBord1 viewed as a natural transformation χu : χp ⇒ χq.
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The ‘totalization functor’ π− takes a functor F : B → TBord1 to its total
1-truss bundle πF : TotF→ B, and a natural transformation N : B × [1]→
TBord1 to its total 1-truss bundle πN : TotN→ B × [1].

Remark 2.1.101 (1-Truss bundle totalization and classification as col-
lage and decollage). Recall the classical ‘Grothendieck’, i.e., ‘total category’
construction provides, for a category C, a correspondence between suitable
opfibrations D→ C and classifying functors C→ Cat. The above correspon-
dence, between 1-truss bundles and classifying functors to the category of
1-trusses and their bordisms, is not a version of that Grothendieck corre-
spondence, because truss bordisms are not functors of 1-trusses but relations
between them. However, there is a ‘profunctorial Grothendieck’, i.e., ‘collage’
construction providing a correspondence between suitable exponentiable func-
tors D → C and classifying (pseudo)functors C ⇝ Prof landing not in the
bicategory of categories and functors and natural transformations but in the
bicategory Prof of categories and profunctors and natural transformations;
see for instance [Bén00, Str01, Bén06, Bor94]. The above 1-truss bundle
totalization and classification constructions are a combinatorial version of
this collage correspondence, tailored for our purposes.

Remark 2.1.102 (Classifying categorical 1-truss bundles). Recall from
Remark 2.1.85 that there is a notion of categorical 1-truss bundle p : T→ B
over a base category B. The above classification and totalization constructions
carry over to the categorical case, showing that 1-truss bundles over a category
B (and their bundle bordisms) correspond to functors B→ TBord1 (and their
natural transformations).

2.1.3.4. ♢Pullback, dualization, and suspension of 1-truss bundles.
With the notions of classification and totalization in hand, we describe three
further constructions on 1-truss bundles.

Construction 2.1.103 (Pullback of 1-truss bundles). Given a 1-truss
bundle p : T → B and any poset map G : A → B, the pullback of the
bundle (along the map G) is the 1-truss bundle G∗p : G∗T → A, together
with the 1-truss bundle map (TotG,G) : G∗p → p, determined as follows.
The total poset (G∗T,⊴) := G∗(T,⊴) is the pullback in the category of
posets, with the resulting projection G∗p : (G∗T,⊴)→ (A,→) and total map
TotG : (G∗T,⊴)→ (T,⊴); the frame order and dimension map on G∗T are
such that the total map TotG is a 1-truss isomorphism on each fiber.

Of course, when the poset map G : A ↪→ B is a subposet inclusion, the
pullback specializes to the restriction of the 1-truss bundle, that is G∗p = p|A.

Notation 2.1.104 (Pullback 1-truss bundles). Altogether, the pullback
1-truss bundle and its associated maps are concisely indicated by the usual
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pullback corner caret:

G∗T T

A B

⌟
TotG

G∗p p

G

Example 2.1.105 (Pullback 1-truss bundle). In Figure 2.24 we illustrate
a pullback, in fact a restriction, of a 1-truss bundle.

⌟

Figure 2.24. The pullback of a 1-truss bundle along a base
poset inclusion.

Remark 2.1.106 (Pullback bundles via classifying functors). The pullback
bundle may be reexpressed in terms of classifying functors. Given a 1-truss
bundle p : T → B with classifying functor χp : B → TBord1, and a poset
map G : A→ B, the pullback bundle G∗p : G∗T → A has classifying functor
the composite χp ◦G : A→ TBord1. In other words, the pullback is the total
bundle of the composite classifying functor: G∗p = πχp◦G.

Dualizing 1-trusses fiberwise provides a dualization of 1-truss bundles, as
follows.

Construction 2.1.107 (Dualization of 1-truss bundles and their maps).
Given a 1-truss bundle p : T → B with total diposet (T,⊴,⪯), dimension
map dim : (T,⊴) → [1]op, and projection p : (T,⊴,⪯) → (B,→,=), its
‘dual 1-truss bundle’ p† : T † → Bop has total diposet T † := (T,⊴op,⪯),
dimension map the composite (T,⊴op)

dimop

−−−→ [1] ∼= [1]op, and projection
p† : (T,⊴op,⪯)→ (B,→op,=) elementwise equal to the original projection
p. That is, as when dualizing 1-trusses, the dual bundle has opposite face
order and dimension map, while the frame order is unchanged.

Given a 1-truss bundle map F : (p : T → B) → (q : S → C), the ‘dual
1-truss bundle map’ F † : (p† : T † → Bop) → (q† : S† → Cop) is the map
F † : (T,⊴op,⪯)→ (S,⊴op,⪯) whose underlying map of sets is equal to the
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underlying map of sets of the bundle map F itself. We have therefore a
covariant involutive functor

† : TrsBun1 ∼= TrsBun1.

Note that this functor does not preserve the base of the bundle. It does
though restrict to the earlier dualization of 1-trusses from Construction 2.1.26,
when the base is a point.

As for dualization of 1-trusses, dualization takes open 1-truss bundles to
closed 1-truss bundles and vice versa, and takes singular bundle maps to
regular bundle maps and vice versa.

We have not only a covariant dualization functor on bundles and their
maps, but also a contravariant dualization functor on bundles and their
bordisms.

Construction 2.1.108 (Dualization of 1-truss bundles and their bor-
disms). Given a 1-truss bundle bordism u : p⇒ q given by the 1-truss bundle
u : U → B × [1], the ‘dual 1-truss bundle bordism’ u† : q† ⇒ p† is given by
the 1-truss bundle u† : U † → (B × [1])op ∼= Bop × [1]. Note that the flip of
variance of the whole base poset B × [1] flips the direction of the bordism.
Dualization therefore gives an involutive isomorphism

† : TBord1(B) ∼= TBord1(Bop)
op
.

When the base is a point, this specializes to the dualization of 1-truss bordisms
† : TBord1 → (TBord1)op, given in Construction 2.1.57.

Remark 2.1.109 (Dual bundles via classifying functors). The dual bundle
may be reexpressed using classifying functors. Given a 1-truss bundle p :
T → B, with classifying functor χp : B → TBord1, its dual p† : T † → Bop

has classifying functor

(χp† : B
op → TBord1) =

(
B

χp−→ TBord1
†−→ (TBord1)op

)op
.

Indeed this association of classifying functors χp 7→ († ◦ χp)
op is functorial

and reproduces the involutive isomorphism of Construction 2.1.108.

As a final elementary construction, we describe suspensions of 1-truss
bundles, obtained by adding new initial and final elements to both the base
poset and the total poset of the bundle.

Construction 2.1.110 (Suspension of posets). Let X be a poset. Its
‘suspension’ ΣX is the poset obtained from X by adjoining two elements
⊥ and ⊤, along with arrows ⊥ → x and x → ⊤ for each x ∈ X. Note the
suspension operation is functorial.

Construction 2.1.111 (Suspension of 1-truss bundles). Let p : T → B
be a 1-truss bundle. The ‘suspension 1-truss bundle’ Σp : ΣT → ΣB has base
poset the suspension ΣB; total poset (ΣT,⊴) the suspension Σ(T,⊴); frame
order (ΣT,⪯) that relates elements if and only if they are already related
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in (T,⪯); and dimension map restricting on T ↪→ ΣT to the dimension map
of the bundle p, while mapping the initial object ⊥ ∈ ΣT to 1 and the final
object ⊤ ∈ ΣT to 0.

Remark 2.1.112 (Suspension bundles via classifying functors). Given a 1-
truss bundle p : T → B, its suspension bundle Σp : ΣT → ΣB has classifying
functor χΣp : ΣB → TBord1 given by the unique map that restricts on
B ↪→ ΣB to the classifying functor χp, while mapping ⊥ to the initial
truss T̊0 in TBord1 and mapping ⊤ to the final truss T̄0 in TBord1. (See
Observation 2.1.54.)

Example 2.1.113 (Suspension 1-truss bundle). In Figure 2.25 we illus-
trate a 1-truss bundle p : T → B on the left, together with its suspension
bundle Σp : ΣT → ΣB on the right.

p
Σp

T

ΣT

B ΣB

Figure 2.25. Suspension bundle of a 1-truss bundle.
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2.2. ♢Truss induction and labelings

As developed in the previous Section 2.1, 1-trusses provide a combinato-
rial model of stratified intervals, 1-truss bordisms provide a combinatorial
model of stratified bundles of stratified intervals over the stratified interval,
and 1-truss bundles provide a combinatorial model of stratified bundles of
stratified intervals over more general stratified spaces. In the subsequent
Section 2.3, we will double down, triple down, indeed n-tuple down on this
combinatorialization of stratified topology, by considering 1-truss bundles
over 1-truss bundles over 1-truss bundles and so on, as a completely com-
binatorial description of a quite general class of suitably framed stratified
spaces. In order to have and maintain a grip on the structure of this tower of
iterated 1-truss bundles, we will need a handle on the simplicial structure
of 1-truss bundles themselves. The primary purpose of this Section 2.2 is
to develop a pair of such handles, namely the existence of a total order on
the collection of sections of a 1-truss bundle over a stratified simplex, and
a related total order on the collection of top-dimensional simplices in the
total poset of such a bundle; we will refer to the technique of exploiting those
total orders (typically by showing that a property of a section or simplex
implies a corresponding property of the successor section or simplex) as truss
induction.

Recall for instance the 1-truss bundle over the 3-simplex from Figure 2.2.
The total poset of this, or indeed any, 1-truss bundle over a simplex has the
quite special feature that its top-dimensional simplices are all of dimension
exactly one more than the dimension of the base; such top-dimensional
simplices are called spacers. The combinatorial structure of such a bundle is
controlled, patently, by its spacer simplices and how they are glued together
along their facets. The spacers of this, or indeed any such, 1-truss bundle
have the further distinctive feature that a facet simplex shared between
two spacers necessarily projects isomorphically to the base; such simplices
are called sections. The remarkable property of 1-truss bundles, completely
peculiar among even specialized poset bundles over posets, though manifest
from a certain geometric point of view, is that there is a canonical total order
on the set of sections and spacers; we call this the scaffold order. That scaffold
order, for the 1-truss bundle previously mentioned, is illustrated cryptically
in Figure 2.26; this notation for the scaffold order will be deciphered in due
course.

A stratified space can be understood as a space together with a map from
the space to a fundamental poset, recording the distinct strata and their
relationships; similarly, our eventual combinatorial description of stratified
spaces will involve a combinatorial gadget, namely an iterated 1-truss bundle,
together with a suitable map from the total poset of that gadget to a funda-
mental poset, now recording the combinatorial strata and their relationships.
The basic instances of such suitable maps will be functors, which we call
labelings, from the total poset of a 1-truss, or 1-truss bordism, or 1-truss
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bundle, into a target poset or more generally target category. That labeled
1-truss bordisms have a well-defined composition, and therefore that there is
a well-defined classifying category for labeled 1-truss bundles, is established
by truss induction.

Figure 2.26. The scaffold order for a 1-truss bundle.

Outline. In Section 2.2.1, we introduce section and spacer simplices
of 1-truss bundles and classify them in terms of jump and fiber morphisms
of bundle total posets. In Section 2.2.2, we define norms on the sections
and spacers, and use them to construct a canonical linear order on both
the set of sections and on the set of spacers, establishing the basis for our
core technique of truss induction. Finally in Section 2.2.3, we define labeled
1-trusses and their bordisms, whose composition is seen to be well-defined by
truss induction, and use them to provide a classifying category for labeled
1-truss bundles.

2.2.1. ♢Sections and spacers.

Synopsis. We note the distinction between section simplices and spacer
simplices in the total poset of a 1-truss bundle, as those simplices that project
nondegenerately or degenerately to the base. We introduce jump morphisms
and fiber morphisms of a 1-truss bundle, as those with regular domain and
singular codomain and, respectively, projection being either a spine vector
or a trivial vector of the base. We then describe the correspondence of
section simplices and jump morphisms in the suspension bundle, and the
correspondence of spacer simplices and fiber morphisms in the bundle itself.

2.2.1.1. ♢The definition of sections and spacers. Recall that a k-
simplex of a poset P , that is a map [k]→ P , is called ‘nondegenerate’ if the
map is injective on objects, and is called ‘degenerate’ otherwise.

Definition 2.2.1 (Sections of 1-truss bundles). For a 1-truss bundle
p : T → B, a k-section is a nondegenerate k-simplex K : [k] ↪→ (T,⊴) of the
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total poset, such that the composite map p ◦K : [k]→ B is a nondegenerate
k-simplex in the base poset.

Definition 2.2.2 (Spacers of 1-truss bundles). For a 1-truss bundle
p : T → B, a (k+1)-spacer is a nondegenerate (k+1)-simplex K : [k+1] ↪→
(T,⊴) of the total poset, such that the composite map p ◦K : [k + 1]→ B is
a degenerate simplex in the base poset.

Terminology 2.2.3 (Simplices in 1-truss bundles). We sometimes refer
to a nondegenerate simplex [k] ↪→ (T,⊴) of the total poset of a 1-truss bundle
p : T → B, simply as ‘a simplex in the bundle’.

Note that every simplex in a 1-truss bundle is either a section or a spacer.
Both k-sections and (k + 1)-spacers of 1-truss bundles always have images
that are nondegenerate k-simplices of the base poset.

Terminology 2.2.4 (Base projection of a simplex). Given an n-simplex
K : [n] ↪→ T in a 1-truss bundle p : T → B, its ‘base projection’ im(p ◦K) :
[m] ↪→ B is the unique nondegenerate simplex of the base poset, whose image
is the image of p ◦K : [n]→ B.

When considering a bundle over the k-simplex, we often concentrate on
sections and spacers that project to the whole base.

Terminology 2.2.5 (Base-surjective simplex). An n-simplex K : [n] ↪→
T in a 1-truss bundle p : T → [m] is called ‘base-surjective’ when its base
projection im(p ◦K) is the whole base poset [m].

Of course, every section or spacer simplex is base-surjective in the pullback
bundle over the base projection of that simplex; thus it usually suffices to
think about, and illustrate, only the base-surjective situation.

Example 2.2.6 (Sections and spacers in 1-truss bundles). In Figure 2.27,
we highlight 2-sections (on the left) and 3-spacers (on the right) of a 1-
truss bundle over the 2-simplex. All these sections and spacers are base-
surjective.

As the dimension of the base poset grows, it becomes less practical to
draw the section and spacer simplices in a bundle. However, there is a quite
convenient notation in any dimension, by restricting attention to the spine
as follows.

Notation 2.2.7 (Sections and spacers via their spines). A 1-truss bundle
T → [k] over a simplex is determined by the restriction of the bundle to the
spine of the base simplex. Furthermore, any base-surjective section or spacer
simplex in the bundle has its entire spine living over the spine of the base.
We may and will therefore think of and refer to and depict section and spacer
simplices purely in terms of their spines and the projections of those spines
to the spine of the base.

An example of this method is illustrated in Figure 2.28. There, on the
left we show two sections (in blue and red) and two spacers (in green and
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Figure 2.27. Sections and spacers in a 1-truss bundle.

yellow), all in a bundle over the 2-simplex. On the right, we depict the same
sections and spacers just by highlighting their spines, over the spine of the
base 2-simplex.

Figure 2.28. Spine notation for sections and spacers.

As noted, any section or spacer is base-surjective over its base projection;
said another way, any simplex in a 1-truss bundle factors as a base-surjective
simplex followed by a bundle inclusion, as follows.

Remark 2.2.8 (Simplices factor through base-surjective simplices). Let
K : [n] ↪→ T be a simplex in a 1-truss bundle p : T → B, with base projection
F := im(p ◦ K) : [m] ↪→ B. Then K : [n] ↪→ T factors as a composite of
the base-surjective simplex [n] ↪→ F ∗T and the bundle pullback inclusion
F ∗T ↪→ T . This factorization provides a bijection between simplices in the
bundle p whose base projection is F : [m] ↪→ B and base-surjective simplices
in the pullback bundle F ∗p : F ∗T → [m].

On account of this factorization, for the remainder of Section 2.2.1 and for
Section 2.2.2, we will work almost exclusively with bundles over simplices,
and we will implicitly assume base-surjectivity.
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Convention 2.2.9 (Base-surjectivity by default). We will assume all
sections and spacers are base-surjective unless otherwise noted.

Notation 2.2.10 (Set of sections and spacers). Given a 1-truss bundle
p : T → [m], we denote its sets of sections and spacers as follows.

Γp = {sections K : [m] ↪→ T of p : T → [m] }
Ψp = {spacers L : [m+ 1] ↪→ T of p : T → [m]}

2.2.1.2. ♢The spines of sections and spacers. 1-Truss bundles have
such a specific combinatorial structure that both section simplices and spacer
simplices (and thus all simplices) admit a manifest combinatorial classification
in terms of when and how the spine of the simplex transitions from regular
objects to singular objects.

Remark 2.2.11 (1-truss bundle arrows weakly decrease dimension). Re-
call that in a 1-truss, the nontrivial arrows a→ b strictly decrease dimension,
i.e., 1 = dim(a) > dim(b) = 0; that is, all such arrows have regular source
and singular target. Furthermore, recall from Observation 2.1.59 that in
a 1-truss bordism, the relations R(a, b) weakly decrease dimension, i.e.,
dim(a) ≥ dim(b). It follows (see Terminology 2.1.72) that all arrows in the
associated poset of a 1-truss bordism, and thus all arrows in any 1-truss
bundle, also weakly decrease dimension; in particular, all such arrows either
have regular source and target, singular source and target, or regular source
and singular target.

Observation 2.2.12 (Spines of simplices in 1-truss bundles). Consider a
1-truss bundle p : T → [m] over the m-simplex, and a k-simplex K : [k] ↪→ T
in the bundle. The spine spine[k] = (0→ 1→ · · · → k) maps to the spine
spineK([k]) = (K(0)→ K(1)→ · · · → K(k)) ⊂ T . By the preceding remark,
this spine has one of three forms:

(1) All the objects K(i) are regular.
(2) All the objects K(i) are singular.
(3) There is a single ‘transition arrow’ K(j − 1)→ K(j) whose source

is regular and whose target is singular; all objects K(i ≤ j − 1) are
regular, and all objects K(i ≥ j) are singular.

We refer to the lowest number j with K(j) singular as the ‘transition index’.
In the third case, that K(j) is the target of the transition arrow; in the second
case, the transition index is 0; in the first case, by convention we declare the
transition index to be k + 1.

In the first two cases, the simplex is necessarily a section, since any
arrow in a fiber of the bundle would transition from regular to singular
objects; we refer to such sections as ‘purely regular’ and ‘purely singular’,
respectively.

Notation 2.2.13 (Base-fiber notation for 1-truss bundles). Given a 1-
truss bundle p : T → B, it is sometimes clarifying, if redundant, to denote
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an object a ∈ T by the pair (p(a), a) ∈ B × T , that is, by an object of the
base followed by an object in the corresponding fiber.

Remark 2.2.14 (Spines of sections). Applying Observation 2.2.12, a
section simplex K : [m] ↪→ T in a 1-truss bundle p : T → [m] necessarily has,
for some transition index 0 ≤ j ≤ m+ 1, the form

(0, a0)→ (1, a1)→ ...→ (j−1, aj−1)→ (j, bj)→ (j+1, bj+1)→ ...→ (m, bm)

where each object ai is regular and each object bi is singular. Here if j = m+1
then every object is regular, and if j = 0 then every object is singular; those
are the first two cases of the previous observation. If the transition index j is
strictly between 0 and m+ 1, then the section has both regular and singular
objects and is an instance of the third case of the observation.

We can unify the three seemingly distinct section types (purely regular,
purely singular, and mixed regular and singular) by shifting attention to the
suspension of the 1-truss bundle, as follows.

Notation 2.2.15 (Suspending simplices). For convenience and com-
patibility with the usual representation of the standard m-simplex as
(0 → 1 → · · · → (m − 1) → m), we will identify the suspension Σ[m]
with the poset (−1→ 0→ 1→ · · · → (m− 1)→ m→ m+ 1).

Construction 2.2.16 (Suspending sections). Consider a section K :
[m] ↪→ T in a 1-truss bundle p : T → [m]. By Construction 2.1.110, the
suspension ΣK : Σ[m] ↪→ ΣT has ΣK(⊥) = ⊥ and ΣK(⊤) = ⊤. Equiva-
lently, using the conventions Notation 2.2.13 and Notation 2.2.15, this may
be written as ΣK(−1) = (−1, r) and ΣK(m + 1) = (m + 1, s), where r is
the unique object of the initial 1-truss, and s is the unique object of the final
1-truss. Observe that ΣK is indeed a section of the bundle Σp : ΣT → Σ[m],
and the map K 7→ ΣK provides a bijective correspondence between sections
in the bundle p and sections in the bundle Σp. (The inverse map is simply
restricting sections Σ[m] ↪→ ΣT to the simplex [m] ⊂ Σ[m].)

Since the suspended section ΣK : Σ[m] ↪→ ΣT begins with a regular object
and ends with a singular object, it is necessarily mixed, even if the section K
was purely regular or purely singular; thus considering sections in terms of
their suspension unifies the section types as desired.

More than the satisfying tidiness of all suspended sections having the
same structure, the shift of perspective to the suspension allows a concise
classification of sections of 1-truss bundles, as follows.

Definition 2.2.17 (Jump morphisms). A jump morphism f in a
1-truss bundle p : T → [m] is an arrow in the total poset (T,⊴), whose
domain dom(f) is regular, whose codomain cod(f) is singular, and whose
base projection is a spine vector of the simplex [m].

Construction 2.2.18 (Correspondence of sections of a bundle and
jump morphisms of the suspended bundle). Let p : T → [m] be a 1-truss
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bundle over the m-simplex. To each section K : [m] ↪→ T of the bundle, we
can associate the transition arrow ΣK(j − 1) → ΣK(j) of the suspended
section ΣK : Σ[m] ↪→ ΣT ; note that j is the transition index of the section
K : [m] ↪→ T . This transition arrow ΣK(j−1)→ ΣK(j) is a jump morphism
of the suspended bundle Σp : ΣT → Σ[m].

Conversely, consider a jump morphism f of the suspended bundle Σp :
ΣT → Σ[m], with base projection the spine vector (j− 1→ j) in Σ[m] (using
Notation 2.2.15 for objects of Σ[m]); we can associate a section K : [m] ↪→ T
of the bundle p : T → [m], defined by

››››› for i < j, set K(i) = regχp(i→j−1)(dom f),
››››› for j ≤ i, set K(i) = singχp(j→i)(cod f).

(Recall that χp(k → l) is the 1-truss bordism obtained by restricting the
bundle to that arrow of the base; and regR and singR are the regular function
and singular function of the bordism R.)

These associations are inverse, and provide a bijective correspondence
between sections of a 1-truss bundle and jump morphisms of the suspension
of that bundle.

Example 2.2.19 (Correspondence of sections and jump morphisms). In
Figure 2.29 we illustrate a 1-truss bundle p : T → [2], together with its
suspension Σp : ΣT → Σ[2] (indicated in grey). We highlight the spines of
four sections (using the spine-only method from Notation 2.2.7; for each of
those sections, we mark the associated jump morphism in ΣT by a big dot of
the same color.

p Σp

Figure 2.29. Sections and their associated jump morphisms.

We now proceed to the companion classification of spacer simplices in
1-truss bundles.

Remark 2.2.20 (Spines of spacers). Again applying Observation 2.2.12,
a spacer simplex L : [m+ 1] ↪→ T in a 1-truss bundle p : T → [m] necessarily
has, for some index 0 ≤ j ≤ m, the form

(0, a0)→ (1, a1)→ ...→ (j, aj)→ (j, bj)→ (j + 1, bj+1)→ ...→ (m, bm)
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where each object ai is regular and each object bi is singular. Note that in
this case the transition arrow is (j, aj)→ (j, bj) and the transition index is
in fact j + 1, since L(j + 1) = (j, bj). In particular, unlike for sections, every
spacer has at least one regular and at least one singular vertex.

Definition 2.2.21 (Fiber morphisms). A fiber morphism f in a 1-
truss bundle p : T → [m] is an arrow in the total poset (T,⊴), whose
domain dom(f) is regular, whose codomain cod(f) is singular, and whose
base projection is an identity arrow in the simplex [m].

Construction 2.2.22 (Correspondence of spacers and fiber morphisms).
Let p : T → [m] be a 1-truss bundle over the m-simplex [m]. To each
spacer L : [m+ 1] ↪→ T of the bundle, we can associate the transition arrow
(L(j)→ L(j + 1)) = ((j, aj)→ (j, bj)); here j + 1 is the transition index of
the spacer, and the transition arrow is a fiber morphism.

Conversely, for a fiber morphism f of the bundle p : T → [m] with base
projection the identity on j ∈ [m], we can associate a spacer L : [m+1] ↪→ T ,
defined by

››››› for i ≤ j, set L(i) = regχp(i→j)(dom f),
››››› for j + 1 ≤ i+ 1, set L(i+ 1) = singχp(j→i)(cod f).
These associations are inverse, and provide a bijective correspondence

between spacers of a 1-truss bundle and fiber morphisms of that bundle.

Example 2.2.23 (Correspondence of spacers and fiber morphisms). In
Figure 2.30 we highlight the spines of four spacers in a 1-truss bundle p :
T → [2]; for each of those spacers, we mark the associated fiber morphism by
a big dot of the same color.

Figure 2.30. Spacers and their associated fiber morphisms.

2.2.2. ♢The scaffold order. We now construct a canonical linear order on
the set of sections, and a related canonical linear order on the set of spacers,
in a 1-truss bundle over a simplex.

Synopsis. We begin by illustrating the order on the set of sections as
a directed path through the jump morphisms in the spine notation for the
suspended bundle. We then define a numerical norm on sections, and prove
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that this norm induces a total order on the set of sections. Similarly, we
illustrate the order on the set of spacers as a directed path through the fiber
morphisms in the spine notation for the bundle. We then define a norm on
spacers in terms of the norms of boundary sections, and prove that again
this norm induces a total order on the set of spacers.

2.2.2.1. ♢The case of sections. We construct a total order on the set of
sections Γp of a 1-truss bundle p : T → [m] over the m-simplex; we will call
this order the ‘scaffold order of sections’. Recall from Construction 2.2.18
the correspondence of sections in a bundle and jump morphisms in the
suspended bundle. The scaffold order on the sections is thus equivalent to
an order on those jump morphisms, and that order on the jump morphisms
has a convenient and illuminating visual representation, as shown in the next
example. Moreover, the passage from each jump morphism to its successor
in this order will form a core step in the subsequent formal construction of
the scaffold order.

Example 2.2.24 (Scaffold order). In Figure 2.31 we illustrate all the
sections in a 1-truss bundle over the 2-simplex (by highlighting the spines as
before). We also mark the corresponding jump morphisms in the suspended
bundle (by correspondingly colored dots). The scaffold order on these sections
is depicted via an order on the jump morphisms; that order on the jump
morphisms is indicated by the red directed path. Pragmatically, that path
may be drawn (and is uniquely determined) by beginning with the jump
morphism on the lower boundary, then crossing alternately and only through
fiber morphisms and jump morphisms, until reaching a jump morphism on
the upper boundary.

Figure 2.31. The scaffold order on sections.

We will construct the scaffold order on the sections Γp by defining a
‘scaffold norm’ Γp → N, and showing that the norm maps the set of sections
bijectively to an interval of natural numbers; the scaffold order on sections is
simply inherited from the standard order on N.

To define the scaffold norm, it is convenient to use the notion of the
frame height of an element in a 1-truss bundle, as follows. For a 1-truss
bundle p : T → [m], let hght : (T,⪯)→ (N,≤) be the unique map that sends
every fiber (p−1(i),⪯), i ∈ [m], isomorphically to a standard framed-ordered
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simplex [n] ⊂ (N,≤); that is, the frame height hght(a) is j − 1 ∈ N when
a ∈ T is the j-th element in the total frame order of the fiber p−1(p(a)).

Definition 2.2.25 (Scaffold norm of sections). Consider a 1-truss bundle
p : T → [m] and its set of sections Γp. The scaffold norm ⟨−⟩ is the function

⟨−⟩ : Γp → N

K 7→
∑
i∈[m]

hght(K(i)).

taking a section to the sum of the frame heights of its elements.

Observation 2.2.26 (Suspension preserves scaffold norm). Recall the
suspension operation on sections from Construction 2.2.16. Note that the
suspension Σ : Γp → ΓΣp preserves the scaffold norm: ⟨K⟩ = ⟨ΣK⟩ for
K ∈ Γp.

In order to describe the image of the scaffold norm, we first construct the
distinguished sections that minimize and maximize the norm.

Terminology 2.2.27 (Bottom and top sections). A ‘bottom section’
or ‘top section’ of a 1-truss bundle is one that minimizes or maximizes,
respectively, the scaffold norm.

Construction 2.2.28 (Bottom and top sections of a 1-truss bundle).
Let p : T → [m] be a 1-truss bundle over the m-simplex [m]. We construct
a bottom section K−

p : [m]→ T and a top section K+
p : [m]→ T , by setting

the sections K±
p on i ∈ [m] to be the lower and upper endpoints of the

corresponding fiber: K±
p (i) = end±(p

−1(i)). That this defines valid sections
follows from Observation 2.1.60 that 1-truss bordisms relate endpoints.

Note that the minimal value of the scaffold norm is
〈
K−
p

〉
= 0 and the

maximal value is
〈
K+
p

〉
= #T −#[m] (where #T and #[m] are the number

of elements in those posets). Denote these extremal values of the scaffold
norm by scaff±(p) :=

〈
K±
p

〉
. Furthermore note that the sections K±

p are the
unique sections realizing those minimal and maximal values.

The extremal values of the scaffold norm scaff±(p) bound an interval of
natural numbers, and that interval is precisely the image of the scaffold norm
on sections.

Lemma 2.2.29 (Scaffold order of sections). For a 1-truss bundle p : T →
[m] with sections Γp, the scaffold norm ⟨−⟩ : Γp → N is a bijection onto
its image; that image is the set [scaff−(p), scaff+(p)] of all natural numbers
between the extremal values of the scaffold norm. The induced total order on
the sections Γp is called the ‘scaffold order of sections’.

Proof. The previous Construction 2.2.28 provided unique bottom and
top sections K±

p with minimal and maximal scaffold norms scaff±(p). We will
now construct, for each non-top section K ̸= K+

p , a successor section s(K)
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with scaffold norm ⟨s(K)⟩ = ⟨K⟩ + 1, and conversely construct, for each
non-bottom section K ̸= K−

p , a predecessor section p(K) with scaffold norm
⟨p(K)⟩ = ⟨K⟩ − 1. We will then observe that the successor and predecessor
section constructions are mutually inverse; the lemma follows.

The successor section construction is briefer and more uniform in the case
that all sections contain a jump morphism, i.e., when there are no purely
regular or purely singular sections. Recall from Construction 2.2.16 that there
is an isomorphism Γp

∼= ΓΣp of the sections of any bundle and the sections
of its suspension, and by Observation 2.2.26 this isomorphism commutes
with the scaffold norm. It therefore suffices to construct the successor in
suspended bundles; we will not assume the bundle p is, per se, a suspension
but we will and may assume all its sections contain jump morphisms (as is
true in any suspension).

Let K ≠ K+
p be a non-top section of the bundle p : T → [m], with

jump morphism K(j − 1) → K(j) in the total poset T . We prove that in
the total poset T , there is either an arrow K(j − 1) + 1 → K(j) or an
arrow K(j − 1) → K(j) + 1. (There cannot be both such arrows due to
bimonotonicity of 1-truss bordisms.) Since K is not the top section, there is
a successor K(l) + 1 of K(l) in the fiber over l ∈ [m] for some index l.

Suppose there is a successor K(l) + 1 for an index l ≤ j − 1. In this
case, since K(l) is regular, the successor K(l) + 1 is singular. Consider the
1-truss bordism Rj−1

l := p−1(l → j − 1) and its singular function sing
Rj−1

l
:

sing(p−1(l)) → sing(p−1(j − 1)). That singular function takes K(l) + 1 to
some singular element sing

Rj−1
l

(K(l) + 1) ∈ p−1(j − 1). Since K(j − 1) is
regular, the frame order relation K(l) ≺ K(l) + 1 and bimonotonicity of the
bordism Rj−1

l imply the frame order relation K(j − 1) ≺ sing
Rj−1

l
(K(l) + 1).

In particular, there is a singular successor K(j− 1)+1 in the fiber p−1(j− 1).
Suppose instead there is a successor K(l) + 1 for an index with j ≤ l.

Since K(l) is singular, the successor K(l)+1 is regular. An argument dual to
the previous one, using the regular function regR

l
j : reg(p−1(j))← reg(p−1(l))

of the 1-truss bordism Rl
j := p−1(j → l), shows there is a regular successor

K(j) + 1 in the fiber p−1(j).
If there is a successor K(j − 1) + 1, but no successor K(j) + 1, then by

bimonotonicity and Observation 2.1.65 that bordisms fully relate elements,
there must be an arrow K(j − 1) + 1 → K(j). Similarly, if there is no
successor K(j − 1) + 1, but there is a successor K(j) + 1, then there must
be an arrow K(j − 1) → K(j) + 1. If there is both a (singular) successor
K(j − 1) + 1 and a (regular) successor K(j) + 1, then (by bimonotonicity)
either there is an arrow K(j − 1) + 1 → K(j) (as desired) or there is an
arrow K(j − 1) + 1 → s for some singular element s ≻ K(j); in the latter
case, the structure of the singular determined 1-truss bordism in the proof
of Lemma 2.1.63 implies that there is an arrow K(j − 1) → K(j) + 1 (as
desired).
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We now construct the successor section s(K) of K, distinguishing the
two cases above, where K(j − 1) + 1 → K(j) or K(j − 1) → K(j) + 1.
These cases are illustrated in Figure 2.32; in each case the jump morphism
K(j − 1)→ K(j) is marked by a green dot, and the jump morphism of the
successor section is marked by a purple dot. The successor is constructed in
each case as follows.

j − 2 j − 1 j j − 1 j j + 1

Case 1 Case 2

K(j − 1) K(j + 1)K(j − 2) K(j)
K(j − 1) K(j)

K(j − 1) + 1 K(j) + 1

Figure 2.32. The construction of successor sections.

Case 1. When there is an arrow K(j − 1) + 1 → K(j), we construct
the successor section s(K) by setting s(K)(j − 1) = K(j − 1) + 1 and
s(K)(i) = K(i) if i ≠ j − 1. We must have j ≥ 2, as otherwise s(K)
would be a purely singular section, contradicting our assumption on
the bundle p. Functoriality of the 1-truss bordism p−1(j − 2→ j − 1)
implies that there is an arrow K(j − 2)→ K(j − 1) + 1, ensuring that
s(K) is indeed a section.

Case 2. When there is an arrow K(j− 1)→ K(j)+1, we construct the
successor section s(K) by setting s(K)(j) = K(j)+1 and s(K)(i) = K(i)
if i ≠ j. We must have j ≤ m − 1, as otherwise s(K) would be a
purely regular section, contradicting our assumption on the bundle p.
Functoriality of the 1-truss bordism p−1(j → j+1) then implies there is
an arrow K(j) + 1→ K(j + 1), ensuring that s(K) is indeed a section.

This completes the construction of successors.
The construction of predecessor sections p(K), for non-bottom sections

K ̸= K−
p , is given by the construction of successor sections for the bundle with

opposite frame order; see Remark 2.1.82. (This opposite amounts to reading
the total posets in Figure 2.32 upside down.) Observe that p(s(K)) = K and
similarly s(p(K)) = K, as required. □

2.2.2.2. ♢The case of spacers. Rather like the case of sections, we now
construct a total order on the set of spacers Ψp in a 1-truss bundle p : T → [m]
over the m-simplex; we call this order the ‘scaffold order of spacers’. Recall
from Construction 2.2.22 the correspondence of spacers and fiber morphisms
in a bundle. The scaffold order on the spacers is therefore equivalent to an
order on those fiber morphisms, and precisely as in the case of sections, that
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order on fiber morphisms has an efficient visual representation, as in the next
example.

Example 2.2.30 (Scaffold order on spacers). Recall from Example 2.2.24
that the scaffold order of sections can be depicted by a directed path, namely
the one that traverses the jump morphisms of the suspension while cross-
ing a single fiber morphism between each two scaffold-order-adjacent jump
morphisms. The order in which that path traverses the fiber morphisms is
exactly the scaffold order on spacers. In Figure 2.33 we illustrate all the
spacers of the same 1-truss bundle as the previous example (by highlighting
the spines), mark the corresponding fiber morphisms (by correspondingly
colored dots), and depict the scaffold order again by the red directed path.

Earlier in Figure 2.26, we illustrated a more complicated example of
the scaffold order of both sections and spacers, for a 1-truss bundle over a
3-simplex, depicted again by a single directed path through the jump and
fiber morphisms of the suspension.

Figure 2.33. The scaffold order on spacers.

Any spacer of a bundle has exactly two facets that are sections, namely
those facets obtained by omitting either the source or target of the fiber
morphism. Those sections correspond to the two jump morphisms adjacent,
along the illustrated directed path, to the fiber morphism of the spacer;
the jump morphism preceding the fiber morphism will correspond to a
‘lower boundary section’ and the one subsequent to the fiber morphism will
correspond to an ‘upper boundary section’, constructed as follows.

Construction 2.2.31 (Upper and lower boundary sections of spacers).
Given a spacer L : [m + 1] → T of a 1-truss bundle p : T → [m], let
L(j)→ L(j +1) be the fiber morphism of the spacer. When L(j) ≺ L(j +1),
the lower boundary section ∂−L is the (j + 1)th face dj+1L of the spacer
L, and the upper boundary section ∂+L is the jth face djL of the spacer
L. When by contrast L(j + 1) ≺ L(j), then ∂−L is the jth face djL, and
∂+L is the (j + 1)th face dj+1L.

Example 2.2.32 (Upper and lower boundary sections). In Figure 2.34
we highlight two spacers L and L′ in a 1-truss bundle, together with their
lower and upper boundary sections ∂±L and ∂±L′.
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L′

∂+L′

∂−L′

L

∂+L

∂−L

Figure 2.34. Upper and lower boundaries of spacers.

Remark 2.2.33 (Upper boundaries succeed lower boundaries). The pre-
ceding construction ensures that the scaffold norms of the upper and lower
boundaries of a spacer are related by ⟨∂+L⟩ = ⟨∂−L⟩+ 1; that is, the upper
boundary ∂+L is the successor of the lower boundary ∂−L in the scaffold
order (Γp,⪯) of sections.

As in the case of sections, we will construct the scaffold order on spacers
Ψp in terms of a ‘scaffold norm’ Ψp → N+ 1

2 .

Definition 2.2.34 (Scaffold norm of spacers). Consider a 1-truss bundle
p : T → [m] and its set of spacers Ψp. The scaffold norm ⟨−⟩ is the function

⟨−⟩ : Ψp → N+
1

2

L 7→ ⟨∂−L⟩+ ⟨∂+L⟩
2

taking a spacer to the average of the scaffold norms of its lower and upper
boundaries.

Analogously to the case of sections treated in Lemma 2.2.29, the scaffold
norm of spacers will take the set of spacers bijectively to an interval of
half-shifted natural numbers; the scaffold order on spacers is simply inherited
from the standard order on that image.

Lemma 2.2.35 (Scaffold order for spacers). For a 1-truss bundle p : T →
[m] with spacers Ψp, the scaffold norm ⟨−⟩ : Ψp → N+ 1

2 is a bijection onto
its image; that image is the set of all half integers between the extremal values
scaff− and scaff+ of the scaffold norm of sections. The induced total order
on the spacers Ψp is called the ‘scaffold order of spacers’.

Proof. Each spacer L in the bundle p is uniquely determined by its
boundary sections ∂±L, and those boundary sections are adjacent in the
scaffold norm by Remark 2.2.33. The previous Lemma 2.2.29 thus implies
that the scaffold norm of spacers ⟨−⟩ : Ψp → N+ 1

2 is injective.
To see that this norm surjects onto the claimed image, consider a half

integer h between the extremal section scaffold norms scaff− and scaff+. The
integers h± 1

2 are necessarily, by Lemma 2.2.29, the scaffold norms of some
section K and its successor s(K). Consider the cases of the construction
of the successor in the proof of that Lemma. Observe that in case 1, the
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fiber morphism K(j − 1)→ s(K)(j − 1) determines (by Construction 2.2.22)
a spacer L with ∂−L = K and ∂+L = s(K). Similarly, in case 2, the
fiber morphism s(K)(j)→ K(j) determines a spacer L with ∂−L = K and
∂+L = s(K). Thus there is a spacer with the required scaffold norm. □

We have seen that both the set of sections and the set of spacers of a
1-truss bundle p : T → [m] have total orders, and moreover that for each
section there is a spacer that increments it to the next section. We can
summarize and express this situation more categorically as follows.

Terminology 2.2.36 (Fiber categories in 1-truss bundles). Let p : T →
B be a 1-truss bundle, and consider a nondegenerate simplex z : [m]→ B.
The ‘fiber category’ Φp(z) in the bundle p over the simplex z is the free
category whose objects are sections K ∈ Γz∗p (that is, sections over just
that simplex, i.e., of the pullback bundle z∗p), and that has a generating
morphism L : ∂−L→ ∂+L for each spacer L ∈ Ψz∗p.

Construction 2.2.37 (Transition functors of fiber categories). Let
p : T → B be a 1-truss bundle. Consider a nondegenerate simplex z : [m]→ B
and let y : [l]→ B be a face of the simplex z; that is, there is an injection
[l] ↪→ [m] so that the simplex y is the composite [l]→ [m]

z−→ B. There is an
inclusion of pullback bundles y∗p ↪→ z∗p. A section of the bundle z∗p restricts
to a section of the bundle y∗p, and a spacer of the bundle z∗p restricts either
to a spacer or to a section of the bundle y∗p. This restriction provides a
functor −|y⊂z : Φp(z)→ Φp(y), called the ‘fiber transition’ in the bundle p
from the simplex z to the simplex y.

Observation 2.2.38 (Structure of fiber categories and transition functors).
For all 1-truss bundles p : T → B, we have the following properties:

(1) All fiber categories Φp(z) are total orders.
(2) All transition functors Φp(z)→ Φp(y) preserve endpoints.

The first property follows from Lemma 2.2.29 and Lemma 2.2.35, using the
relation ⟨∂±L⟩ = ⟨L⟩ ± 1

2 between the scaffold norm of a spacer and its
boundary sections. The second property follows from Construction 2.2.28 for
bottom and top sections. Note that since the fiber categories are total orders,
and a transition functor sends a generating morphism to either a generating
morphism or an identity, and transition functors preserve endpoints, it follows
that all transition functors are surjective.

2.2.3. ♢Labeled 1-trusses, bordisms, and bundles. As entertaining as
1-trusses and their bordisms and bundles themselves are, and as pretty as the
inductive structure of simplices in 1-truss bundles itself may be, our eventual
concern will be with stratified versions of towers of 1-truss bundles over
1-truss bundles over 1-truss bundles and so on. It will be both convenient and
crucial to encode the relevant sort of stratifications and the iterated bundle
structures in terms of labeled trusses. The labeling is an assignment, to each
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element and arrow of the truss (or truss bordism or bundle), of an object
and morphism in a labeling category—that category could be a stratification
poset or itself an inductively defined category of towers of truss bundles.
Critically, the well-definedness of composition of labeled truss bordisms, and
therefore the iterability of the labeled bordism and bundle constructions, is
proven by truss induction.

Synopsis. We define labeled 1-trusses and labeled 1-truss bordisms,
and show that composition of labeled 1-truss bordisms is well defined; this
provides a category of 1-trusses and their bordisms labeled in a given category,
and therefore an iterable endofunctor on the category of categories. We then
generalize these notions to labeled 1-truss bundles, and show that the category
of labeled 1-trusses and their bordisms is a classifying category for labeled
1-truss bundles. Finally, we mention the labeled 1-truss bundle versions of
the pullback, dualization, and suspension constructions.

2.2.3.1. ♢The definition of labeled 1-trusses and their bordisms. A
labeling of a 1-truss in a category is simply an assignment of objects and
morphisms in the category to the elements and face arrows of the 1-truss.
Since there are no composite face arrows, there is not even a nontrivial
functoriality condition on the assignment.

Definition 2.2.39 (Labeled 1-trusses). Given a category C, a C-labeled
1-truss T is a pair (T , lblT ) consisting of a 1-truss T and a functor lblT :
(T ,⊴)→ C from the face poset of the 1-truss to the category.

We refer to the 1-truss T as the ‘underlying 1-truss’ of the labeled 1-truss,
and to the functor lblT as the ‘labeling functor’. We can display the data of
a labeled 1-truss compactly as

[0] T C
lblT

The left arrow expresses the 1-truss pedantically as a 1-truss bundle over the
trivial poset; the right arrow is the labeling functor.

A labeling of a 1-truss bordism in a category is similarly an assignment
of objects and morphisms to the elements and arrows of the bordism, though
now of course we insist that assignment respect composition.

Definition 2.2.40 (Labeled 1-truss bordisms). Given a category C, a
C-labeled 1-truss bordism R is a pair (R, lblR) consisting of a 1-truss
bordism R and a functor lblR : (R,⊴) → C from the total poset of the
bordism to the category.

Here and later on, we freely elide the distinction between a 1-truss bordism,
its associated total poset (as in Terminology 2.1.72), and also its total poset
considered as a 1-truss bundle over the interval (as in Definition 2.1.74). We
can display the data of a labeled 1-truss bordism compactly as

[1] R C
lblR
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The left arrow expresses the 1-truss bordism as a 1-truss bundle over the inter-
val; the right arrow is the labeling functor. Needless to say, we consider this
labeled 1-truss bordism as a morphism R : R0 −7−→ R1 from a domain labeled 1-
truss R0 := (R|0, (lblR)|0) to a codomain labeled 1-truss R1 := (R|1, (lblR)|1)
(where (lblR)|i abbreviates the restriction of lblR to the subposet R|i ⊂ R).

Example 2.2.41 (A labeled 1-truss bordism). In Figure 2.35 we illustrate
a 1-truss bordism labeled in the poset [1]× [1]. The labeling is indicated by
color matching the objects of the bordism and their corresponding images
in the labeling poset; since this labeling category is a poset, the object map
determines the labeling functor entirely.

p

R

[1]

[1]× [1]

lblR

0 1

Figure 2.35. A labeled 1-truss bordism.

The natural next question is whether labeled 1-truss bordisms compose,
that is whether labeling functors on two composable 1-truss bordisms suitably
induce a labeling functor on the composite 1-truss bordism.

Definition 2.2.42 (Composition for labeled 1-truss bordisms). Given two
C-labeled 1-truss bordisms R01 : T0 −7−→ T1 and R12 : T1 −7−→ T2, the composite
labeled 1-truss bordism R02 = R12 ◦ R01 : T0 −7−→ T2 has underlying 1-
truss bordism R02 being the composite R12 ◦R01, and has labeling functor
lblR02 : R02 → C specified by

lblR02(x0 ⊴ x2) = lblR12(x1 ⊴ x2) ◦ lblR01(x0 ⊴ x1)

whenever x0 ⊴ x1 and x1 ⊴ x2 are composable arrows of the total posets R01

and R12, respectively.

Lemma 2.2.43 (Composition of labeled 1-truss bordisms is well defined).
The labeling functor in the composition of labeled 1-truss bordisms is well
defined.

Before giving the proof, we give an example of how the composition of
labeled functorial relations can fail to be well defined, and an example of the
well-defined composition in the 1-truss bordism case.

Example 2.2.44 (Composition of labeled functorial relations is not well
defined). By contrast with the situation described in the previous lemma,
composition of labeled functorial relations between 1-trusses, which one
might try to specify as in Definition 2.2.42, is not well defined. We illustrate
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such a failure, where a label in the composite relation is overdetermined, in
Figure 2.36. In the top left, there are two composable functorial relations
R01 and R12 between 1-trusses. In the bottom left is their (trivial) composite
functorial relation R02. The labeling functors lblR01 and lblR12 are indicated
by color matching objects and their images, and color matching morphisms
and their images. (Morphisms colored by an object color are labeled by the
identity on that object.) The hypothetical composite labeling functor lblR02

would take the morphism to both the red and the blue morphisms in the
labeling category, and therefore does not exist.

⇝

̸=

lblR01
, lblR12

lblR02

idid

R01

R02

R12

Figure 2.36. Failure of composition of labeled functorial
relations.

Example 2.2.45 (Composition of labeled 1-truss bordisms). In Fig-
ure 2.37, we illustrate two labeled 1-truss bordisms R01 and R12 along with
their composite R02. Notice that the underlying 1-truss bordisms here are
those previously shown in Figure 2.23. The labeling category is a poset, so
the labeling functors are determined by the color-coding of the objects.

The red arrows delineate a spacer simplex in the 1-truss bundleW 012 → [2]
over the 2-simplex. The upper and lower sections of that spacer provide
distinct factorizations of the red arrow in the composite. That spacer, along
with the functoriality of the labeling of the two labeled 1-truss bordisms R01

and R12, ensures (as explained in the proof below) that the composite red
arrow has a well specified label. The blue arrows similarly delineate three
spacer simplices. The boundary sections of those spacers provide four distinct
factorizations of the blue arrow in the composite. Those spacers, chained
together via truss induction (again as in the proof below), ensure that the
composite blue arrow also has a well specified label.

Proof of Lemma 2.2.43. We have C-labeled 1-truss bordisms R01 :
T0 −7−→ T1 and R12 : T1 −7−→ T2; the composite R02 : T0 −7−→ T2 has underlying 1-
truss bordism R02 = R12◦R01, and labeling supposedly defined by lblR02(g12◦
f01) = lblR12(g12) ◦ lblR01(f01); we abbreviate that last composite by lbl(g, f).
Note that any arrow e of the composite bordism R02, by definition of the
composite relation, has some decomposition e = g ◦ f and therefore some
label assignment lbl(g, f).
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lblR01

lblR02
[1]× [1]

lblR12W 012

Figure 2.37. Composition of labeled 1-truss bordisms.

It suffices to check that whenever we have two distinct decompositions
g12 ◦ f01 = g′12 ◦ f ′01, the putative labels correspond, that is

lbl(g, f) := lblR12(g12) ◦ lblR01(f01) = lblR12(g
′
12) ◦ lblR01(f

′
01) =: lbl(g′, f ′).

The bordisms R01 and R12 and their composite R02 define a 1-truss bundle
W 012 → [2], as in Example 2.1.95.

We proceed by truss induction in this bundle. The arrows f and g are the
spine vectors of a section K : [2]→W 012, and the arrows f ′ and g′ are the
spine vectors of another section K ′ : [2]→W 012. Assume we have the scaffold
order relation K ⪯ K ′ (the reverse case is the same); Lemma 2.2.29 ensures
that there is a sequence of successor sections K = K0,K1, . . . ,Kk = K ′,
that is with s(Ki) = Ki+1, starting with our section K and ending with our
section K ′. By induction, we may assume the sequence has length 1, that
is s(K) = K ′. Now by Lemma 2.2.35 there is a spacer L : [3]→W 012 with
lower boundary ∂−L = K and upper boundary ∂+L = K ′.

Note that the spine L(2 → 3) ◦ L(1 → 2) ◦ L(0 → 1) of that spacer L
composes both to the spine K(1→ 2) ◦K(0→ 1) = g ◦ f of the section K,
and to the spine K ′(1 → 2) ◦K ′(0 → 1) = g′ ◦ f ′ of the section K ′. Since
the labeling lblT1 is the restriction of both lblR01 and lblR12 to the 1-truss
fiber T1, functoriality of those labelings lblR01 and lblR12 implies

lbl(g, f) = lblR12(K(1→ 2)) ◦ lblR01(K(0→ 1))

= lblR12(L(2→ 3)) ◦ lblT1(L(1→ 2)) ◦ lblR01(L(0→ 1))

= lblR12(K
′(1→ 2)) ◦ lblR01(K

′(0→ 1)) = lbl(g′, f ′)

as required. □

Notation 2.2.46 (Categories of labeled 1-trusses and their bordisms).
Given a category C, the ‘category of C-labeled 1-trusses and their bordisms’,
whose objects are C-labeled 1-trusses and whose morphisms are C-labeled
1-truss bordisms, will be denoted TBord1//C.

Remark 2.2.47 (Unlabeled 1-trusses are trivially labeled). Of course,
unlabeled 1-trusses and their bordisms may be considered as having ‘trivial’
labelings, that is labelings in the terminal category ∗. Indeed, the functor
TBord1//∗ → TBord1, taking an ∗-labeled 1-truss T (respectively bordism R)
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to its underlying 1-truss T (respectively bordism R), is an isomorphism of
categories.

The construction of the category TBord1//C is functorial in the labeling
category C.

Construction 2.2.48 (Relabeling by a functor). Let F : C → D be a
functor between categories. The associated relabeling functor between
categories of labeled 1-trusses and their bordisms

TBord1//F : TBord1//C → TBord1//D

takes a C-labeled 1-truss T to the D-labeled 1-truss with underlying truss
T and labeling F ◦ lblT , and similarly takes a C-labeled bordism R to the
D-labeled bordism with underlying bordism R and labeling F ◦ lblR.

Terminology 2.2.49 (Label-forgetting functor). Note that relabeling
by the terminal functor C→ ∗ provides a ‘label-forgetting’ functor

(−) : TBord1//C → TBord1//∗
∼= TBord1

which simply removes the labeling data.

The alchemical observation is that the functoriality of the construction of
labeled 1-trusses and their bordisms provides, as follows, an endofunctor on
the category of categories, which is therefore iterable—and iterate it we will.

Definition 2.2.50 (The labeled 1-truss bordism functor). The labeled
1-truss bordism functor is the endofunctor

TBord1//− : Cat→ Cat

that takes a category C to the category TBord1//C of C-labeled 1-trusses and
their bordisms, and takes a functor F : C → D to the relabeling functor
TBord1//F : TBord1//C → TBord1//D.

We may recast the notion of labeled 1-truss bordisms in more abstract
categorical terms, as we did for unlabeled 1-truss bordisms at the end of
Section 2.1.2.1. (Readers without a categorical bent may skip ahead to
Section 2.2.3.2 without consequence.)

Recall that 1-truss bordisms are in particular functorial relations between
preorders, and functorial relations are the same concept as boolean profunctors.
A labeling of a 1-truss bordism is of course a functor from the total face poset
to a (not-necessarily posetal) category. To express the category of labeled
bordisms in a concise categorical fashion, we need a context subsuming both
boolean profunctors and ordinary functors; such a context is provided by the
bicategory Prof of categories, profunctors, and natural transformations.

We transport 1-trusses and their bordisms into categories and profunctors
as follows.
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Construction 2.2.51 (Bordisms as profunctors). The bordism-as-
profunctor pseudofunctor

ι : TBord1 ⇝ Prof

from the category of 1-trusses and their bordisms to the bicategory of pro-
functors, takes a 1-truss T to the face poset category (T,⊴), and takes a
1-truss bordism R to its boolean profunctor, considered as a profunctor via
the inclusion Bool ↪→ Set.

Note well that, as elaborated in the following remark, it is not the case
that there is a sensible pseudofunctor BoolProf ⇝ Prof, and so in particular
not the case that the pseudofunctor TBord1 ⇝ Prof arises as a composite
TBord1 → BoolProf ⇝ Prof.

Remark 2.2.52 (1-Truss bordisms are special among boolean profunctors).
Boolean profunctors compose as their underlying relations, while ordinary
profunctors compose by coends (see [Lor21, §5]). Given a boolean profunctor
R, by considering booleans as sets in the usual way, there is an associated
profunctor [R]. For general boolean profunctors R : X −7−→ Y and S : Y −7−→ Z
between general preorders X, Y , and Z, it need not be the case that the
profunctor of the composite is the composite of the profunctors: [S ◦R] ≇
[S] ◦ [R]. In particular the associated profunctor operation [−] is not a
pseudofunctor.

However, when the preorders X, Y , and Z are in fact 1-trusses, and the
boolean profunctors R and S are in fact 1-truss bordisms, there is a unique
isomorphism between the profunctor of the composite and the composite of
the profunctors; that isomorphism emerges by explicitly evaluating the colimit
defining the profunctor composite and following the arguments in the proof
of Lemma 2.2.43. The resulting isomorphism ι(S ◦ R) ∼= ι(S) ◦ ι(R) is the
pseudofunctoriality data of the bordisms-as-profunctors pseudofunctor.

We have now resituated 1-trusses (and their bordisms) as having asso-
ciated categories (and profunctors) in the bicategory Prof, and of course
potential labeling categories also reside as objects in that bicategory. Our
categorical recasting of TBord1//C will be a direct instantiation of the follow-
ing abstract generalization of comma categories. (Recall that for a functor
F : A→ B and an object b ∈ B, the comma category F/b has as objects pairs
(a ∈ A, f : F(a) → b) and morphisms (a, f) → (a′, f ′) are those morphisms
(a → a′) in A such that F(a → a′) commutes with the given morphisms f
and f ′ in B.)

Construction 2.2.53 (Vertical comma categories). Given a normal
pseudofunctor H : T ⇝ Prof from a category T into the bicategory Prof,
and a category C ∈ Prof, the vertical comma category H//C is defined
as follows: the objects are pairs (t ∈ T,F : H(t) → C), consisting of an
object t of the category T, and a functor (not profunctor) F from the image
category H(t) to the category C; 1-morphisms (t,F) → (t′,F′) are pairs
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(r : t → t′, α : H(r) ⇒ HomC(F−,F′−)), consisting of a morphism r in the
category T, and a natural transformation of profunctors from the image
profunctor H(r) to the Hom profunctor HomC(F−,F′−)).

The terminology ‘vertical comma category’ arises from implicitly consid-
ering Prof not as a bicategory but as a double category with vertical functors
and horizontal profunctors; the arrow of the comma category is specified to
be vertical, thus a functor rather than a profunctor. Our choice of notation
H//C, and therefore obviously our choice of notation TBord1//C for labeled
bordisms, is similarly inspired by the implicit sense that it is a sort of comma
or slice category in a double categorical context.

Observation 2.2.54 (Categorical reformulation of labeled 1-trusses and
their bordisms). For a category C, the category of C-labeled 1-trusses and
their bordisms, as in Notation 2.2.46, is equivalent to the vertical comma
category of the bordism-as-profunctor pseudofunctor over the category C:

TBord1//C ≃ (TBord1
ι
⇝ Prof)//C

There is one last yet more abstract construction of the category of labeled
1-trusses and their bordisms, using the profunctorial collage of Remark 2.1.101,
as follows.

Terminology 2.2.55 (The tautological 1-truss bundle). The pseud-
ofunctor ι : TBord1 ⇝ Prof from Construction 2.2.51, conceived of as a
collagable classifying pseudofunctor, has a corresponding exponentiable func-
tor ρ : ETBord1 → TBord1; that functor is called the ‘tautological 1-truss
bundle’—indeed the fiber over each object T ∈ TBord1 is the 1-truss T as
a category. (Note this bundle is a categorical 1-truss bundle in the sense of
Remark 2.1.85.)

Observation 2.2.56 (Labeled 1-trusses and their bordisms via the tauto-
logical bundle). We will see a bit later that the category TBord1//C of C-labeled
1-trusses and their bordisms is a classifying category for C-labeled 1-truss
bundles. Such a classifying category should be the universal category living
over the classifying category TBord1 (for unlabeled 1-trusses and their bor-
disms), that has a functor from its total 1-truss category (obtained as the
pullback of the tautological 1-truss bundle) to the labeling category C.

That universal category can be obtained as follows. Because the tautolog-
ical 1-truss bundle ρ is exponentiable, the functor Cat/TBord1 → Cat/ETBord1

that takes the pullback of the tautological bundle (along a classifying functor
F : B→ TBord1) has a right adjoint (cf. [Str01]); and certainly the forgetful
functor Cat/ETBord1 → Cat has a right adjoint. The composite of those ad-
joints provides a functor Cat → Cat/TBord1 that sends a category C to the
category TBord1//C of C-labeled 1-trusses and their bordisms (with its forgetful
functor to TBord1).
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2.2.3.2. ♢The definition of labeled 1-truss bundles. Given the notion
of labeled 1-truss bordisms from the previous section, and considering 1-
truss bordisms as 1-truss bundles over the interval, we of course have the
generalization to labeled 1-truss bundles over other posets, by asking for a
labeling functor from the total poset, as follows.

Definition 2.2.57 (Labeled 1-truss bundles). Given a poset B and a
category C, a C-labeled 1-truss bundle p over B is a pair (p, lblp) consisting
of a 1-truss bundle p : T → B, and a functor lblp : (T,⊴)→ C from the total
poset of the bundle to the category.

We refer to the bundle p as the ‘underlying 1-truss bundle’, and to the functor
lblp as the ‘labeling functor’. We can display the data of a labeled 1-truss
bundle p ≡ (p, lblp) compactly as

B T C
p lblp

Example 2.2.58 (1-Truss bundle labeled in a poset). In Figure 2.38 we
illustrate a 1-truss bundle labeled in the poset [2]. In the previous Figure 2.35
of a ([1]× [1])-labeled 1-truss bordism, we indicated the labeling by the object
mapping; though that would suffice here, given the additional complexity of
this bundle, it is easier to parse the labeling by its behavior on morphisms. We
therefore indicate the labeling functor also by color matching the morphisms
of the total poset of the bundle and their corresponding images in the labeling
poset.

p

lblp

Figure 2.38. A 1-truss bundle labeled in a poset.

Example 2.2.59 (1-Truss bundle labeled in a monoid). Though all of
our labeled 1-truss bordism and bundle examples so far were labeled in a
poset, and certainly that will be a case of core concern, still the labeling
category may perfectly well be non-posetal. In Figure 2.39, we illustrate a
1-truss bundle p : T → T̄1 (the one previously pictured in Example 2.1.94),
together with a labeling lblp : T → BF in the ‘opposite flip flop monoid’
F. That monoid F has two non-identity, idempotent elements r and s with
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composition r ◦ s = s and s ◦ r = r. We indicate the elements r and s by
colored arrows and, as in the previous example, record the labeling functor
by color matching morphisms with their images.

As it happens, this monoid is the bordism endomorphism monoid of the
closed 1-truss with three singular elements: F = EndTBord1(T̄2). As such,
this labeling may be considered as associating the closed 5-element truss
to each element of the total poset T , and associating a 1-truss bordism to
each arrow of that total poset. Altogether this provides a new 1-truss bundle
q : S → T with base now the previous total poset T ; the reader may endeavor
to picture the total poset S of that bundle—we will return to such bundles
in due course.

p

lblp

=
=

=
=

BFid

r s

Figure 2.39. A 1-truss bundle labeled in a monoid.

Recall that maps of 1-truss bundles are simply maps of the total diposets;
the labeled analog is immediate, as follows.

Definition 2.2.60 (Maps of labeled 1-truss bundles). For categories C
and D, let p be a C-labeled 1-truss bundle, and let q be a D-labeled 1-truss
bundle. A map of labeled 1-truss bundles F : p→ q is a pair (F , lblF )
consisting of a 1-truss bundle map F : p → q, and a functor lblF : C → D
such that lblF ◦ lblp = lblq ◦ F .

As in previous cases, we refer to the 1-truss bundle map F as the ‘underlying
bundle map’; we call the functor lblF the ‘label category functor’ or sometimes
the ‘relabeling functor’. We can display the data of a map F ≡ (F , lblF ) of
labeled 1-truss bundles compactly as

B T C

C S D

lblpp

F lblF

lblqq

Terminology 2.2.61 (Label-preserving and base-preserving maps). A
labeled 1-truss bundle map F ≡ (F , lblF ) is called ‘label preserving’ if the
label category functor lblF is the identity idC of the label category, and is
called ‘base preserving’ if the underlying bundle map F covers the identity
idB of the base poset.
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Terminology 2.2.62 (Singular, regular, and balanced labeled bundle
maps). A labeled 1-truss bundle map F ≡ (F , lblF ) is ‘singular’, ‘regular’, or
‘balanced’ if its underlying 1-truss bundle map F is, respectively.

Composition of underlying maps of bundles, along with composition of
the label category functors, provides the following category.

Notation 2.2.63 (The category of labeled 1-truss bundles). The category
of labeled 1-truss bundles and their maps is denoted LblTrsBun1.

Remark 2.2.64 (Unlabeled 1-truss bundles are trivially labeled). As in
the case of bordisms in Remark 2.2.47, all 1-truss bundles have a unique
labeling in the terminal category. This labeling provides a fully faithful
functor TrsBun1 ↪→ LblTrsBun1 from the category of 1-truss bundles into the
category of labeled 1-truss bundles.

Terminology 2.2.65 (Restriction of labeled 1-truss bundles). Given
a C-labeled 1-truss bundle p ≡ (p : T → B, lblp : T → C) and a subposet
A ↪→ B, the ‘restriction’ of the labeled bundle to the subposet is the C-labeled
1-truss bundle p|A ≡

(
p
∣∣
A
: T |A → A, (lblp)|A : T |A → C

)
.

Remark 2.2.66 (Balanced label- and base-preserving isomorphisms are
unique). Recall from Convention 2.1.20 and Remark 2.1.21 that balanced
isomorphisms of 1-trusses preserve all structural data and are unique when
they exist. Similarly, balanced label- and base-preserving 1-truss bundle
isomorphisms preserve all structural data (face order, frame order, dimension
map, base projection, labeling functor) and are unique when they exist. There
is therefore never any need to distinguish between distinct but balanced label-
and base-preservingly isomorphic labeled 1-truss bundles.

2.2.3.3. ♢Classification and totalization for labeled 1-truss bundles.
Previously in Observation 2.1.100 we saw that 1-truss bundles were classified
by functors into the category TBord1 of 1-trusses and their bordisms. As we
detail presently, the labeled situation is entirely analogous: C-labeled 1-truss
bundles are classified by functors into the category TBord1//C of C-labeled
1-trusses and their bordisms.

Construction 2.2.67 (Classifying functors of labeled 1-truss bundles).
We describe a map

p ≡ (p : T → B, lblp : T → C) 7→ (χp : B → TBord1//C)

that takes a C-labeled 1-truss bundle p over a poset B to an associated
classifying functor χp : B → TBord1//C.

We construct χp on elements and arrows of the poset B, as follows. For
each element x : [0] ↪→ B, the classifying element χp(x) ∈ TBord1//C is the
C-labeled 1-truss p|x, and for each non-identity arrow f : [1] ↪→ B, the
classifying morphism χp(f) of TBord1//C is the C-labeled 1-truss bordism p|f .
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That this construction indeed provides a functor χp follows directly from
the Definition 2.2.57 of labeled bundles and the Definition 2.2.42 of labeled
bordism composition.

Construction 2.2.68 (Total labeled 1-truss bundles of classifying func-
tors). We describe a map

(F : B → TBord1//C) 7→ πF ≡ (πF : Tot(F)→ B, lblF : Tot(F)→ C)

that takes a functor F : B → TBord1//C from a poset B to the category
of C-labeled 1-trusses and their bordisms to an associated total labeled
1-truss bundle πF.

We construct the labeled 1-truss bundle πF as follows.
››››› The underlying 1-truss bundle πF : Tot(F) → B is the total bundle

of the composite F of the functor F with the label-forgetting functor
(−) : TBord1//C → TBord1 (see Terminology 2.2.49).

››››› The labeling functor lblF : Tot(F)→ C is given on fibers over elements
x ∈ B as the labeling functor lblF(x) : F(x) → C of the labeled 1-truss
F(x) ∈ TBord1//C, and on fibers over non-identity arrows f : [1]→ B as
the labeling functor lblF(f) : F(f) → C of the labeled 1-truss bordism
F(f).

Example 2.2.69 (Classification for a labeled 1-truss bundle). Recall from
Example 2.2.59 the labeled 1-truss bundle p ≡ (p : T → T̄1, lblp : T → BF)
with labeling in the monoid BF described there. In Figure 2.40, on the
left is that same labeled 1-truss bundle (with the labeling encoded by the
colors of the arrows according to the convention for the monoid established
in Figure 2.39 and recapitulated in this figure); on the right is the associated
classifying functor χp : T̄1 → TBord1//BF. (The inverse association taking that
functor F : T̄1 → TBord1//BF to its total labeled bundle πF is also indicated.)
In the classifying category TBord1//BF, we only indicatively depict four of
the eighteen objects and only four of the many morphisms among those
objects; the two morphisms actually hit by this classifying functor are colored
accordingly, along with their preimages in the base poset.

As in the unlabeled case, this correspondence, between labeled 1-truss
bundles and functors into the category of labeled 1-trusses and their bordisms,
is functorial, with respect to a notion of bordism of labeled 1-truss bundles.

Definition 2.2.70 (Bordisms of labeled 1-truss bundles and their compo-
sition). Given C-labeled 1-truss bundles p and q over a poset B, a C-labeled
1-truss bundle bordism u : p −7−→ q is a C-labeled 1-truss bundle u over
B × [1] such that u|B×{0} = p and u|B×{1} = q.

The composition of two such labeled bordisms u : p −7−→ q and v : q −7−→ r
is the labeled bordism v ◦ u : p −7−→ r whose restriction (v ◦ u)|{x}×[1] is the
composite labeled bordism v|{x}×[1] ◦ u|{x}×[1], for all elements x ∈ B.
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p∼=

πF

F := χp

TBord1//BF

BFid

r s
lblp ∼= lblF

Figure 2.40. A labeled 1-truss bundle and its classifying
functor.

Notation 2.2.71 (Categories of labeled 1-truss bundles and their bor-
disms). For a fixed base poset B and category C, the ‘category of C-labeled
1-truss bundles and their bordisms’, whose objects are C-labeled 1-truss
bundles over B and whose morphisms are C-labeled 1-truss bundle bordisms,
will be denoted TBord1(B)//C.

Remark 2.2.72 (Labeled 1-truss bundle isobordism need not be unique).
By contrast with Observation 2.1.98, when there is an invertible labeled
1-truss bundle bordism (i.e. a ‘labeled bundle isobordism’), that bordism
need not be unique, for the simple reason that the labeling category may
have non-trivial automorphisms.

There is a category of functors from a base poset B to the category
TBord1//C of labeled 1-trusses and their bordisms, whose morphisms are natural
transformations of functors; note that a natural transformation N : F⇒ G
between functors F : B → TBord1//C and G : B → TBord1//C is simply itself a
functor N : B× [1]→ TBord1//C. Equipped with the category of labeled 1-truss
bundles and their bordisms, and with the category of classifying functors, we
can describe the functorial correspondence, as follows.

Observation 2.2.73 (Classification and totalization functors for labeled
1-truss bundles). Given a poset B and a category C, there is an equivalence
of categories

χ− : TBord1(B)//C ⇄ Fun(B,TBord1//C) : π−

specified as follows.
The ‘classification functor’ χ− takes a C-labeled 1-truss bundle p to

its classifying functor χp : B → TBord1//C, and a C-labeled 1-truss bundle
bordism u : p⇒ q (by definition a labeled 1-truss bundle over B × [1]) to its
classifying functor χu : B×[1]→ TBord1//C viewed as a natural transformation
χu : χp ⇒ χq.
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The ‘totalization functor’ π− takes a functor F : B → TBord1//C to its
total C-labeled 1-truss bundle πF, and a natural transformation N : B× [1]→
TBord1//C to its total labeled 1-truss bundle πN.

Remark 2.2.74 (Classifying categorical labeled 1-truss bundles). Recall
from Remark 2.1.85 the notion of a categorical 1-truss bundle T→ B over
a base category B. A ‘categorical C-labeled 1-truss bundle’ is simply a
categorical 1-truss bundle p : T→ B together with a labeling functor lblp :

T → C. Remark 2.1.102 noted that TBord1 provides, in fact, a classifying
category for categorical, not just posetal, 1-truss bundles. Similarly, the above
classification and totalization constructions carry over to the categorical case,
showing that TBord1//C is a classifying category for categorical, not just posetal,
C-labeled 1-truss bundles.

After having developed the machinery of truss induction in generality
in Section 2.2.2, notice that we have so far used truss induction only over
the 2-simplex (namely, in the proof of Lemma 2.2.43). The full power of
truss induction comes to bear when we allow for truss bundles labeled in
an ∞-category C. For a 1-category C, we had a 1-category TBord1//C as a
classifying category for C-labeled 1-truss bundles; for an ∞-category C, we
can define an analogous ∞-category TBord1

//C as a classifying category for
C-labeled 1-truss bundles, as follows. (Note though that we will not use
∞-categorical labels, and the next remark can be safely skipped.)

Remark 2.2.75 (Quasicategories of labeled 1-trusses and their bordisms).
Let C be a quasicategory, i.e. a simplicial set that has inner horn fillers
[BV06, Joy02]. There is a ‘quasicategory of C-labeled 1-trusses and their
bordisms’, denoted TBord1

//C. The k-simplices of this quasicategory are the
pairs (S, lblS) consisting of a 1-truss bundle S → [k] over the k-simplex, and
a functor of quasicategories lblS : S → C.

The proof of Lemma 2.2.43, that composition of C-labeled 1-truss bor-
disms, and therefore the category TBord1//C, is well defined, only used truss
induction over the 2-simplex. That the simplicial set TBord1

//C is itself a
quasicategory (i.e. has the ‘composition’ of inner horn fillers) follows, roughly
as in that proof, but using truss induction over general k-simplices.

2.2.3.4. ♢Pullback, dualization, and suspension of labeled 1-truss
bundles. The pullback, dualization, and suspension constructions carry over
from the unlabeled to the labeled case, as follows.

Construction 2.2.76 (Pullbacks of labeled 1-truss bundles). Given a
C-labeled 1-truss bundle p ≡ (p : T → B, lblp : T → C) over a poset B, and a
poset map G : A→ B, the pullback of the bundle (along the map G) is the C-
labeled 1-truss bundle G∗p ≡ (G∗p, lblG∗p), whose underlying 1-truss bundle
G∗p is the pullback G∗p : G∗T → A, and whose labeling functor lblG∗p is
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the composite lblp ◦TotG : G∗T → C. (Recall from Construction 2.1.103 the
unlabeled pullback G∗p : G∗T → A and its total poset map TotG : G∗T →
T .)

We can display the labeled pullback bundle G∗p ≡ (G∗p : G∗T → A, lblG∗p :
G∗T → C) = (G∗p, lblp ◦ TotG) as

A G∗T

C

B T

G

⌟

lblp◦TotG

TotG

G∗p

lblp
p

Of course, when the poset map G : A ↪→ B is a subposet, the pullback
specializes to the restriction of labeled 1-truss bundles.

Remark 2.2.77 (Pullback of labeled bundles via classifying functors).
As in the unlabeled case, the labeled pullback bundle may be expressed in
terms of classifying functors. Given a labeled 1-truss bundle p over a poset
B and a poset map G : A→ B, the classifying functor χG∗p : A→ TBord1//C
of the pullback is simply the composite χp ◦G of the poset map G with the
classifying functor χp : B → TBord1//C of the initial labeled bundle.

Fiberwise dualization provides a dualization of labeled 1-truss bundles,
as follows.

Construction 2.2.78 (Dualization of labeled 1-truss bundles and their
maps). Given a C-labeled 1-truss bundle p ≡ (p, lblp), its dual is the Cop-
labeled 1-truss bundle p† ≡ (p†, lblp†) = ((p)†, (lblp)

op), whose underlying
1-truss bundle is the dual of the underlying 1-truss bundle of p (i.e., has
opposite face order and dimension map, see Construction 2.1.107), and whose
labeling is the opposite of the labeling of p.

Given a labeled 1-truss bundle map F : p→ q (consisting of an underlying
map F : p → q and a relabeling functor lblF : C → D), its dual is the
labeled bundle map F † : p† → q† with dual underlying 1-truss bundle map
F † := (F )† : (p)† → (q)† (i.e., the same map of sets as the map F itself,
see Construction 2.1.107), and opposite relabeling functor lblF † := (lblF )

op :
Cop → Dop.

We therefore have a covariant involutive functor of labeled 1-truss bundles:

† : LblTrsBun1 ∼= LblTrsBun1.

Note that this functor preserves neither the base nor the labeling category.

Construction 2.2.79 (Dualization of labeled 1-truss bundles and their
bordisms). For a C-labeled 1-truss bundle bordism u : p ⇒ q, given by a
C-labeled 1-truss bundle u ≡ (u : U → B × [1], lblu : U → C), its dual is
the labeled bundle bordism u† : q† ⇒ p† given by the dual labeled bundle
u† ≡ (u†, lblu†) = ((u)† : U † → Bop × [1], (lblu)

op : U † → Cop).
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Dualization of bordisms is thus contravariant, giving an involutive iso-
morphism:

† : TBord1(B)//C ∼= (TBord1(Bop)//Cop)op.

When the labeling category is trivial, this specializes to the dualization of
unlabeled bundles and their bordisms from Construction 2.1.108. When
instead the base is a point, this specializes to an involutive isomorphism on
labeled 1-trusses and their bordisms:

† : TBord1//C ∼= (TBord1//Cop)op.

Remark 2.2.80 (Dual labeled bundles via classifying functors). The
dualization of labeled bundles may be reexpressed using classifying functors
as follows. Given a labeled 1-truss bundle p, with classifying functor χp :

B → TBord1//C, its dual labeled bundle p† has classifying functor

(χp† : B
op → TBord1//Cop) =

(
B

χp−→ TBord1//C
†−→ (TBord1//Cop)op

)op
.

This association of classifying functors χp 7→ († ◦ χp)
op is functorial and

reproduces the involutive isomorphism of the previous Construction 2.2.79.

Finally, straightforwardly, we have the labeled version of the suspension
of 1-truss bundles from Construction 2.1.111.

Remark 2.2.81 (Suspension of labeled 1-truss bundles). Assume that
the category C has both initial and terminal objects. The suspension Σp
of a C-labeled 1-truss bundle p has, of course, underlying bundle Σp being
the suspension Σp : ΣT → ΣB of the underlying 1-truss bundle p : T → B;
the labeling functor lblΣp : ΣT → C is equal to the labeling functor lblp on
the equator T ⊂ ΣT and sends the initial and terminal objects of ΣT to the
initial and terminal objects of the labeling category C.
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2.3. ♢n-Trusses, bordisms, bundles, and blocks

1-Trusses have provided a robust combinatorial model of framed stratified
1-dimensional spaces. 1-Truss bundles encode families of such spaces and
so appear to model certain multi-dimensional stratified spaces; however the
stratified topology of the total spaces of those families is criticially constrained
by the nature of the stratifications of the bases. To obtain a faithful, universal
combinatorial model of framed stratified n-dimensional spaces we must, as
promised, iterate the notion of 1-truss bundles. An n-truss is a 1-truss bundle
over a 1-truss bundle over a 1-truss bundle, and so forth, over, in the end,
a 1-truss. An example of an n-truss is illustrated on the left in Figure 2.41;
the base 1-truss poset T1 has a single (red) singular element, the 2-truss
poset T2 fibers over the 1-truss poset with the singular elements forming an
X pattern, and the 3-truss poset T3 fibers over the 2-truss poset with the
singular elements forming a braid pattern that resolves the singular crossing
of the 2-truss X. On the right of that figure are corresponding geometric
stratifications of the open 1-, 2-, and 3-cubes—corresponding for instance
in the sense that the fundamental posets of those stratified cubes are the
adjacent truss posets. Needless to say this juxtaposition of n-trusses and
stratified spaces is meant to suggestively preview the fact that the theory of
n-trusses will indeed, as imagined, provide a resilient combinatorial model of
framed stratified spaces of any dimension.

Now, any model of such stratified spaces must account for stratified
families thereof, and so there is an attendent basic notion of n-truss bordism,
which specifies a family of n-trusses over the combinatorial stratified 1-simplex,
and furthermore a notion of n-truss bundle, which encodes a family of n-
trusses over a more general stratified poset. Recall that composition of 1-truss
bordism functorial relations between 1-truss posets provided a transparent
means of composing 1-truss bordisms. By contrast, even the existence of a
composition of n-truss bordisms is neither geometrically nor combinatorially
evident. Constructing such a composition will rely critically on the method
of truss induction developed in the previous Section 2.2. In practice, that
construction will occur in mutually inductive tandem with establishing that
n-truss bundles are classified by functors into a recursive category of n-trusses,
defined as 1-trusses labeled in 1-trusses labeled in 1-trusses labeled in, and
so forth, labeled in, finally, 1-trusses.

Outline. In Section 2.3.1, we introduce n-trusses as towers of 1-truss
bundles, and n-truss bordisms as such towers over a combinatorial 1-simplex;
we also define a recursive category of n-trusses in terms of 1-trusses labeled
in 1-trusses labeled in 1-trusses and so on iteratively. In Section 2.3.2, we
define general n-truss bundles as towers now over arbitrary posets, and prove
that n-truss bundles are classified by functors into the recursive category of
n-trusses. Finally in Section 2.3.3, we describe n-truss blocks, the component
combinatorial shapes from which all n-trusses are built, and block sets, the
presheaves on the category of such blocks.



2.3. ♢N -TRUSSES, BORDISMS, BUNDLES, AND BLOCKS 134

p2

p3

T3

T2

T1

1
3

2

1

1

2

Figure 2.41. A 3-truss and its corresponding stratifications.

2.3.1. ♢n-Trusses and their bordisms.

Synopsis. We define n-trusses as towers of 1-truss bundles, with each
bundle having base poset being the total face poset of the previous bundle.
We similarly introduce n-truss bordisms as towers of 1-truss bundles over
the combinatorial 1-simplex, describe the succession of functorial relations
determined by the stages of such towers, and define the composition of n-truss
bordisms in terms of the composites of those functorial relations; this will
provide a category of n-trusses and their bordisms. We then apply the n-fold
iteration of the labeled 1-truss bordism functor to obtain an alternative,
recursively-defined version of the category of n-trusses and their bordisms.

2.3.1.1. ♢n-Trusses as towers of 1-truss bundles. A 1-truss considered
just with its face order is, of course, a poset; we have a notion of 1-truss
bundle over any poset. A 2-truss is then simply a 1-truss bundle over the
1-truss face poset. The face order of that 1-truss bundle provides the total
poset of the 2-truss. A 3-truss is then a 1-truss bundle over the 2-truss total
poset. And so on, as follows.

Definition 2.3.1 (n-Trusses). An n-truss is a sequence of 1-truss bundles

Tn
pn−→ Tn−1

pn−1−−−→ · · · p2−→ T1
p1−→ T0 = [0]

in which the base poset of each bundle pi is the total poset of the subsequent
bundle pi−1.

Notation 2.3.2 (n-Trusses). We typically abbreviate the sequence of
bundles {Ti

pi−→ Ti−1} by an indicative letter, referring to the whole n-truss
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simply as T . (We will often refer to the sequence informally as a ‘tower of
bundles’ and to its kth element Tk as the ‘k-stage’ of the tower.) We call the
face order poset (Tn,⊴) of the first bundle the ‘total poset’ of the n-truss;
we almost always let the face order relation be implicit, denoting the total
poset simply Tn.

Terminology 2.3.3 (Open and closed n-trusses). We call an n-truss T
‘open’, respectively ‘closed’, when all its constituent 1-truss bundles pi : Ti →
Ti−1 are open, respectively closed.

Example 2.3.4 (A 2-truss). In Figure 2.42, on the left we illustrate a
2-truss T . The first bundle p1 : T1 → T0 has base poset T0 = [0] and so its
total poset is simply a 1-truss T1. The total poset T2 of the second bundle
p2 : T2 → T1, with its 1-truss fibers and bordism transitions between them,
evidently has a 2-dimensional character.

On the right of that figure, we illustrate a tower of stratified bundles of
stratified intervals, whose fundamental poset tower is the given 2-truss face
poset tower. That this juxtaposition comes from a faithful correspondence,
between truss towers and towers of appropriately framed suitably stratified
bundles, will be of crucial concern, and is established rather later on.

p2 p1

T2 T1 T0

1 1

2

Figure 2.42. A 2-truss and corresponding stratifications.

Example 2.3.5 (An open 3-truss). Earlier in Figure 2.41, on the left we
illustrated an open 3-truss T . As before and as becomes especially prudent
in 3-dimensional examples, we only depicted generating arrows of the truss
face posets; all other arrows are composites of the given ones. On the right
of the figure, we illustrated a corresponding tower of stratifications, of the
open 3-cube, 2-cube, and 1-cube; the fundamental poset tower is the given
3-truss face poset tower. Notice that each of these cube stratifications is a
refinement of the pullback of the previous cube stratification; the structure
of that refinement reflects the geometric relationships among the singular
elements in the correlative truss poset.

Recall that a labeled 1-truss bundle is a 1-truss bundle with a labeling
functor from the total poset of the bundle. Similarly, a labeled n-truss is just
an n-truss with a labeling functor from its total poset. That labeling will,
most immediately, provide a means of encoding yet further truss bundles
over that total poset, and, later on and most practically, provide a means of
encoding global stratification structures on the total poset.
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Definition 2.3.6 (Labeled n-trusses). Given a category C, a C-labeled
n-truss T is a pair (T , lblT ) consisting of an n-truss T = (Tn → Tn−1 →
· · · → T0 = [0]) and a functor lblT : Tn → C from the total poset of the
n-truss to the category.

We refer as before to the n-truss T as the ‘underlying n-truss’, and to the
functor lblT as the ‘labeling functor’. We can display the data of a labeled
n-truss as a ‘labeled sequence’:

C
lblT←−− Tn

pn−→ Tn−1
pn−1−−−→ · · · p2−→ T1

p1−→ T0 = [0]

Example 2.3.7 (A labeled 2-truss). Previously in Figure 2.39 we illus-
trated a 1-truss bundle labeled in a monoid. Since the base poset there
happens to be a 1-truss, that in fact is already an example of a labeled
2-truss.

Example 2.3.8 (A labeled 3-truss). In Figure 2.43, we illustrate an open
3-truss labeled in the poset [1]× [1]. As before, the labeling is indicated by
color matching the objects of the truss total poset and their images in the
labeling poset.

lblT

[1]× [1]

p3 p2 p1

Figure 2.43. A labeled open 3-truss.

2.3.1.2. ♢n-Truss bordisms and their composition. Recall that 1-
trusses are a combinatorial model of stratified intervals, and 1-truss bordisms
are designed to provide a combinatorial model of constructible bundles of
stratified intervals over the stratified 1-simplex; as such, 1-truss bordisms
constitute bundles of 1-trusses over the combinatorial 1-simplex. Similarly, n-
truss bordisms are, intuitively and functionally speaking, bundles of n-trusses
over the combinatorial 1-simplex.

Definition 2.3.9 (n-Truss bordisms). An n-truss bordism is a sequence
of 1-truss bundles

Rn
pn−→ Rn−1

pn−1−−−→ · · · p2−→ R1
p1−→ R0 = [1]

in which the base poset of each bundle is the total poset of the subsequent
bundle.

As in the case of n-trusses, we typically compress the sequence of bundles
{Ri

pi−→ Ri−1} to an indicative letter, referring to the whole n-truss bordism
as for instance R. We call the face order poset (Rn,⊴) the ‘total poset’ of
the n-truss bordism, and abbreviate it simply if abusively Rn.
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Example 2.3.10 (A 2-truss bordism). In Figure 2.44, we illustrate a 2-
truss bordism. The portion of the 2-truss bordism tower eventually projecting
to 0 ∈ [1] is itself a 2-truss, and the portion eventually projecting to 1 ∈ [1]
is similarly a 2-truss; the bordism provides a transition from that domain
2-truss to that codomain 2-truss.

p2 p1

0

1

[1]R1R2

Figure 2.44. A 2-truss bordism.

Definition 2.3.11 (Labeled n-truss bordism). Given a category C, a
C-labeled n-truss bordism R is a pair (R, lblR) consisting of an n-truss
bordism R = (Rn → Rn−1 → · · · → R0 = [1]) and a functor lblR : Rn → C
from its total poset to the category.

As expected we refer to the ‘underlying n-truss bordism’ R and the ‘labeling
functor’ lblR. We typically display the labeled n-truss bordism as a labeled
sequence:

C
lblR←−− Rn

pn−→ Rn−1
pn−1−−−→ · · · p2−→ R1

p1−→ R0 = [1]

Of course, n-truss bordisms labeled in the terminal category C = ∗ are simply
n-truss bordisms.

Example 2.3.12 (A labeled 2-truss bordism). In Figure 2.45, we illustrate
a labeled 2-truss bordism. Note that the 2-truss bordism tower R2

p2−→ R1
p1−→

R0 makes up half of the portion T3
p3−→ T2

p2−→ T1 of the tower of the 3-truss in
Figure 2.41. On the left is a labeling functor with poset target. The functor
is indicated by color coding the preimages of the objects of the labeling
poset; we also color code the preimages of the identity morphisms of the two
maximal elements.

Terminology 2.3.13 (Domain and codomain of a labeled n-truss bor-
dism). Given a C-labeled n-truss bordism R = (R, lblR), its ‘domain’ dom(R)

is the C-labeled n-truss T (0), whose underlying n-truss T (0) is obtained by an
iterated restriction of the tower of bundles R to 0 ∈ [1], and whose labeling
lblT (0) is the restriction of the labeling lblR to the total poset T (0)

n of T (0).
Similarly the ‘codomain’ cod(R) is the C-labeled n-truss T (1) obtained by
restricting the tower of bundles to 1 ∈ [1]. That is, the domain and codomain
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lblR p2 p1

[1]

0

1

R1R2

Figure 2.45. A labeled 2-truss bordism.

are the top and bottom rows in the following diagram of 1-truss bundle
restrictions, as in Construction 2.1.103.

T
(0)
n T

(0)
n−1 · · · T

(0)
1 [0]

C Rn Rn−1 · · · R1 [1]

T
(1)
n T

(1)
n−1 · · · T

(1)
1 [0]

⌟lbl
T (0) ⌟ · · ·

⌟
0

lblR pn pn−1 p2 p1

⌝lbl
T (1) ⌝

· · ·
⌝

1

We will suggestively denote the labeled n-truss bordism as a morphism
R : dom(R) −7−→ cod(R).

Needless to say we would like to define a composition of n-truss bordisms
(and their labeled counterparts). That is, given n-truss bordisms R(01) :

T (0) −7−→ T (1) and R(12) : T (1) −7−→ T (2), we would like to form a composite
n-truss bordism R(02) : T (0) −7−→ T (2). As in the case of 1-truss bordisms, the
composite n-truss bordism is given in terms of the composition of certain
functorial relations, which we describe presently.

Terminology 2.3.14 (Functorial relations of an n-truss bordism). For
an n-truss bordism R : T −7−→ S, its ‘k-stage functorial relation’

relRk : (Tk,⊴) −7−→ (Sk,⊴)

is defined, for k-stage elements t ∈ Tk and s ∈ Sk, by declaring

relRk (t, s) ⇐⇒ (t⊴ s) in (Rk,⊴).

Note that relation is indeed functorial, simply because (Rk,⊴) is a poset.

Note that in the case of 1-truss bordisms, we did not introduce separate
notation for the (interchangable) functorial relation and poset structures;
see Terminology 2.1.72 and Notation 2.1.73. By contrast, in the case of
n-truss bordisms, it is clarifying to have the notational distinction between
the functorial relation relRk and the poset (Rk,⊴); however these remain
interchangable in the following sense.



2.3. ♢N -TRUSSES, BORDISMS, BUNDLES, AND BLOCKS 139

Observation 2.3.15 (n-Truss bordisms are determined by their functorial
relations). For fixed n-trusses T and S, there is at most one n-truss bordism
R : T −7−→ S with specified k-stage relations relRk : (Tk,⊴) −7−→ (Sk,⊴); in other
words, an n-truss bordism with given domain and codomain is determined
by its associated functorial relations.

Specifically, given n-trusses T and S, along with k-stage relations relRk :
(Tk,⊴) −7−→ (Sk,⊴), the n-truss bordism R is necessarily given as follows:
the set Rk is the union of the k-stage sets Tk and Sk, and the projection
Rk → Rk−1 is the union of the projections Tk → Tk−1 and Sk → Sk−1;
the face order poset (Rk,⊴) restricts to the face order posets (Tk,⊴) and
(Sk,⊴), and there is a face poset arrow (t ∈ Tk) ⊴ (s ∈ Sk) exactly when
there is a relation relRk (t, s); the frame order poset (Rk,⪯) is simply the union
of the frame order posets (Tk,⪯) and (Sk,⪯); finally, the dimension map
dim : (Rk,⊴)→ [1]op is determined element-wise by the dimension maps on
the posets (Tk,⊴) and (Sk,⊴).

Leveraging this observation, we may now attempt to define composition
of n-truss bordisms via the composition of the associated k-stage functorial
relations.

Definition 2.3.16 (Composition of n-truss bordisms). Given n-truss
bordisms R(01) : T (0) −7−→ T (1) and R(12) : T (1) −7−→ T (2), the composite n-
truss bordism R(02) ≡ R(12) ◦ R(01) : T (0) −7−→ T (2) is the n-truss bordism
whose functorial relations are the composites of the functorial relations of
the component bordisms; that is, for all 1 ≤ k ≤ n, the composite k-stage
functorial relation is

relR
(02)

k := relR
(12)

k ◦ relR(01)

k .

Of course, it is not immediately clear that the given collection of compos-
ite functorial relations {relR(12)

k ◦ relR(01)

k } is in fact the collection of k-stage
relations of an n-truss bordism R(02); that is, it remains to show that this
definition indeed specifies a composite n-truss bordism, as its phrasing pre-
supposes. Allowing for now that presupposition, we may attempt to define
the more general labeled composition, as follows.

Definition 2.3.17 (Composition of labeled n-truss bordisms). Given
composable C-labeled n-truss bordisms R(01) ≡ (R(01), lblR(01)) and R(12) ≡
(R(12), lblR(12)), the composite labeled n-truss bordism R(02) ≡ R(12) ◦
R(01) is the labeled n-truss bordism (R(02), lblR(02)), whose underlying n-truss
bordism is R(02) := R(12) ◦R(01) and whose labeling is given by

lblR(02)(x0 ⊴ x2) := lblR(12)(x1 ⊴ x2) ◦ lblR(01)(x0 ⊴ x1)

whenever x0⊴x1 and x1⊴x2 are composable arrows in the total posets R(01)
n

and R(12)
n respectively.

It is by no means evident that the value of the labeling functor lblR(02)(x0⊴x2)
does not depend on the factorization x0 ⊴ x1 ⊴ x2; it thus remains to be
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verified that this definition indeed specifies such a functor, as it implicitly
claims to.

Lemma 2.3.18 (Composition of labeled n-truss bordisms is well defined).
The specification in Definition 2.3.16 provides a well-defined n-truss bordism
R(02) with the given k-stage relations relR

(02)

k , and the specification in Defini-
tion 2.3.17 provides a well-defined labeling functor lblR(02) : R

(02)
n → C with

the given labels lblR(02)(x0 ⊴ x2).

A direct proof of this result would involve, among other things, a tower of
inductive arguments each stage of which is itself a truss induction. We instead
defer the matter until we can give a more nimble proof via an interleaved
induction involving the classification of n-truss bundles; Lemma 2.3.18 will
be established as part of Lemma 2.3.48.

Example 2.3.19 (Composition of 2-truss bordisms). In Figure 2.46 we
illustrate two composable 2-truss bordisms

R(12) = (R
(12)
2

p
(12)
2−−−→ R

(12)
1

p
(12)
1−−−→ [1])

R(01) = (R
(01)
2

p
(01)
2−−−→ R

(01)
1

p
(01)
1−−−→ [1])

and their composite R(12) ◦ R(01) =: R(02) = (R
(02)
2

p
(02)
2−−−→ R

(02)
1

p
(02)
1−−−→ [1]).

For legibility we have drawn only the generating arrows at all stages of the
bordisms. Note that the 1-truss bordisms R(01)

1 , R(12)
1 , and their composite

R
(02)
1 are exactly those depicted in Figure 2.16.

Notation 2.3.20 (Categories of labeled n-trusses and their bordisms).
Given a category C, the ‘category of C-labeled n-trusses and their bordisms’,
whose objects are C-labeled n-trusses and whose morphisms are C-labeled
n-truss bordisms, will be denoted nTBord//C.

Notation 2.3.21 (The category of n-trusses and their bordisms). Of
course, we may and will consider the case where the labeling is in the terminal
category and thus carries no information whatsoever. The resulting ‘category
of n-trusses and their bordisms’, with objects n-trusses and morphisms n-truss
bordisms, will be denoted nTBord ≡ nTBord//∗.

Note that forgetting the labeling provides a functor nTBord//C → nTBord.

Observation 2.3.22 (The terminal and initial n-trusses). The terminal
object of nTBord is the n-truss T̄n

0 = (pn, pn−1, . . . , p1) in which every bundle
pi is trivial, with fiber the trivial closed 1-truss T̄0. Similarly, the initial
object of nTBord is the n-truss T̊n

0 = (pn, pn−1, . . . , p1) in which every bundle
pi is trivial, with fiber the trivial open 1-truss T̊0.
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R(02)

⇝ ⇝

R(01)

R(12) p
(12)
2 p

(12)
1

p
(01)
1p

(01)
2

p
(02)
2 p

(02)
1

:= R(12) ◦ R(01)

Figure 2.46. Composition of 2-truss bordisms.

2.3.1.3. ♢The recursive category of n-trusses and their bordisms.
That there is a composition of labeled n-truss bordisms (if not yet obviously
the specific one given before in Definitions 2.3.16 and 2.3.17) is an almost
unsettlingly slick consequence of reinterpreting n-trusses and their bordisms as
1-truss-labeled (n− 1)-trusses and their bordisms, and therefore by inductive
iteration as 1-trusses labeled in 1-trusses labeled in 1-trusses and so on, as
follows.

Recall from Definition 2.2.50 the labeled 1-truss bordism endofunctor
TBord1//− : Cat → Cat, that takes a category C to the category TBord1//C of
C-labeled 1-trusses and their bordisms. We promised to iterate that functor;
here we go.

Definition 2.3.23 (The iterated labeled 1-truss bordism functor). The
n-fold iterated labeled 1-truss bordism functor, denoted TBordn//−, is
the composite

TBord1//− ◦ TBord
1
//− ◦ · · · ◦ TBord

1
//− : Cat→ Cat

with n instances of the labeled 1-truss bordism functor.

Naturally when n = 0, we take the functor TBord0//− to be the identity functor
on Cat. Evaluating the n-fold labeled bordism functor at a specific labeling
category C ∈ Cat provides the following category.

Notation 2.3.24 (The recursive category of C-labeled n-trusses and their
bordisms). Given a category C, the category TBordn//C is called the ‘recursive
category of C-labeled n-trusses and their bordisms’.
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The name of this category telegraphs an expectation about its objects
and morphisms, which we make precise as follows.

Lemma 2.3.25 (Equivalence of recursive and non-recursive categories).
There is an equivalence between the category of labeled n-trusses and their
bordisms, and the recursive category of labeled n-trusses and their bordisms:

nTBord//C ≃ TBordn//C .

We defer a proof until we are in the context of classification of n-truss
bundles; Lemma 2.3.25 will be established along with Lemma 2.3.18 as part
of Lemma 2.3.48.

Given this equivalence, we may and will refer to objects of TBordn//C as
n-trusses, and to morphisms of TBordn//C as n-truss bordisms.

Observation 2.3.26 (n-Trusses as (n− 1)-truss-labeled 1-trusses). The
composition of the component functors in the iterated bordism functor
TBordn//− = (TBord1//−)

◦n : Cat → Cat is associative and therefore may be
rebracketed variously as convenient. For instance, bracketing together the
last n− 1 instances of the 1-truss bordism endofunctor provides the equality

TBordn//C = TBordn−1
//{TBord1//C}

That is, the (recursive) category of C-labeled n-trusses and their bordisms is
the (recursive) category of (n− 1)-trusses and their bordisms labeled in the
category of C-labeled 1-trusses and their bordisms. Informally, we express
(the unlabeled version of) this equality by saying ‘n-trusses are 1-truss-labeled
(n− 1)-trusses’.

By contrast, the opposite bracketing provides the equality

TBordn//C = TBord1
//{TBordn−1

//C
}

That is, the (recursive) category of C-labeled n-trusses and their bordisms is
the category of 1-trusses and their bordisms labeled in the (recursive) category
of C-labeled (n− 1)-trusses and their bordisms. Informally, we express this
fact by saying ‘n-trusses are (n− 1)-truss-labeled 1-trusses’.

Of course, any intermediate bracketing will do just as well:

TBordn//C = TBordk
//{TBordn−k

//C
}

That is, n-trusses are (n− k)-truss-labeled k-trusses.

2.3.2. ♢n-Truss bundles and their classification. In the previous section,
we developed the notion of n-trusses, providing a combinatorial model of
towers of suitably framed stratified bundles, and of n-truss bordisms, providing
a corresponding model of such towers over the stratified 1-simplex. Now we
describe the natural generalization to n-truss bundles, which will model such
framed stratified towers over more general stratified spaces.
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Synopsis. We introduce n-truss bundles as towers of 1-truss bundles
that begin with an arbitrary base poset. We discuss the classification of
n-truss bundles by functors into the recursive category of n-trusses and their
bordisms, and use classification constructions to prove that the recursive
category of n-trusses and their bordisms is equivalent to the category of
n-trusses and their bordisms; in the process we establish that the latter
category has a well-defined composition. Finally, we mention pullbacks, a
non-commutative product, dualization, and suspension for n-truss bundles.

2.3.2.1. ♢n-Truss bundles and bundle maps. We introduced n-trusses
as towers of 1-truss bundles over a point, and n-truss bordisms as towers of
1-truss bundles over a combinatorial 1-simplex; the generalization to towers
over arbitrary posets is direct, as follows.

Definition 2.3.27 (n-Truss bundle). An n-truss bundle over a base
poset B is a sequence of 1-truss bundles

Tn
pn−→ Tn−1

pn−1−−−→ · · · p2−→ T1
p1−→ T0 = B

in which the base poset of each bundle is the total poset of the next bundle.

We typically compress the sequence of bundles {Ti
pi−→ Ti−1} to a single letter

indicative of the maps, referring to the whole n-truss bundle as for instance
p. We refer to the face order poset (Tn,⊴) as the ‘total poset’ of the n-truss
bundle and abbreviate it simply by Tn.

Terminology 2.3.28 (Open and closed n-truss bundles). We call an
n-truss bundle p ‘open’, respectively ‘closed’, when all its 1-truss bundles
pi : Ti → Ti−1 are open, respectively closed.

Example 2.3.29 (The composition of 2-truss bordisms as a 2-truss
bundle). Recall the 2-truss bordisms R(01) and R(12) and their composite
R(02) from Figure 2.46. Identifying R(ij)

0 with the poset {i→ j}, the union
of the posets R(ij)

0 yields the poset T0 := [2] = (0 → 1 → 2). The union
of the posets R(ij)

1 is the total poset T1 of a 1-truss bundle over T0; that
1-truss bundle was illustrated previously in Figure 2.23. The union of the
posets R(ij)

2 is the total poset T2 of a 1-truss bundle over T1. Altogether this
provides a 2-truss bundle (T2 → T1 → T0 = [2]) over the 2-simplex, encoding
that composition of 2-truss bordisms.

Remark 2.3.30 (Generating arrows of n-truss bundles). For an n-truss
bundle p = (Tn

pn−→ Tn−1
pn−1−−−→ · · · p2−→ T1

p1−→ T0 = B) over a base poset
B, the covering relations cov(Ti) ⊂ mor(Ti,⊴) are determined by inductive
application of Construction 2.1.81, which specified the covering relation of
the total poset of a 1-truss bundle in terms of the covering relation of its
base poset. We refer to the morphisms of the covering relations cov(Ti) as
‘generating arrows’ of the n-truss bundle. Note that we have already in some
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previous illustrations depicted only the generating arrows of n-trusses and
n-truss bordisms, and will continue to do so as a matter of course for any
n-truss bundles.

As fundamental as labelings will be for the subsequent combinatorial
theory of stratified spaces, we can by now introduce them simply and without
fuss as follows.

Definition 2.3.31 (Labeled n-truss bundles). Given a poset B and a
category C, a C-labeled n-truss bundle p over B is a pair (p, lblp) consisting
of an n-truss bundle p, and a functor lblp : Tn → C from the total poset of
the bundle to the category.

Of course we refer to the ‘underlying n-truss bundle’ p and the ‘labeling
functor’ lblp. We display the labeled n-truss bundle as a labeled sequence:

C
lblp←−− Tn

pn−→ Tn−1
pn−1−−−→ · · · p2−→ T1

p1−→ T0 = B

Needless to say, n-truss bundles over base B = [1] are simply n-truss bordisms,
and over base B = [0] are simply n-trusses.

Definition 2.3.32 (Maps of labeled n-truss bundles). For categories
C and D, let p = {Ti

pi−→ Ti−1} be a C-labeled n-truss bundle and let
q = {Si

qi−→ Si−1} be a D-labeled n-truss bundle. A map of labeled n-
truss bundles F : p → q is a pair (F , lblF ) consisting of (1) a sequence
F = (Fn, Fn−1, ..., F1, F0), where F0 : T0 → S0 is a poset map and each pair
(Fi, Fi−1) : pi → qi is a 1-truss bundle map (as in Definition 2.1.87), and (2) a
functor lblF : C→ D for which ((Fn, Fn−1), lblF ) is a labeled 1-truss bundle
map (as in Definition 2.2.60).

We display the data of a map F ≡ (F , lblF ) as a commutative diagram:

C Tn Tn−1 · · · T1 T0

D Sn Sn−1 · · · S1 S0

lblF

lblp pn

Fn

pn−1

Fn−1

p2

· · ·

p1

F1 F0

lblq qn qn−1 q2 q1

As in the case of labeled 1-truss bundles, we refer to lblF as the ‘label
category functor’, and to the sequence F as the ‘underlying’ bundle map. We
make explicit the following obvious specializations of the previous definition.

Terminology 2.3.33 (Maps of n-truss bundles). For unlabeled n-truss
bundles p and q, a ‘map of n-truss bundles’ p → q is a sequence of 1-truss
bundle maps pi → qi, that is just the first piece of data from the definition of
maps of labeled n-truss bundles. Equivalently, a map of unlabeled n-truss
bundles is a map of labeled n-truss bundles whose labelings are both in the
terminal category.
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Terminology 2.3.34 (Maps of labeled n-trusses). For labeled n-trusses
T and S, a ‘map of labeled n-trusses’ T → S is simply a map of labeled
n-truss bundles whose base posets are both trivial.

Terminology 2.3.35 (Maps of n-trusses). For n-trusses T = {Ti
pi−→

Ti−1} and S = {Si
qi−→ Si−1}, a ‘map of n-trusses’ T → S is simply a sequence

of 1-truss bundle maps pi → qi. Equivalently, it is a map of n-truss bundles
both of whose base posets are trivial, or a map of labeled n-trusses whose
labelings are both in the terminal category.

Various basic conditions on labeled n-truss bundle maps carry over from
the corresponding 1-truss versions, as follows.

Terminology 2.3.36 (Label-preserving and base-preserving n-truss
bundle maps). A labeled n-truss bundle map is ‘label preserving’ if the label
category functor lblF is an identity, and is ‘base preserving’ if the underlying
bundle map F has its initial poset map F0 being an identity.

Terminology 2.3.37 (Singular, regular, and balanced labeled n-truss
bundle maps). A labeled n-truss bundle map F ≡ (F = {pi → qi}, lblF ) is
‘singular’, ‘regular’, or ‘balanced’ if every component 1-truss bundle map
pi → qi is such, respectively, in the sense of Terminology 2.1.88.

Componentwise composition of the sequence {pi → qi} of underlying
bundle maps, along with composition of the label category functors, provides
the following categories.

Notation 2.3.38 (Categories of n-trusses and n-truss bundles). Using
the above notions of maps, we have the following four categories:

Trsn n-Trusses and their maps.
LblTrsn Labeled n-trusses and their maps.
TrsBunn n-Truss bundles and their maps.

LblTrsBunn Labeled n-truss bundles and their maps.
We will also have particular need of the following subcategory of TrsBunn:

Trsn(B) n-Truss bundles over the poset B and base-preserving maps.
As before, the decoration T̊ or T̄ will indicate the restriction to the open
objects and regular maps, or closed objects and singular maps, respectively.

Remark 2.3.39 (Enriched categories of n-trusses and n-truss bundles).
The hom sets Trsn(T, S) in the category Trsn are a priori, of course, discrete;
but we may instead regard Trsn(T, S) as a poset, whose objects are n-truss
maps and whose arrows are the natural transformations ν : En ⇒ Fn of
the total poset maps En, Fn : Tn → Sn of the n-truss maps E,F : T → S.
(Note that if such a natural transformation exists, it is unique, and such a
natural transformation induces natural transformations Ei ⇒ Fi at every
i-stage of the truss towers.) Altogether this provides a Pos-enrichment of the
category Trsn. Regarding a poset as a topological space via its specialization
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topology then provides a kTop-enrichment of the category Trsn. (Here kTop
denotes the category of compactly generated spaces; see Convention B.1.1
and Notation B.1.2 and the intervening discussion.) All the same comments
apply to the case of truss bundles, and we therefore have the following two
kTop-enriched categories:

Trsn n-Trusses and their kTop-space of maps.
Trsn(B) n-Truss bundles over the poset B and their kTop-space of

base-preserving maps.
These enrichments provide a subtle additional structure beyond the discrete
categories of trusses and truss bundles, but critically they should not be
considered as being (∞, 1)-categorical models, as the hom spaces are not
weak Hausdorff.

Terminology 2.3.40 (Restriction of labeled n-truss bundles). Given a
C-labeled n-truss bundle p ≡ (p = (pn, pn−1, ..., p1), lblp) over a poset B, and
a subposet A ↪→ B, the ‘restriction’ of the labeled bundle to the subposet
is the C-labeled n-truss bundle p|A given by the upper row in the following
diagram:

Tn|A Tn−1|A · · · T1|A A

C

Tn Tn−1 · · · T1 B

⌟
lblp|A

pn|A

⌟

pn−1|A p2|A

· · · ⌟

p1|A

lblp pn pn−1 p2 p1

Here each square is a pullback, in fact a restriction, of 1-truss bundles. This
process provides in particular a functor −|A : Trsn(B)→ Trsn(A).

Remark 2.3.41 (Balanced isomorphism for labeled n-truss bundles).
Generalizing Remark 2.2.66, balanced label- and base-preserving n-truss
bundle isomorphisms preserve all structural data (face orders, frame orders,
dimension maps at all stages, projection towers, labeling functors), and are
unique when they exist. As before, there is therefore no need to distinguish
between distinct but balanced label- and base-preservingly isomorphic labeled
n-truss bundles.

Given a 1-truss bundle, we could forget everything except the total poset
or the base poset. The corresponding constructions for n-truss bundles
involve discarding either part of the tail or part of the head of the constituent
sequence of 1-truss bundles, as follows.

Construction 2.3.42 (Upper truncation of n-truss bundles). The ‘upper
(n− k)-truncation functor’

(−)>k : LblTrsBunn → LblTrsBunn−k

takes a labeled n-truss bundle p = (p = (pn, pn−1, ..., p1), lblp) to the labeled
(n− k)-truss bundle p>k = (p

>k
= (pn, pn−1, ..., pk+1), lblp) given by the first

(n−k)-many 1-truss bundles in the tower, with the labeling of the total poset.
(When k = n, we interpret this truncation to yield just the total poset of the
n-truss bundle, with its labeling functor.)
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Construction 2.3.43 (Lower truncation of n-truss bundles). The ‘lower
k-truncation functor’

(−)≤k : LblTrsBunn → TrsBunk

takes a labeled n-truss bundle p = (p = (pn, pn−1, ..., p1), lblp) to the unla-
beled k-truss bundle p≤k = (pk, pk−1, ..., p1) given by the last k-many 1-truss
bundles in the tower. (When k = 0, we interpret this truncation to yield just
the base poset of the n-truss bundle.)

2.3.2.2. ♢Classification and totalization for n-truss bundles. Recall
from Observation 2.2.73 that C-labeled 1-truss bundles are classified by
functors into the category TBord1//C of C-labeled 1-trusses and their bordisms.
We now discuss the analogous classification in the n-truss case: C-labeled
n-truss bundles are classified by functors into the recursive category TBordn//C
of C-labeled n-trusses and their bordisms. Along the way we will finally
establish that that recursive category is equivalent to the category nTBord//C
of C-labeled n-trusses and their bordisms.

Construction 2.3.44 (Classifying functors of labeled n-truss bundles).
We describe a map

p ≡ (p = (pn, pn−1, ..., p1), lblp : Tn → C) 7→ (χp : B → TBordn//C)

that takes a C-labeled n-truss bundle p ≡ (p, lblp) over a poset B, with
underlying bundle p = (pn, pn−1, ..., p1) and labeling functor lblp : Tn → C,
to an associated classifying functor χp : B → TBordn//C.

We construct the functor χp inductively, as follows.
››››› Specify an initial functor χn

p := lblp : Tn → C as the given labeling
functor.

››››› Inductively in descending i, consider the (TBordn−i
//C )-labeled 1-truss

bundle (pi : Ti → Ti−1, χ
i
p : Ti → TBordn−i

//C ); define

χi−1
p : Ti−1 → TBord1

//(TBordn−i
//C

)
= TBordn−i+1

//C

to be the classifying functor of that labeled 1-truss bundle (pi, χ
i
p).

››››› Finally set χp := χ0
p : B → TBordn//C.

Notice that in the inductive construction above, we used the fact (see Obser-
vation 2.3.26) that TBord1

//(TBordn−i
//C

)
is a suitable expression for TBordn−i+1

//C .

Conversely, to a classifying functor we may associate a total labeled
bundle, as follows; the construction will simply invert each inductive step of
the preceding construction of classifying functors.

Construction 2.3.45 (Total labeled n-truss bundles of classifying func-
tors). We describe a map

(F : B → TBordn//C) 7→ πF ≡ (πF = (πnF , π
n−1
F , ..., π1F), lblF : TotnF→ C)



2.3. ♢N -TRUSSES, BORDISMS, BUNDLES, AND BLOCKS 148

that takes a functor F : B → TBordn//C to an associated total C-labeled
n-truss bundle πF ≡ (πF, lblF).

We construct the labeled n-truss bundle πF inductively, as follows.
››››› Specify an initial functor lbl0F : Tot0F→ TBordn//C to be the given functor
F : B → TBordn//C.

››››› Inductively in ascending i, consider the classying functor

lbli−1
F : Toti−1F→ TBordn−i+1

//C = TBord1
//(TBordn−i

//C
)
;

define (πiF : TotiF→ Toti−1F, lbliF : TotiF→ TBordn−i
//C ) to be the total

(TBordn−i
//C )-labeled 1-truss bundle of that classifying functor.

››››› Finally set πF := (πnF , π
n−1
F , ..., π1F) and lblF := lblnF : TotnF→ C.

Remark 2.3.46 (Unwinding the classification constructions). Consider
the tower of intermediate classifying maps arising in the preceding inductive
classification construction; we display, as follows, the form of this tower
in the case of a C-labeled 3-truss bundle p with underlying 3-truss bundle
T3

p3−→ T2
p2−→ T1

p1−→ T0 and labeling functor lblp : T3 → C.

T3 C

T2 TBord1//C

T1 TBord2//C TBord1
//TBord1//C

T0 TBord3//C TBord1
//TBord2//C

p3

χ3
p = lblp

p2

χ2
p

p1

χ1
p

χ0
p

Explicitly, the C-labeled 1-truss bundle (p3, χ
3
p) is classified by χ2

p, then the
labeled 1-truss bundle (p2, χ

2
p) is classified by χ1

p, and finally the labeled
1-truss bundle (p1, χ

1
p) is classified by χ0

p. Each of the following subsets of the
diagram thus determines the entire C-labeled 3-truss bundle: by definition the
bundles p1, p2, and p3, together with the functor χ3

p = lblp; or the bundles
p1 and p2, together with the functor χ2

p; or the bundle p2 together with the
functor χ1

p; or just by itself the functor χ0
p.

Example 2.3.47 (Classification and totalization for a labeled 3-truss
bundle). As an example of the iterated classification procedure described and
displayed in the previous remark, in Figure 2.47 we depict the classifying
tower of a 3-truss (with trivial labeling category for simplicity). Consider
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having, at the outset, the tower of 1-truss bundles T3
p3−→ T2

p2−→ T1
p1−→ T0

(with trivial labeling lblp : T3 → ∗).
First, form the classifying functor

χ2
p := χ(p3,lblp)

: T2 → TBord1//∗ ≡ TBord1

of the (trivially labeled) 1-truss bundle T3
p3−→ T2. Note that this classifying

functor happens to factor as T2 → BF ↪→ TBord1, where BF is the opposite
flip flop monoid described in Example 2.2.59. That factorization allows
us to consider the a priori TBord1-labeled 1-truss bundle (p2, χ

2
p) as being

BF-labeled, and therefore specified by color-coding the arrows of the poset
T2; in fact, this BF-labeled bundle is the one that appeared in Figure 2.39.

Second, form the classifying functor

χ1
p := χ(p2,χ2

p)
: T1 → TBord1//BF ↪→ TBord1

//TBord1
≡ TBord2

of the BF-labeled 1-truss bundle (p2, χ2
p). That functor is similarly specified by

color-coding the arrows of the poset T1; again in fact this (TBord1//BF)-labeled
bundle previously appeared in Figure 2.40.

Third, form the classifying functor

χp ≡ χ0
p := χ(p1,χ1

p)
: T0 → TBord2//BF ↪→ TBord2

//TBord1
≡ TBord3

of the (TBord1//BF)-labeled 1-truss bundle (p1, χ
1
p). In this case, where the

base poset T0 is a point, that final classifying functor is rather tautological,
merely picking out the point of TBord3 indicating the given 3-truss. But
of course for bundles with nontrivial base poset, even this final classifying
functor would trace out an informative diagram in the target classifying
category TBord3.

Equipped with the classification and totalization contructions for labeled
n-truss bundles, we may now establish together two facts previously deferred:
that the composition of labeled n-truss bordisms (from Definitions 2.3.16
and 2.3.17) is well-defined (as claimed in Lemma 2.3.18), and that that
category is equivalent to the recursive category of labeled n-trusses and their
bordisms (as claimed in Lemma 2.3.25).

Lemma 2.3.48 (Categories of n-trusses and their bordisms). The compo-
sition of labeled n-truss bordisms is well-defined, and the resulting category of
labeled n-trusses and their bordisms is equivalent to the recursive category of
labeled n-trusses and their bordisms:

χ− : nTBord//C ≃ TBordn//C : π−

This equivalence is by a functor χ−, that takes n-trusses and bordisms to the
images of their classifying functors in the recursive category, and a functor
π−, that takes objects and morphisms of the recursive category to their total
n-trusses and bordisms.
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TBord2//BF ↪→ TBord3

≡

TBord1//BF ↪→ TBord2

∗

p3∼=

π
χ2
p

χ2
p := χ(p3,lblp)

lblp ∼= lblχ2
p

χ2
p
∼= lblχ1

p

χ1
p := χ

(p2,χ2
p)

π
χ1
p

∼=p2

p1∼=

π
χ0
p

χ0
p := χ

(p1,χ1
p)

χ1
p
∼= lblχ0

p

BF ↪→ TBord1

Figure 2.47. The classifying tower of a 3-truss.

Proof. The case n = 1 was established previously in Lemma 2.2.43 (since
1TBord//C and TBord1//C are identical by definition). Assume inductively that
(n− 1)TBord//C has well-defined composition, and that we have the desired
equivalence

χ− : (n− 1)TBord//C ≃ TBordn−1
//C : π− .

Setting the labeling category itself to be TBord1//C, we have in particular
that the category (n− 1)TBord//{TBord1//C}

is well-defined and we have the
equivalence

χ− : (n− 1)TBord//{TBord1//C}
≃ TBordn−1

//{TBord1//C}
: π− .

We first show that nTBord//C has well-defined composition. We do this in
a roundabout fashion by providing a (necessarily well defined) labeled n-truss
bordism R(02), and then showing that that labeled bordism R(02) has the
underlying k-stage relations specified by Definition 2.3.16 and the labeling
functor factorization specified by Definition 2.3.17.

Consider two composable labeled n-truss bordisms R(01) : T (0) −7−→ T (1)

(with R(01) = (R(01), lblR(01))) and R(12) : T (1) −7−→ T (2) (with R(12) =
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(R(12), lblR(12))). Let χ
R(01) : [1] → TBordn//C and χ

R(12) : [1] → TBordn//C
be the classifying functors of the labeled n-truss bordisms R(01) and R(12).
Considered as morphisms in TBordn//C, those functors admit a composite
χ
R(12) ◦ χR(01) : [1]→ TBordn//C. We may thus form the total labeled n-truss

bundle of that composite:

R(02) := π(χ
R(01)

◦χ
R(12)

)

For simplicity, we identify bundles up to (label- and base-preserving) balanced
isomorphism; observe that dom(R(02)) = T (0) and cod(R(02)) = T (2).

We now verify that the underlying bundle R(02) has k-stage relations
relR

(02)

k being precisely the composite relations relR
(12)

k ◦ relR
(01)

k , as re-
quired by Definition 2.3.16. Let R(02) = (p

(02)
n , p

(02)
n−1, . . . , p

(02)
1 ), R(01) =

(p
(01)
n , p

(01)
n−1, . . . , p

(01)
1 ), and R(12) = (p

(12)
n , p

(12)
n−1, . . . , p

(12)
1 ) denote the con-

stituent 1-truss bundles. Inductively we may assume relR
(02)

k = relR
(12)

k ◦relR(01)

k

for k < n, and then argue that relR
(02)

n = relR
(12)

n ◦ relR(01)

n as follows.
››››› If (x0, x2) ∈ relR

(02)

n , then p
(02)
n (x0, x2) =: (x′0, x

′
2) ∈ relR

(02)

n−1 . By in-
duction, there exists some x′1 ∈ T

(1)
n−1 with (x′0, x

′
1) ∈ relR

(01)

n−1 and
(x′1, x

′
2) ∈ relR

(12)

n−1 . Now observe

χ
p
(02)
n

(x′0 ⊴ x
′
2) = χ

p
(12)
n

(x′1 ⊴ x
′
2) ◦ χp

(01)
n

(x′0 ⊴ x
′
1)

It follows from the definition of composition of 1-truss bordisms as
composition of relations (see Definition 2.1.51) that there is some x1 ∈
T
(1)
n with p

(02)
n (x1) = x′1 and with (x0, x1) ∈ relR

(01)

n and (x1, x2) ∈
relR

(12)

n .
››››› Conversely, if relR

(01)

n (x0, x1) and relR
(12)

n (x1, x2), then p
(01)
n (x0, x1) =:

(x′0, x
′
1) ∈ relR

(01)

n−1 and p
(12)
n (x1, x2) =: (x′1, x

′
2) ∈ relR

(12)

n−1 . By induction
we have (x′0, x′2) ∈ relR

(02)

n−1 ; the previously displayed equality of classifying
functors implies that (x0, x2) ∈ relR

(02)

n .
That much verifies that the underlying bundle R(02) is well-defined by the
composites of the k-stage relations of the underlying bundles R(01) and R(12).

Next, again by the same displayed equality of classifying functors (and
the fact that that equality holds for any factorizing element x′1 ∈ T

(1)
n−1), the

labeling functor lblR(02) satisfies the labeling functor factorization

lblR(02)(x0 ⊴ x2) := lblR(12)(x1 ⊴ x2) ◦ lblR(01)(x0 ⊴ x1),

as specified by Definition 2.3.17; that much ensures that the labeling functor
is well-defined and altogether that nTBord//C indeed forms a category.

It remains to show that classification and totalization form an equivalence
between nTBord//C and TBordn//C. With the inductive assumption (applied
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to the labeling category TBord1//C), it suffices to check that

χ− : nTBord//C ≃ (n− 1)TBord//{TBord1//C}
: π−

Observe that this classification construction χ− and totalization construction
π− are functorial, and are inverse on objects and morphisms up to label-
preserving balanced bundle isomorphism. □

The correspondence, via Constructions 2.3.44 and 2.3.45, between labeled
n-truss bundles and functors into the (recursive) category of labeled n-trusses
and their bordisms, is functorial, with respect to a notion of bordisms of
bundles, generalizing the previous Definitions 2.1.96 and 2.2.70, as follows.

Definition 2.3.49 (Bordisms of labeled n-truss bundles and their compo-
sition). Given C-labeled n-truss bundles p and q over a poset B, a C-labeled
n-truss bundle bordism u : p ⇒ q is a C-labeled n-truss bundle u over
B × [1] such that u|B×{0} = p and u|B×{1} = q.

The composition of two such labeled bordisms u : p⇒ q and v : q ⇒ r is
the labeled bordism v◦u : p⇒ r whose iterated restriction (v ◦ u)|{x}×[1] is the
composite labeled bordism v|{x}×[1] ◦ u|{x}×[1], for all elements x ∈ B.

Note that, given a C-labeled n-truss bundle bordism u : p ⇒ q, its
classifying functor χu : B × [1] → TBordn//C may also be considered as a
‘classifying natural transformation’ χp ⇒ χq : B → TBordn//C.

Notation 2.3.50 (Category of labeled n-truss bundles and their bor-
disms). For a fixed base poset B and a category C, the ‘category of C-labeled
n-truss bundles and their bordisms’, whose objects are C-labeled n-truss
bundles over B and whose morphisms are C-labeled n-truss bundle bordisms,
will be denoted nTBord(B)//C.

Remark 2.3.51 (Isobordisms of n-truss bundles are unique). An invertible
n-truss bundle bordism is called an ‘n-truss bundle isobordism’. Given two
unlabeled n-truss bundles, if there is an isobordism between them, then there
is a unique such isobordism; this uniqueness follows by iteratively applying
Observation 2.1.98. However, for the same reasons as in Remark 2.2.72, this
uniqueness does not hold in the labeled case.

Classification and totalization now provide an equivalence of categories,
generalizing the previous Lemma 2.3.48 from n-trusses to n-truss bundles
and the earlier Observation 2.2.73 from 1-truss bundles to n-truss bundles.

Observation 2.3.52 (Classification and totalization functors for labeled
n-truss bundles). Given a poset B and a category C, there is an equivalence
of categories

χ− : nTBord(B)//C ⇄ Fun(B,TBordn//C) : π−

specified as follows.
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The ‘classification functor’ χ− takes a C-labeled n-truss bundle p to
its classifying functor χp : B → TBordn//C, and a C-labeled n-truss bundle
bordism u : p⇒ q (by definition a labeled n-truss bundle over B × [1]) to its
classifying functor χu : B×[1]→ TBordn//C viewed as a natural transformation
χu : χp ⇒ χq.

The ‘totalization functor’ π− takes a functor F : B → TBordn//C to its
total C-labeled n-truss bundle πF, and a natural transformation, represented
as a functor N : B × [1]→ TBordn//C, to its total labeled n-truss bundle πN,
considered as a bundle bordism.

Remark 2.3.53 (Classifying categorical labeled n-truss bundles). Gener-
alizing Remark 2.1.85, a ‘categorical n-truss bundle’ p over a category B is a
tower Tn

pn−→ Tn−1 → ...→ T1
p1−→ T0 = B of categorical 1-truss bundles. A

‘categorical C-labeled n-truss bundle’ p over a category B is simply a categor-
ical n-truss bundle p over B, together with a labeling functor lblp : Tn → C.
Generalizing Remark 2.2.74, the above classification and totalization con-
structions carry over to this categorical case, showing that C-labeled n-truss
bundles over a category B (and their bundle bordisms) correspond to functors
B→ TBordn//C (and their natural transformations).

2.3.2.3. ♢Pullback, product, dualization, and suspension of n-truss
bundles. Our usual constructions of pullbacks, duals, and suspensions carry
over from 1-truss bundles to n-truss bundles. We also describe a notion of
(non-commutative) products for n-trusses and n-truss bundles, based on the
construction of pullbacks.

Construction 2.3.54 (Pullbacks of labeled n-truss bundles). Consider
a C-labeled n-truss bundle p = (p, lblp) over a poset B, with underlying
bundle p = (pn, pn−1, ..., p1). Given a poset map G : A → B, the pullback
of the bundle p (along the map G) is the C-labeled n-truss bundle G∗p ≡
(G∗p, lblG∗p), with underlying bundle G∗p = (G∗pn, G

∗pn−1, ..., G
∗p1) and

labeling functor lblG∗p constructed as follows.
››››› Define Tot0G := G : A→ B.
››››› Inductively with ascending i, define G∗pi : G

∗Ti → G∗Ti−1 and TotiG :
G∗Ti → Ti by the 1-truss bundle pullback of pi : Ti → Ti−1 along the
poset map Toti−1G : G∗Ti−1 → Ti−1 (where G∗Ti−1 is the total poset
of G∗pi−1).

››››› Finally, set the labeling functor lblG∗p to be the composite lblp ◦TotnG.



2.3. ♢N -TRUSSES, BORDISMS, BUNDLES, AND BLOCKS 154

We can display the pullback G∗p of the labeled n-truss bundle p, along the
base poset map G, as the upper row in the following diagram:

G∗Tn G∗Tn−1 · · · G∗T1 A

C

Tn Tn−1 · · · T1 B

⌟
lblG∗p

G∗pn

TotnG

⌟

G∗pn−1

Totn−1G

G∗p2

· · ·
⌟

G∗p1

Tot1G Tot0G=G

lblp
pn pn−1 p2 p1

Note that the poset maps TotiG (together with the labeling category functor
id : C→ C) assemble into a C-labeled n-truss bundle map G∗p→ p, which we
call the ‘pullback bundle map’. As before, when G : A ↪→ B is a subposet, the
pullback recovers the earlier notion of restriction of labeled n-truss bundles,
i.e. G∗p = p|A.

As a special case of truss bundle pullbacks, we obtain the following truss
products.

Construction 2.3.55 (Products of labeled n-trusses and n-truss bun-
dles). Given a C-labeled n-truss T = (T , lblT ) and an unlabeled m-truss
bundle q = (qm, qm−1, ..., q1) over a poset S0, where qi : Si → Si−1; let
G : Sm → [0] be the terminal map, let (G∗T , q) denote the tower of 1-truss
bundles obtained by concatenating the tower G∗T with the tower q, and let
G∗lblT be shorthand for the composite lblT ◦ (G× idTn) : Sm × Tn → C. We
define the truss product q × T to be the C-labeled (m+ n)-truss bundle
((G∗T , q), G∗lblT ) over the poset S0.

Remark 2.3.56 (Non-commutativity of products). By omitting labelings,
the preceding construction gives a notion of products of trusses. Note well
that given an n-truss T and an m-truss S, the product T ×S and the product
S × T differ in general; that is, truss products are non-commutative. Some
examples of this non-commutativity can be found in Chapter C.

Taking duals of the constituent 1-truss bundles provides a dualization of
labeled n-truss bundles, as follows.

Construction 2.3.57 (Dualization of labeled n-truss bundles and their
maps). Given a C-labeled n-truss bundle p = (p, lblp) with underlying n-truss
bundle p = (pn, pn−1, ..., p1), its dual is the Cop-labeled n-truss bundle p†,
whose underlying n-truss bundle is p† = (p†n, p

†
n−1, ..., p

†
1) (where p†i is the

dual of the 1-truss bundle pi, see Construction 2.1.107), and whose labeling
lblp† is the opposite labeling (lblp)

op.
Given a labeled n-truss bundle map F : p → q, the dual bundle map

F † : p† → q† has its underlying n-truss bundle map F † = F † given by the
same maps of sets as the bundle map F itself, and has relabeling functor
lblF † := (lblF )

op.
We thus have a covariant involutive functor of labeled n-truss bundles:

† : LblTrsBunn ∼= LblTrsBunn.
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Construction 2.3.58 (Dualization of labeled n-truss bundles and their
bordisms). For a C-labeled n-truss bundle bordism u : p ⇒ q, given as a
labeled bundle u over B × [1], its dual Cop-labeled n-truss bundle bordism
u† : q† ⇒ p† is provided by the dual labeled bundle u† (over (B × [1])op ∼=
Bop × [1]) of the given labeled bundle u (over B × [1]).

Dualization therefore gives an involutive isomorphism of labeled n-truss
bundles and their bordisms:

† : nTBord(B)//C ∼= (nTBord(Bop)//Cop)op.

When the base poset is trivial, this specializes, using the equivalence
nTBord//C ≃ TBordn//C from Lemma 2.3.48, to an involutive isomorphism:

† : TBordn//C ∼= (TBordn//Cop)op.

Remark 2.3.59 (Duality of closed and open trusses). The dualization
of Construction 2.3.57 sends closed n-truss bundles to open n-truss bundles,
and singular n-truss bundle maps to regular n-truss bundle maps. Thus,
in particular, dualization of n-truss bundles and their maps specializes to a
covariant involutive isomorphism

† : T̄rsn(B)⇄ T̊rsn(B
op) : †

between the category of closed n-truss bundles with singular maps T̄rsn(B),
over the base poset B, and the category of open n-truss bundles with regular
maps T̊rsn(Bop), over the opposite base poset (see Notation 2.3.38). Of course,
when the base poset is trivial, this specializes to the dualization case of most
fundamental concern, between closed trusses and open trusses:

† : T̄rsn ⇄ T̊rsn : †

Finally, straightforwardly generalizing the 1-truss bundle case, we mention
suspensions of n-truss bundles.

Construction 2.3.60 (Suspension of n-truss bundles). For an (unla-
beled) n-truss bundle p = (pn, pn−1, ..., p1), its suspension is the n-truss
bundle Σp = (Σpn,Σpn−1, ...,Σp1), where Σpi is the suspension bundle of
the 1-truss bundle pi, see Construction 2.1.111.

When the category C has both initial and terminal objects, a C-labeled
n-truss bundle p = (p, lblp) has a suspension Σp = (Σp, lblΣp) with underlying
bundle the suspension Σp of the underlying n-truss bundle, and with labeling
functor lblΣp : ΣTn → C being simply lblp on Tn ⊂ ΣTn and sending the
initial and terminal objects of the suspension to the initial and terminal
objects of the labeling category, see Remark 2.2.81.

2.3.3. ♢n-Truss blocks and block sets. One of the most classical starting
points for combinatorial topology is to consider the category ∆ of combi-
natorial simplices; the presheaves on ∆ are the simplicial sets. Though
fundamental, there is nothing exclusive about simplices as a collection of
basic shapes, and instead one may consider, for instance, the category G of
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combinatorial globes or the category □ of combinatorial cubes; the presheaves
on G are the globular sets, and the presheaves on □ are the cubical sets.

The theory of trusses provides a new collection of combinatorial basic
shapes, namely the truss blocks. Truss blocks are by definition the trusses
with an initial element, and they assemble into a combinatorially defined
category X; presheaves on Xare the block sets. Truss blocks simultaneously
generalize combinatorial simplices, combinatorial globes, and combinatorial
cubes and therefore inherit some of the merits and potentialities of each
classical context. More importantly, they are the component building blocks of
trusses themselves, and therefore basic for the theory of framed combinatorial
topology as such.

Synopsis. We discuss face, degeneracy, embedding, and coarsening maps
of trusses, and show that a singular map of closes trusses uniquely factors
into a degeneracy and a face, and that a regular map of open trusses uniquely
factors into a coarsening and an embedding. We then define truss blocks as
closed trusses with an initial element, and introduce the category of blocks
and their singular maps. Next we define block sets as presheaves on the
category of blocks, and block complexes as presheaves on the category of
blocks with just their face maps. Finally, we briefly describe the dual story
of truss braces, that is open trusses with a terminal element, the resulting
category of braces and their regular maps, and the consequent notion of brace
sets.

2.3.3.1. ♢Factorization of truss maps. The classical category ∆≤n of
combinatorial simplices of dimension at most n (like the category of all
combinatorial simplices) has two distinguished classes of maps, namely the
injective monotone maps, called face maps, and the surjective monotone
maps, called degeneracy maps; the category has the fundamental geometric
property that any map factors uniquely as a degeneracy followed by a face
map. The category T̄rsn of closed n-trusses and singular maps similarly has
two distinguished classes of maps, faces and degeneracies, and a corresponding
unique factorization property. Moreover, the dual category T̊rsn of open n-
trusses and regular maps also has dual distinguished classes of maps, called
embeddings and coarsenings, and a respective factorization property.

We now introduce the various relevant classes of truss maps.

Terminology 2.3.61 (Subtrusses, faces, and embeddings of 1-trusses).
A map of 1-trusses F : T → S is called an ‘injection’ if it is injective on
objects.

››››› An injection F : T → S is a subtruss map if it is balanced.
››››› An injection F : T → S is a face map if T and S are closed and the map

is singular. (We also refer to these as ‘closed face’ maps for emphasis.)
››››› An injection F : T → S is an embedding map if T and S are open and

the map is regular. (We also refer to these as ‘open embedding’ maps
for emphasis.)
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Observation 2.3.62 (Characterizing faces and embeddings). Note that
a closed face map is necessarily balanced, and an open embedding map is
also necessarily balanced. Thus closed faces are exactly the closed subtrusses
of closed 1-trusses, and open embeddings are exactly the open subtrusses of
open 1-trusses.

Recall, for use in the following terminology for surjective truss maps,
that the endpoint type of a truss refers to the dimensions of the (frame
order) minimal and maximal elements; see Terminology 2.1.23. Note that a
surjective map of 1-truss preserves endpoints, and so if the trusses have the
same endpoint type then the map preserves the dimensions of the endpoints.

Terminology 2.3.63 (Degeneracies and coarsenings of 1-trusses). A
map of 1-trusses F : T → S is called a ‘surjection’ if it is surjective on objects.

››››› A surjection F : T → S is a degeneracy map if T and S have the
same endpoint type and the map is singular. If furthermore T and S
are closed, the map is a closed degeneracy.

››››› A surjection F : T → S is a coarsening map if T and S have the same
endpoint type and the map is regular. If furthermore T and S are open,
the map is a open coarsening.

Note that if a surjective map of 1-trusses is balanced, then it must be an
isomorphism; so there is no new notion of surjective maps corresponding to
the notion of subtrusses in the injective map case.

Example 2.3.64 (Faces, embeddings, degeneracies, and coarsenings of
1-trusses). In Figure 2.48 we depict an example of each of the aforementioned
types of maps of 1-trusses.

embedding

face degeneracy closed degeneracy

coarsening

subtruss

open coarsening

Figure 2.48. Faces, embeddings, degeneracies, and coarsen-
ings.

The preceding terminology for 1-truss maps carries over to the case of
n-trusses (and labeled n-trusses and more generally bundles) as follows.

Terminology 2.3.65 (Faces, embeddings, degeneracies, and coarsenings
of n-trusses). Given n-trusses T = (pn, pn−1, ..., p1) and S = (qn, qn−1, ..., q1),
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an n-truss map F : T → S is called an ‘injection’ if each 1-truss bundle map
Fi : pi → qi has every one of its fibers being a 1-truss injection. Similarly, the
n-truss map F : T → S is called a ‘subtruss’, ‘face’, ‘embedding’, ‘surjection’,
‘degeneracy’, ‘closed degeneracy’, ‘coarsening’, or ‘open coarsening’ exactly
when each 1-truss bundle map Fi is fiberwise of the corresponding designation.

The same terms apply, again by simply requiring the condition on every
fiber at every stage, to n-truss bundles maps and further to labeled n-truss
bundle maps, without further conditions18 on the given base map.

Notation 2.3.66 (Categories of degeneracies and coarsenings). The
category of n-trusses and their degeneracies is denoted Trsdegn . Similarly the
category of n-trusses and their coarsenings is denoted Trscrsn .

Terminology 2.3.67 (Coarsenings versus refinements). Given a coars-
ening map of n-trusses F : T → S, which grammatically we consider as
‘coarsening T to S’, we also call the map a refinement, and grammatically
consider it as ‘refining S to (or by) T ’. That is, we use the terms ‘coarsening’
and ‘refinement’ for the same structure but seen from converse perspectives—
a coarsening coarsens the domain to the codomain, while a refinement refines
the codomain to the domain.

Equipped with the notions of face and degeneracy maps, and dually
embedding and coarsening maps, we find that both singular maps of closed
trusses, and regular maps of open trusses, admit a canonical factorization
into an epimorphism and a monomorphism; that is, both the categories T̄rsn
and T̊rsn have an epi–mono factorizaton property, as follows.

Lemma 2.3.68 (Epi–mono factorization for closed singular and open
regular maps). Any singular map F of closed n-trusses factors uniquely into
a degeneracy FE followed by a face FM. Similarly, any regular map F of open
n-trusses factors uniquely into a coarsening FE followed by an embedding
FM.

Proof. In both cases the factorization F = FMFE is given simply by
factoring the ith stage face poset maps Fi = FM

i F
E
i using the standard

epi–mono factorization in the category Pos of posets. □

Example 2.3.69 (Epi–mono factorization of closed singular truss maps).
In Figure 2.49 we depict a singular map F : T → S of closed 2-trusses,
together with its epi–mono factorization F = FM ◦ FE.

Example 2.3.70 (Failure of epi–mono factorization for general truss
maps). In Figure 2.50, we depict a map F : T → S of 2-trusses (neither a
closed singular nor an open regular map), which cannot be factored into an
epimorphism followed by a monomorphism.

18In fact, when considering posets that are fundamental posets of cellular or cellulable
stratifications, it does make sense to enforce corresponding designations on the base map
as well (i.e., requiring the map to be the fundamental poset map of a stratified topological
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F2 F1 F0

FM
0FM

1FM
2

F E
2 F E

1 F E
0

=

Figure 2.49. Epi–mono factorization of a closed singular
2-truss map.

p2 p1

p′
1p′

2

F2 F1 F0

T2 T1 T0

S0S1S2

Figure 2.50. Failure of epi–mono factorization of a 2-truss
map.

The epi–mono factorization property of the category of closed trusses
and their singular maps, and similarly of the category of open trusses and
their regular maps, provides a rigid formal structure to the morphisms of
these categories. The natural transformations of these categories are even
more constrained, in that there are no non-identity natural transformations
whatsoever; thus the hom posets (consisting of maps and their natural
transformations) are in fact discrete.

‘face’ map, ‘degeneracy’ map, open stratified ‘embedding’, or stratified ‘coarsening’). For
most of our later constructions, this remark will apply.
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Lemma 2.3.71 (Rigidity of natural transformations for 1-trusses). Con-
sider 1-trusses T and S, and 1-truss maps E,F : T → S. Assume one of the
following holds:

››››› T and S are open, and E and F are regular (for instance embeddings),
››››› T and S are closed, and E and F are singular (for instance faces),
››››› E and F are coarsenings, or
››››› E and F are degeneracies, or
››››› E and F are balanced.

Then any natural transformation ν : E ⇒ F : (T,⊴) → (S,⊴) must be the
identity.

Proof. We discuss the case of open 1-trusses and regular maps. (The
closed singular case follows by duality, and the other cases follow by similar
arguments.) The maps E and F send a regular value a ∈ T to regular
values E(a) ∈ S and F (a) ∈ S; because there are no non-identity arrows
between regular values in S, we must have E(a) = F (a). Because T is
open, a singular value b ∈ T has two adjacent regular values b ± 1, which
are sent to E(b ± 1) = F (b ± 1). Since the maps E and F are functorial
and monotone, both E(b) and F (b) must be the unique element y ∈ S such
that E(b− 1) = F (b− 1)⊴ y ⊵ E(b+ 1) = F (b+ 1), and thus E(b) = F (b).
The functors E and F are thus identical and the natural transformation ν is
necessarily trivial. □

Lemma 2.3.72 (Rigidity of natural transformations for n-trusses). Con-
sider n-trusses T and S, and n-truss maps E,F : T → S. Assume one of the
following holds:

››››› T and S are open and E and F are regular (for instance embeddings),
››››› T and S are closed and E and F are singular (for instance faces)
››››› E and F are coarsenings, or
››››› E and F are degeneracies, or
››››› E and F are balanced.

Then any natural transformation ν : En ⇒ Fn of total poset maps En, Fn :
(Tn,⊴)→ (Sn,⊴) must be the identity.

All natural transformations are identities also in the corresponding cases
of base-preserving n-truss bundle maps, namely open bundles and regular maps,
closed bundles and singular maps, coarsenings of bundles, or degeneracies of
bundles.

Proof. We discuss the case of open n-trusses and regular maps. (The
case of closed n-trusses and singular maps follows by duality, and the other
cases follow by similar arguments.) Let T = (pn, pn−1, ..., p1) and S =
(qn, qn−1, ..., q1) be the constituent 1-truss bundles. Arguing inductively,
assume the statement holds for (n− 1)-trusses; the base case of 1-trusses was
shown in the previous lemma. Postcomposing the natural transformation ν
with the bundle projection qn yields a natural transformation qn◦ν : qn◦En ⇒
qn ◦ Fn, which may equivalently be considered a natural transformation
En−1 ◦ pn ⇒ Fn−1 ◦ pn. We must have qn ◦ ν = νn−1 ◦ pn for some natural
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transformation νn−1 : En−1 ⇒ Fn−1. (In general, given poset maps E,F :
B → C and G : A → B, any natural transformation ν : E ◦ G ⇒ F ◦ G
will be of the form µ ◦G for some natural transformation µ : E ⇒ F .) By
the inductive assumption we know that νn−1 = id. Finally, by applying
the rigidity of 1-trusses (from the previous lemma) to the transformation ν,
restricted to the fibers of pn and qn, we find that ν is itself trivial, as required.

The case of base-preserving n-truss bundle maps follows by applying the
same argument to each n-truss fiber of the bundle. □

2.3.3.2. ♢The definition of truss blocks. Any closed truss may be con-
sidered as being built by piecing together certain elementary combinatorial
building blocks, called straightforwardly truss blocks or simply blocks. A
truss block is a closed truss with an initial element; the existence of an initial
element ensures these blocks serve as component combinatorial cells.

Definition 2.3.73 (Truss blocks). An n-truss block T is a closed n-truss
T whose total poset (Tn,⊴) has an initial element ⊥. It is more specifically
an n-truss m-block if the initial element has depth m.

Recall that the depth of an element in a poset is the maximal length of a
chain starting at that element.

Example 2.3.74 (Truss blocks). In Figure 2.51 we depict a 2-truss 2-block
on the left, together with its (informal) geometric realization on the right.
In contrast to our earlier example of a general closed 2-truss in Figure 2.42,
note that the realization of this 2-truss 2-block consists of a single 2-cell. In
Figure 2.52 we similarly depict a 3-truss 3-block and its realization. A plethora
of further truss blocks and their realizations can be found in Chapter C.

2

1

T2 T1 T0

p1p2

Figure 2.51. A 2-truss 2-block and its corresponding framed
2-cell.

2
3

1

T2T3 T1 T0

p1p2p3

Figure 2.52. A 3-truss 3-block and its corresponding framed
3-cell.
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Remark 2.3.75 (Blocks truncate). Given an n-truss block T =
(pn, pn−1, ..., p1), the truncation T≤i = (pi, pi−1, ..., p1) is an i-truss block;
indeed, the initial element in the total poset Tn of the n-truss T projects by
the map p>i = pi+1 ◦ pi+2 ◦ ... ◦ pn to an initial element in the total poset Ti
of the i-truss T≤i.

Remark 2.3.76 (Blocks stabilize). Given an n-truss block T =
(pn, pn−1, ..., p1), there is an associated (n + i)-truss block T+i =
(id, ..., id, pn, pn−1, ..., p1), whose first i 1-truss bundles are identities with
singular fibers.

Observation 2.3.77 (Dimensions of blocks). Given an n-truss m-block
T = (pn, pn−1, ..., p1), the block depth m is computed by

m =
n∑

i=1

dim(p>i(⊥)) .

Here, in the ith summand, dim is the dimension functor of the 1-truss bundle
pi. In other words, the depth m is the count of the number of bundles pi that
are non-trivial (i.e. whose underlying poset map is not the identity map). In
particular, when m < n, at least one bundle pi must be trivial. Note further
that the depth m corresponds to the geometric dimension of the realization
of the m-block.

Notation 2.3.78 (Categories of n-blocks). The category of n-truss blocks,
denoted Blkn, is the full subcategory, of the category T̄rsn of closed trusses
and singular maps, whose objects are n-truss blocks.

Notation 2.3.79 (The category of blocks). The category of blocks,
denoted X, is the colimit under stabilization of the categories Blkn of n-truss
blocks.

Remark 2.3.80 (The notation for the category of blocks). The reader
who flipped ahead to Appendix Figure C.1 to see more 2-dimensional blocks,
will have recognized some cell structures familiar from other shape categories,
such as the 2-globe (the unique 2-dimensional shape in the globular category
G), the 2-simplex (the unique 2-dimensional shape in the simplicial category
∆), and the 2-cube (the unique 2-dimensional shape in the cubical category
□), along with some less standard 2-cell decompositions. The last block in
that figure has two 1-cells on both its upper and lower boundaries, and is
therefore unequivocally beyond the realm of globular, simplicial, cubical, or
opetopic models for higher categorical structures. We take this shape as
informally characteristic and let its X configuration of regular values inspire
the notation Xfor the category of blocks.

Recall from Terminologies 2.3.61 and 2.3.65 and Observation 2.3.62 that
faces of closed trusses are the closed subtrusses. There are distinguished
faces, namely those that are blocks, constructed as closures of elements of
closed trusses, as follows.



2.3. ♢N -TRUSSES, BORDISMS, BUNDLES, AND BLOCKS 163

Construction 2.3.81 (Face blocks in closed trusses). Let T =
(pn, pn−1, ..., p1) be a closed n-truss, and consider an element x ∈ Tn in
the total poset. We construct a subtruss inclusion T⊵x ↪→ T such that
T⊵x = (p⊵xn , p⊵xn−1, ..., p

⊵x
1 ) is a block, called the face block of the element x.

For each i ≤ n, denote by xi := p>ix the image of the element x under
the composite projection p>i = pi+1 ◦ ... ◦ pn : Tn → Ti. Set (T⊵xi ,⊴) to be
the subposet of (Ti,⊴) given by the upper closure of the element xi in (Ti,⊴).
Set the 1-truss bundle projection p⊵xi : T⊵xi → T⊵xi−1 to be the restriction
of pi : Ti → Ti−1 to the upper closure subposets. Altogether these bundles
and their inclusions p⊵xi ↪→ pi form the components of the desired subtruss
T⊵x ↪→ T . Note that T⊵x is an m-block, where m is the depth of the element
x in the total poset Tn.

Example 2.3.82 (Face blocks in closed trusses). In Figure 2.53, on the
left we depict a 2-truss T2 → T1 → T0, and highlight three of its face blocks.
The total poset T2 is the fundamental poset of the cell complex on the right;
note that face blocks (obtained by taking ‘upper closures’ in the total poset)
correspond to closed cells in the cell complex (obtained by taking ‘topological
closure’ in the complex).

p2 p1

p1p2p2 p1

p2 p1

T2 T1 T0

Figure 2.53. Face blocks in a 2-truss.

Remark 2.3.83 (All subtruss blocks are face blocks). Given an n-truss
T , the subtrusses of T that are n-truss blocks are in bijective correspondence
with the elements of the total poset Tn. Indeed, every such subtruss block
of T determines an element of Tn, namely the image of the initial element
of the block, and conversely elements of Tn determine face blocks by taking
upper closures as in Construction 2.3.81.

2.3.3.3. ♢Block sets and block complexes. Simplicial sets are presheaves
on the category of combinatorial simplicies. We have corresponding notions
of presheaves on the category of n-truss blocks, or more generally all blocks,
as follows.



2.3. ♢N -TRUSSES, BORDISMS, BUNDLES, AND BLOCKS 164

Definition 2.3.84 (n-Truss block sets). An n-truss block set is a
Set-valued presheaf on the category Blkn of n-truss blocks.

Notation 2.3.85 (Category of n-truss block sets). The ‘category of n-
truss block sets’, i.e. the category of Set-valued presheaves on the category
Blkn of n-truss blocks, will be denoted BlkSetn.

Definition 2.3.86 (Block sets). A block set is a Set-valued presheaf on
the category Xof blocks.

Notation 2.3.87 (Category of block sets). The ‘category of block sets’,
i.e. the category of Set-valued presheaves on the category Xof blocks, will be
denoted ̂X.

We usually abbreviate ‘n-truss block set’ simply to ‘block set’, leaving
the dimension n implicit and eliding the difference between presheaves on
Blkn for some fixed finite n and presheaves on the colimit category X(which
includes all the categories Blkn at once). In the subsequent discussion, we
restrict attention to n-truss block sets, for fixed n, but everything can be
extended to block sets, that is to the context of variable n.

Terminology 2.3.88 (Faces and degeneracies in block sets). For a block
set X ∈ BlkSetn and a block B ∈ Blkn, we refer to elements of the set X(B)
as ‘blocks of shape B’ in the block set X. For a given block b ∈ X(B) of
shape B in the block set X, we may take face map or degeneracy maps of
the block, as follows.

››››› For a specific face map F : C → B in Blkn, we call c := (X(F ))(b) ∈
X(C) the ‘F -face’ of the block b ∈ X(B).

››››› For a specific degeneracy map F : C → B in Blkn, we call c :=
(X(F ))(b) ∈ X(C) the ‘F -degeneracy’ of the block b ∈ X(B).

Terminology 2.3.89 (Nondegenerate blocks). A block c ∈ X(C) (of
shape C in the block set X) is a ‘nondegenerate block’ if it is not an F -
degeneracy for any non-identity degeneracy map F .

Recall that semi-simplicial sets, also known as ∆-complexes [Hat02], are
simplicial sets ‘without degeneracy maps’. We have an analogous notion of
block complexes as block sets ‘without degeneracy maps’, as follows.

Definition 2.3.90 (n-Truss block complex). An n-truss block complex
is a Set-valued presheaf on the injective subcategory Blkinjn ⊂ Blkn, i.e. on the
wide subcategory containing only face maps.

Of course one may define a ‘block complex’ (without fixing n) as a presheaf on
the injective subcategory of the category of blocks. We typically abbreviate
‘n-truss block complex’ to simply ‘block complex’.

Recall that a CW-complex is regular when each of its closed cells embeds
into the whole complex. Similarly a ∆-complex may be called regular when
each of its closed simplices embeds into the complex; concretely, that occurs
when all the faces of any given simplex are distinct. Analogously, a regular
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block complex is one for which all the faces of any given block are distinct,
as follows.

Definition 2.3.91 (Regular block complexes). A block complex X is
called regular when, for every block b ∈ X(B) of shape B, and every block
shape C, all the faces (X(F ))(b) ∈ X(C), for face maps F : C → B, are
distinct.

Notation 2.3.92 (Categories of block complexes). The ‘category of block
complexes’, i.e. the category of presheaves on the injective subcategory Blkinjn

of n-truss blocks, will be denoted BlkCplxn. Its full subcategory of regular
block complexes will be denoted RBlkCplxn.

The next example illustrates the differences between the notions of block
set, block complex, and regular block complex: in a regular block complex,
all the faces of each block are distinct; in a general block complex, a block
may have more than one face coincident; in a block set, a face of a block may
be a nontrivial degeneracy of another block.

Example 2.3.93 (A block set, a block complex, and a regular block
complex). In Figure 2.54, we depict the nondegenerate blocks of a 2-truss
block set (on the left) and of a 2-truss block complex (on the right). In each
case, we bubble and color-code the individual nondegenerate blocks; we then
use the color coding to indicate the face-block relationships. Note that in the
block set, the left and right 1-faces of the 2-block are a nontrivial degeneracy
of the 0-block (and are bubbled in purple accordingly); the existence of these
degenerate blocks prevents this block set from being a block complex. By
contrast, in the (nonregular) block complex, the left and right 1-faces of the
2-block are both the red-bubbled nondegenerate 1-block.

In Figure 2.55, we illustrate a regular block complex, by depicting its three
2-truss 2-blocks and the identifications of their face 1-blocks. Specifically, each
of the three distinct gray-bubbled 1-blocks is shared between two 2-blocks, as
indicated by the given geometric arrangement. The remaining 1-blocks are
pairwise identified according to the bubble colors. Altogether, this regular
complex has six 0-blocks (not indicated), nine 1-blocks, and three 2-blocks.
Note the truss poset towers of all the blocks can be inferred, by projection,
from the given total posets and the purple frame arrows.

We end this discussion of block sets with a few technical observations
about the categorical relationship of blocks, trusses, their maps, and their
presheaves. (Readers may skip ahead to Section 2.3.3.4 without consequence.)

Construction 2.3.94 (Block nerve of trusses). Given a closed n-truss
T , its ‘block nerve’ is the block set T̄rsn(−, T ) sending a block B to the hom
set T̄rsn(B, T ). This construction is functorial and gives rise to the ‘block
nerve functor’ NBlk : T̄rsn → BlkSetn.
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Figure 2.54. The blocks of a block set and of a block com-
plex.

Figure 2.55. A regular block complex.

Remark 2.3.95 (Building trusses from their blocks). We can now make
precise the sense in which a closed n-truss can be built from its blocks. Given
a closed n-truss T ∈ T̄rsn, denote by Blkn/T the comma category of the
inclusion Blkn ↪→ T̄rsn (that is, objects of Blkn/T are singular maps B → T
from blocks to T , and morphisms are block maps B → B′ commuting with
the given maps to T ). The truss T is now given by the colimit

T = colim(Blkn/T → T̄rsn)

of the forgetful functor Blkn/T → T̄rsn mapping (B → T ) to the block B.
(The colimit may also be taken to have source the smaller category with
objects the face maps from blocks to the truss T , and with morphisms the
commuting face maps of blocks.)

The above remark is equivalent to the statement that the functor Blkn ↪→ T̄rsn
is dense, and also to the statement that the nerve functor NBlk is fully faithful.

Remark 2.3.96 (Block complexes and regularity in block sets). Restrict-
ing presheaves along the inclusion j : Blkinjn ↪→ Blkn provides the pullback
functor j∗ : BlkSetn → BlkCplxn from block sets to block complexes. That
functor has left adjoint j! and right adjoint j! given by left and right Kan
extension respectively [Rie14]. The left adjoint j! can be thought of as ‘freely
adjoining degeneracies’ to a given block complex.

We say that a block set ‘is a block complex’ if it lies in the essential image
of this free adjunction j!, and we say it ‘is regular’ if it lies in the essential
image of the free adjunction j! restricted to regular block complexes.
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Observation 2.3.97 (Block nerves are regular). For any closed n-truss
T , its block nerve NBlk T is regular. Indeed, any map B → T from a block B
to the truss T factors uniquely into a degeneracy map followed by a face map
(see Lemma 2.3.68). Truss face maps are injective on blocks. It follows that
NBlk T ∼= j!T̄rsn(i−, T ) for i : Blkinjn ↪→ T̄rsn, and that T̄rsn(i−, T ) is regular,
as needed.

Degenerate blocks in block sets can have a rather different character than
degenerate simplices in simplices sets, as highlighted by the following final
two remarks.

Remark 2.3.98 (Interior versus boundary degeneracies). Degeneracies of
blocks may be separated into two distinct classes:

››››› A degeneracy map F : C → B is a ‘boundary degeneracy’ if the blocks
C and B are of the same dimension.

››››› A degeneracy map F : C → B is an ‘interior degeneracy’ if the dimension
of the block C is strictly greater than the dimension of the block B.

The second sort of degeneracy is familiar from simplicial sets. Due to the
existence of degeneracies of the first sort, a block in a block set may be
degenerate in a way that is only visible on its boundary.

Remark 2.3.99 (Block sets are not Eilenberg–Zilber). The Eilenberg–
Zilber lemma [EZ50] states that every simplex in a simplicial set is a degen-
eracy of a unique nondegenerate simplex. The analogous property fails for
block sets that do not satisfy further sheaf conditions.

2.3.3.4. ♢Truss braces and brace sets. Recall that closed n-trusses
and open n-trusses are related by covariant involutive duality isomorphisms
† : T̄rsn ∼= T̊rsn : †, which reverse the face orders and interchange the role of
singular and regular elements and maps. The whole story of truss blocks and
block sets may be transported across this duality, to provide a corresponding
story of truss braces and brace sets. For convenience, we briefly record the
most central aspects of that dual story.

Definition 2.3.100 (Truss braces). An n-truss brace T is an open
n-truss whose total poset (Tn,⊴) has a terminal element ⊤. It is more
specifically an n-truss m-brace if the terminal element has height (n −
m).

Recall the height of an element in a poset is the maximal length of a chain
ending at that element.

Example 2.3.101 (A truss brace). In Figure 2.56 we depict a 2-truss
0-brace on the left, obtained by dualizing the 2-truss 2-block from Figure 2.51.
We depict on the right an (informal) geometric realization of that brace;
notice that this realization is geometrically dual to the cell realizing the dual
truss block. (Such realizations will be formalized later on using the notion of
‘meshes’.)
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2

1

T2 T1 T0

p1p2

Figure 2.56. A 2-truss 0-brace.

Remark 2.3.102 (Braces stabilize). Given an n-truss brace T =
(pn, pn−1, ..., p1), there is an associated (n + i)-truss brace T+i =
(id, ..., id, pn, pn−1, ..., p1), whose first i 1-truss bundles are identities with
regular fibers.

Observation 2.3.103 (Dimensions of braces). Given an n-truss m-brace
T = (pn, pn−1, ..., p1), the brace dual height m is computed by

m =

n∑
i=1

dim(p>i(⊤))

In particular, when m > 0, at least one bundle pi must be trivial.

Dual to ‘face blocks’ we have a notion of ‘embedding braces’ as follows.

Construction 2.3.104 (Embedding braces in open trusses). Let T be
an open n-truss, and consider an element x ∈ Tn in the total poset. There is
a subtruss T⊴x ↪→ T , called the embedding brace of the element x, given
as the unique open subtruss of T that is a brace whose terminal element
maps to x.

Notation 2.3.105 (Category of n-truss braces). The category of n-truss
braces, denoted Brcn, is the full subcategory, of the category T̊rsn of open
trusses and regular maps, whose objects are n-truss braces.

Notation 2.3.106 (The category of braces). The category of braces,
denoted X, is the colimit under stabilization of the categories Brcn of n-truss
braces.

Definition 2.3.107 (n-Truss brace sets). An n-truss brace set is a Set-
valued presheaf on the category Brcn of n-truss braces.

Notation 2.3.108 (Category of n-truss brace sets). The ‘category of
n-truss brace sets’, i.e. the category of Set-valued presheaves on the category
Brcn of n-truss braces, will be denoted BrcSetn.

Definition 2.3.109 (Brace sets). A brace set is a Set-valued presheaf on
the category X of braces.

Notation 2.3.110 (Category of brace sets). The ‘category of brace sets’,
i.e. the category of Set-valued presheaves on the category X of braces, will
be denoted X̂.
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Note that the dualization isomorphism † : T̄rsn ∼= T̊rsn restricts to an
isomorphism of n-truss blocks and n-truss braces Blkn ∼= Brcn and thus pro-
vides isomorphisms of presheaf categories BlkSetn ∼= BrcSetn and altogether
an isomorphism ̂X∼= X̂.



CHAPTER 3

♢Constructibility of framed combinatorial structures

↪→

←↩

In Chapter 1, we infused classical combinatorial topology with a concept
of framings, eventually defining framed regular cells as combinatorial regular
cells equipped with locally collapsible simplicial framings. In Chapter 2,
we reimagined combinatorial stratified topology through the prism of in-
ductive constructibility, defining trusses as iterated constructible bundles of
entrance path posets of stratified intervals. In this chapter, we will ascertain
an equivalence between these independently motivated and a priori rather
distinct structures: framed regular cells have corresponding integral truss
blocks, and truss blocks have corresponding gradient framed regular cells.
This identification provides a computable classification, via constructible
combinatorics, of framed cell shapes.

We begin this chapter, in Section 3.1, with an illustrated overview of the
three fundamental classifications, of framed cells by truss blocks, of collapsible
framed cell complexes by closed trusses, and of framed cell complexes by
regular block complexes. We then, in Section 3.2, introduce the requisite
intermediate structure of proframed simplicial complexes; suitably cellular-
ized, these proframed complexes will have both framed cell complexes as
gradients and trusses as fundamental stratified posets. Finally, Section 3.3,
we develop the necessary cellularization techniques and assemble the proofs
of the classification results.

170
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3.1. ♢Overview of the classifications

We state and illustrate the three primary classification results in increasing
generality: the classification of framed regular cells by truss blocks, the
classification of collapsible framed regular cell complexes by trusses, and
the classification of framed regular cell complexes by regular truss block
complexes.

Theorem 3.1.1 (Truss blocks classify framed regular cells). n-Framed
regular cells are classified by n-truss blocks; that is, there is a canonical
equivalence of categories

FrCelln Blkn .
∫T
∇C

In this equivalence, framed regular cells are sent to truss blocks by the ‘truss
integration’ functor ∫T, and truss blocks are sent to framed regular cells by
the ‘cell gradient’ functor ∇C, which are both explained and constructed in
due course.

We illustrate an instance of this equivalence in Figure 3.1. On the left,
we depict a 3-framed regular cell by a framed realization in R3 (note the
same cell appeared earlier in Figure 1.55 and yet earlier in the title picture
of Chapter 1); on the right, we depict its corresponding 3-truss block.

2
3

1

Figure 3.1. A framed regular cell and its corresponding
truss block.

Theorem 3.1.2 (Trusses classify collapsible framed regular cell com-
plexes). Collapsible n-framed regular cell complexes are classified by closed
n-trusses and their singular maps; that is, there is a canonical equivalence of
categories

CollFrCellCplxn T̄rsn .
∫T
∇C

In fact, the proof of the previous classification of framed regular cells will
rely on this classification of framed regular cell complexes, not vice versa as
one might expect.

We illustrate an instance of this equivalence in Figure 3.2. On the left,
we depict a collapsible 3-framed regular cell complex (note this complex
appeared before in Figure 1.56); on the right, we depict its corresponding
closed 3-truss.



3.1. ♢OVERVIEW OF THE CLASSIFICATIONS 172

2
3

1

⇝

Figure 3.2. A collapsible framed regular cell complex and
its corresponding closed truss.

Theorem 3.1.3 (Regular truss block complexes classify framed regular
cell complexes). n-Framed regular cell complexes are classified by regular
n-truss block complexes; that is, there is a canonical equivalence of categories

FrCellCplxn RBlkCplxn .
∫T
∇C

We illustrate an instance of this equivalence in Figure 3.3. On the left, we
depict a 2-framed regular cell complex, consisting of two 0-cells, connected by
two 1-cells, which together are bounded by two distinct 2-cells (note that this
complex appeared earlier in Figure 1.43). On the right, the corresponding
truss block complex is depicted by its six nondegenerate truss blocks, each
in its own bubble, color-coded to the cells on the left; the face relations are
indicated by colored subbubbles.

2-truss 0-block 2-truss 0-block

2-truss 1-block 2-truss 1-block

2-truss 2-block 2-truss 2-block

Figure 3.3. A framed regular cell complex and its corre-
sponding truss block complex.
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3.2. ♢Proframed combinatorial structures

We would like to construct a correspondence, in particular, between
framed regular cells and truss blocks. This correspondence (and its general-
ization to cell complexes and trusses) will proceed via a crucial intermediate
structure, namely proframed simplicial complexes. Such a complex is a suitable
tower of simplicial complexes; see Figure 3.4 for an illustrative example.

Recall that a framed regular cell is in particular a cell-wise collapsible
framed simplicial complex. Given such a cell, for instance the one on the left
of Figure 3.1, consider the framing as providing a collection of infinitesimal
vector fields on the underlying simplicial complex. Imagine integrating the
maximal frame vector field to a foliation, and then quotienting the complex
(and its frame) by that foliation. One may hope that the quotient is itself a
framed simplicial complex representing a framed regular cell, and therefore
one may iterate the integration process to obtain a tower of regular cells—the
underlying simplicial complexes of that tower will form a proframed simplicial
complex. Finally, the fundamental posets of the regular cells of that tower
will assemble into a truss block, for instance the one on the right of Figure 3.1.
Altogether we call this the process of forming the truss integral.

To reverse the process, given a truss block, one may realize it to a tower
of simplicial complexes, that is to a proframed simplicial complex. The
kernels of the projections in that tower provide 1-dimensional foliations of
the complexes and one may imagine vector fields tangent to those foliations,
along with gradient-like vector fields for the projections to the leaves of
the foliations, altogether forming a framing structure on the total simplicial
complex of the proframe tower. One may hope that the total complex with its
framing forms a framed regular cell, providing altogether an inverse process
of forming the cell gradient.

Figure 3.4. A proframed simplicial complex.

Outline. In Section 3.2.1, we introduce proframed simplices, their
realizations, and maps, and we construct the gradient framed simplex of a
proframed simplex and the integral proframed simplex of a framed simplex.
In Section 3.2.2, we define proframed simplicial complexes, define the notions
of gradient and integral for complexes, introduce a collapsibility condition on
proframed complexes, and show that collapsible framings always integrate to
collapsible proframings.
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3.2.1. ♢Proframed simplices. Recall a frame on the standard simplex is a
numeral labeling of its spine. Quotienting by the spine vectors in reverse order
of their label numbers provides a ‘proframe’ tower of simplicial projections,
each with 1-dimensional affine kernel. We imagine the frame as consisting of
differential or infinitesimal data of (simplicial) tangent vectors; by contrast
we imagine the proframe as consisting of integral or global data of (simplicial)
projections. This heuristic dichotomy will become more vivid and defensible
later in the context of complexes: there the frames remain locally defined
simplex by simplex, whereas the proframes will be globally defined via unified
projections on the entire complex.

Synopsis. We define proframed simplices, and their partial and embedded
generalizations, as towers of simplicial projections with controlled affine
kernels. We then describe proframed realizations as affine embeddings of
these towers into the standard euclidean proframe. We specify proframed
and subproframed maps as suitable transformations of simplicial towers.
Finally, we construct the gradient functor taking proframed simplices to
framed simplices and the inverse integral functor taking framed simplices to
proframed simplices.

3.2.1.1. ♢The definition of proframed simplices. As when we defined
framed simplices, we begin with the basic case of proframes, and then
generalize to partial, embedded, and embedded partial proframes.

Definition 3.2.1 (Proframe on a simplex). A proframe of an m-simplex
S is an isomorphism S ∼= [m] together with a sequence P = (pm, pm−1, . . . , p1)
of surjective simplicial maps of the form

[m]
pm−−→ [m− 1]

pm−1−−−→ [m− 2]
pm−2−−−→ · · · p2−→ [1]

p1−→ [0].

We usually denote proframes on S by pairs (S ∼= [m],P); we may also keep
the isomorphism S ∼= [m] implicit, especially when the simplex S was already
ordered, writing the proframe as simply (S,P) or ([m],P) or just P depending
on context and convenience.

Example 3.2.2 (Proframes on simplices). In Figure 3.5 and Figure 3.6
we illustrate four proframed simplices. The arrows indicate a spine of the
simplex (and thus its isomorphism with a standard simplex), and each
simplicial degeneracy is indicated by highlighting its affine kernel.

Recall that a partial frame of a simplex S is a degeneracy S [k] and a
frame on the target simplex [k]. A partial proframe is defined analogously,
as follows.

Definition 3.2.3 (Partial proframe on a simplex). A k-partial
proframe on an m-simplex S is a degeneracy p⊥ : S [k] together with a
proframe P = (pk, pk−1, . . . , p1) of the simplex [k].

We denote k-partial proframes on a simplex S by pairs (S [k],P). As
in the case of partial frames, we refer to the affine kernel U = keraff(S
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p3

p2

p1

p2

p1p1

Figure 3.5. Proframed simplices.

p1p2p3p4

Figure 3.6. A proframed 4-simplex.

[k]) as the ‘unframed subspace’ of the partially proframed simplex (S
[k],P). Note that in an m-partial proframe of an m-simplex (S [m],P),
the degeneracy S [m] must be an isomorphism; thus m-partial proframes
of m-simplices are simply proframes of m-simplices.

Example 3.2.4 (Partial proframes on simplices). In Figure 3.7 we illus-
trate several partially proframed simplices. As before, each degeneracy is
indicated by highlighting its affine kernel; we distinguish in red the ‘unframed
subspace’ kernel of the initial degeneracy p⊥ and in green the kernels of the
other projections pi.

p2p2

p1p1p1p1

p⊥p⊥

p⊥p⊥

Figure 3.7. Partially proframed simplices.

Recall that an embedded frame of a simplex S is an isomorphism S ∼= [m]
together with a labeling of the vectors of spine[m] by numerals in {1, 2, . . . , n}.
Quotienting the spine vectors with label n, then those with label n− 1, and
so on, provides a series of simplicial degeneracies, each of which has affine
kernel either containing a single vector or being empty. Such a series provides
the notion of embedded proframe, as follows.
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Definition 3.2.5 (Embedded proframe on a simplex). An n-embedded
proframe of an m-simplex S is an isomorphism S ∼= [m] together with a
sequence P = (pn, pn−1, . . . , p1) of surjective simplicial maps of the form

[m] = [mn]
pn−→ [mn−1]

pn−1−−−→ [mn−2]
pn−2−−−→ · · · p2−→ [m1]

p1−→ [m0] = [0]

where for each i, either mi−1 = mi − 1 or mi−1 = mi.

We usually denote n-embedded proframed simplices by pairs (S ∼= [m],P),
abbreviated to (S,P) or ([m],P) or just P depending. Note that m-embedded
proframes of an m-simplex are simply ordinary (non-embedded) proframes.

Example 3.2.6 (Embedded proframes). In Figure 3.8 we illustrate a few
n-embedded proframed m-simplices. As before, each degeneracy is indicated
by highlighting its affine kernel.

p2

p1 p1

p2
p2

p1

p3

p3

p2

p1

Figure 3.8. Embedded proframes on simplices.

Of course we have the conceptual pushout of partial and embedded
proframes.

Definition 3.2.7 (Embedded partial proframe on a simplex). An n-
embedded k-partial proframe on an m-simplex S is a degeneracy p⊥ :
S [k] together with an n-embedded proframe P = (pn, pn−1, . . . , p1) of the
simplex [k].

However, neither partiality nor embedded partiality will be needed for our
principal concerns, and so we leave it without illustration or discussion.

3.2.1.2. ♢Proframed realizations. Recall the classical linear algebraic
notion of the standard euclidean proframe. From the standard frame
(e1, e2, ..., en) on Rn, we may form the spans ⟨en−k+1, en−k+2, ..., en⟩ ∼= Rk;
these assemble into the standard euclidean indframe, i.e., linear flag,

R0 ↪→ R1 ↪→ R2 ↪→ · · · ↪→ Rn

where Ri−1 ↪→ Ri is the inclusion by adding a leading zero coordinate. The
quotients of the total space Rn by these subspaces Rk provides a corresponding
proframe, i.e., tower of linear projections, as follows.



3.2. ♢PROFRAMED COMBINATORIAL STRUCTURES 177

Terminology 3.2.8 (The standard euclidean proframe). The ‘standard
euclidean proframe’ of Rn, denoted Pn

R, is the sequence of projections

Rn πn−− Rn−1
πn−1
−−− Rn−2

πn−2
−−− · · ·

π2−− R1 π1−− R0

where πi : Ri Ri−1 forgets the last coordinate of Ri.

See Section A.1 for an explication of classical linear frames, indframes, and
proframes, and their embedded generalizations.

Recall that a framed realization of a (possibly embedded) framed simplex
was an embedding of the simplex in euclidean space, that suitably respected
the frame structure on spine vectors. Analogously a proframed realization of
a (possibly embedded) proframed simplex is an embedding of the proframe
tower into the standard euclidean proframe tower, that suitably respects the
proframe structure on spine vectors.

Definition 3.2.9 (Proframed realization of an embedded proframed
simplex). A proframed realization of an n-embedded proframed simplex
(S ∼= [m],P = (pn, pn−1, . . . , p1)) is a sequence of linear embeddings rPi :
∆mi ↪→ Ri, giving a commutative diagram,

|S| ∆mn ∆mn−1 · · · ∆m1 ∆m0

Rn Rn−1 · · · R1 R0

∼= pn

rPn

pn−1

rPn−1

p2 p1

rP1 rP0

πn πn−1 π2 π1

such that, for any spine vector v ⊂ ∆mi that is degenerated by the projection
pi, the image rPi (v) ⊂ Ri is a positive vector in the fiber π−1

i (rPi−1(pi(v))).

The definition specializes, of course, to proframed realization of (non-
embedded) proframed m-simplices, in which case mi = i throughout. It
also straightforwardly generalizes to the partial proframed and embedded
partial proframed cases: for the n-embedded k-partial case, simply replace
the isomorphism |S|

∼=−→ ∆mn in the diagram by the degeneracy |S| p⊥−−→ ∆k,
and replace ∆mi by ∆ki throughout (with kn := k); for the (non-embedded)
k-partial case, furthermore note ki = i.

Example 3.2.10 (Proframed realizations). In Figure 3.9 we illustrate a
proframed realization of each of a proframed, partial proframed, embedded
proframed, and embedded partial proframed simplex, respectively.

3.2.1.3. ♢Proframed maps. Recall that a framed map is a map of simplices
that, for each vector of the source, either preserves the frame label of the
vector or else degenerates the vector. Analogously, a proframed map will be
a map of simplicial towers, that for each vector in the total simplex of the
source, either preserves the whole proframe restricted to that vector or else
degenerates that vector, as follows.
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1

R2

R1

R0

π2

π1

(a)

(d)

(c)

(b)

p2

p2

p2

p2

p1

p1

p1

p1

p⊥

p⊥

Figure 3.9. Proframed realizations of proframed simplices.

Definition 3.2.11 (Proframed maps). Given n-embedded proframed
simplices (S ∼= [l],P = (pn, . . . , p1)) and (T ∼= [m],Q = (qn, . . . , q1)), a
proframed map F : (S ∼= [l],P)→ (T ∼= [m],Q) is a map of sequences

[l] = [ln] [ln−1] · · · [l1] [l0] = [0]

[m] = [mn] [mn−1] · · · [m1] [m0] = [0]

Fn

pn

Fn−1

pn−1

· · ·

p2

F1

p1

F0

qn qn−1 q2 q1

such that for every vector v : [1]→ [l], either its proframe is preserved, i.e.,
F : P|v ∼= Q|Fn◦v, or the vector is degenerated, i.e., Fn ◦ v : [1] → [m] is
constant.

Notation 3.2.12 (Category of proframed simplices). The category of
n-embedded proframed simplices and their proframed maps is denoted
ProFrSimpn.

Remark 3.2.13 (Subproframed maps). Recall from Remark 1.1.69 and
Definition 1.1.70 that, unlike a framed map, a subframed map of framed
simplices may send a vector to a vector with a more specialized frame label.
The corresponding notion of subproframed map of proframed simplices is
rather natural, as follows. Given n-embedded proframed simplices (S ∼=
[l],P = (pn, ..., p1)) and (T ∼= [m],Q = (qn, ..., q1)), a subproframed map
F : (S ∼= [l],P)→ (T ∼= [m],Q) is a map of sequences of unordered simplices,

[ln]
un [ln−1]

un · · · [l1]
un [l0]

un

[mn]
un [mn−1]

un · · · [m1]
un [m0]

un

Fn

pn

Fn−1

pn−1

· · ·

p2

F1

p1

F0

qn qn−1 q2 q1
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such that any ordered vector v : [1]→ [li] with pi ◦ v : [1]→ [li−1] constant,
is sent to an ordered vector Fi ◦ v : [1]→ [mi]. The structure of the sequence
itself controls the specialization of the proframed vectors, without mention of
frame labels or the standard stratification of euclidean frame vectors.

The notions of proframed and subproframed maps generalize straight-
forwardly to the case of embedded partial proframes, but we omit such a
discussion.

⋄ Image of
proframed map and
subproframed map
– see old numbered
pix

3.2.1.4. ♢Gradients and integrals for simplices. Recall that we infor-
mally think of frames as infinitesimal data, concerning tangential vectors,
and of proframes as global data, concerning foliations. We now describe the
translation between these structures: we will refer to the process of taking a
proframe and constructing a frame as forming a ‘gradient’, and we will refer
to the converse passage from a frame to a proframe as ‘integration’.19

We begin with the gradient frame of a proframe. (For convenience, we
will mainly work with ordered simplices [m] rather than unordered simplices
with a chosen order S ∼= [m] as before.)

Notation 3.2.14 (Composite projections in proframes). For an n-
embedded proframe P = (pn, . . . , p1) of the simplex [m], we abbreviate
the composite pi+1 · · · pn : [m]→ [mi] by p→i.

Definition 3.2.15 (Gradient frame). Given an n-embedded proframed m-
simplex ([m],P = (pn, . . . , p1)), its gradient frame ∇P is the n-embedded
framed m-simplex ([m],∇P : spine[m] ↪→ n) with ∇P mapping, for all i, any
spine vector in keraff(p→i−1)\ keraff(p→i) to the frame label i ∈ n.

In other words, if the spine vector v ∈ spine[m] projects to a spine vector
p→iv ∈ spine[mi] and the projection pi : [mi] → [mi−1] degenerates that
vector p→iv to a constant p→i−1v, then the spine vector v ∈ spine[m] is given
the label i.

As in classical geometric situations, in general the converse process of
integration is less procedural and any potential construction is less assured to
work. As such, we define the integral as a formal right inverse to the gradient.

Definition 3.2.16 (Integral proframe). Given an n-embedded framed
m-simplex ([m],F : spine[m] ↪→ n), an integral proframe ∫ F is an n-
embedded proframe on the simplex [m], whose gradient ∇∫ F is the given
frame F.

However, in the special case of simplices, we do have an effective con-
struction of integral proframes, as follows.

Construction 3.2.17 (Integral proframe of an embedded frame). For an
n-embedded framed m-simplex ([m],F : spine[m] ↪→ n), an integral proframe
is given by the n-embedded proframed m-simplex ([m], ∫ F = (pn, . . . , p1))

19The reference relationship between frames and proframes in the classical linear and affine
algebraic case is discussed in Chapter A.
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obtained by inductively setting pi : [mi]→ [mi−1] to be the simplicial map
collapsing the spine vector p→i(F

−1(i)), i.e., the spine vector with frame
label i; if there is no spine vector with frame label i, then pi is set to be the
identity.

Observation 3.2.18 (The gradient and integral for simplices are inverse).
For any n-embedded proframe P of a simplex and any n-embedded frame F

of a simplex, we have

∇∫ F = F and ∫ ∇P = P.

Thus in the case of simplices, the integral always exists and is a two-sided
inverse to the gradient; but later in the more general case of simplicial
complexes, we will find that, though all proframes are differentiable, some
frames fail to be uniquely integrable or even integrable at all.

Example 3.2.19 (Gradient frame and integral proframe). In Figure 3.10
we illustrate a 4-embedded framed 3-simplex and its integral 4-embedded
proframed 3-simplex; equivalently, that proframed simplex has gradient that
framed simplex.

p3

p4

p2

p1

∫

∇

Figure 3.10. The gradient frame and the integral proframe.

As one can expect, gradients and integrals generalize from the embedded
case to the embedded partial case.

To promote the above gradients and integrals to functors, we next con-
struct them on framed and proframed maps.

Observation 3.2.20 (Gradients and integrals respect restriction). Given
an n-embedded proframed simplex (S ∼= [m],P) and an n-embedded framed
simplex (S ∼= [m],F), and a face f : [j]→ [m], the gradient of the restriction
to the face is the restriction of the gradient, and similarly for the integrals:

∇(P|f ) = (∇P)|f and ∫(F|f ) = (∫ F)|f .

Terminology 3.2.21 (Gradient framed map of a proframed map). Given
an n-embedded proframed simplex (S ∼= [j],P), an n-embedded proframed
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simplex (T ∼= [k],Q), and a proframed map F : (S ∼= [j],P)→ (T ∼= [k],Q),
the ‘gradient’ ∇F is simply the framed map (S ∼= [j],∇P)→ (T ∼= [k],∇Q)
determined by the simplicial map F : S → T .

Terminology 3.2.22 (Integral proframed map of a framed map). Given
an n-embedded framed simplex (S ∼= [j],F), an n-embedded framed simplex
(T ∼= [k],G), and a framed map F : (S ∼= [j],F)→ (T ∼= [k],G), an ‘integral’
∫ F is a proframed map (S ∼= [j], ∫ F)→ (T ∼= [k], ∫ G) whose gradient is the
framed map F .

Just as there exists a unique integral proframe of any framed simplex,
there exists a unique integral proframed map of any framed map; that integral
proframed map is constructed by setting its top component Fn : [j] → [k]
to be the given framed map F : [j]→ [k], and observing that the condition
that F is framed ensures the map Fn descends to maps Fi : [ji] → [ki] as
required. This yields gradient and integral functors, which assemble into an
equivalence of categories as follows.

Observation 3.2.23 (Correspondence of frames and proframes). The
gradient and integral functors are inverse equivalences between the category
of n-embedded framed simplices with framed maps and the category of
n-embedded proframed simplices with proframed maps:

∇ : ProFrSimpn
∼= FrSimpn : ∫

Remark 3.2.24 (Correspondence of framed and proframed realizations).
Given an n-embedded proframed simplex (S ∼= [m],P) with corresponding
gradient framed simplex (S ∼= [m],F = ∇P), any proframed realization
{rPi : ∆mi ↪→ Ri} determines and is determined by a framed realization
rF : |S| ∼= ∆mn ↪→ Rn by equating rPn = rF.

3.2.2. ♢Proframed simplicial complexes. Recall a framing of a simplicial
complex is a local notion: it is simply a framing of each of its simplices,
compatible with restriction. A proframing of a simplicial complex will be by
contrast a global notion, namely a suitable tower of projections of complexes.
As anticipated, there will always be a gradient framed complex associated
to a proframed complex, but only certain framed complexes, namely the
collapsible one, will be integrable.

Synopsis. We defined proframings of simplicial complexes as towers
of projections that restrict to proframings on every simplex. We then de-
fine gradients for proframed complexes and discuss integrability of framed
complexes. Finally we introduce the notion of collapsible proframing and
show that collapsible framed complexes always have an integral collapsible
proframing.

3.2.2.1. ♢The definition of proframed simplicial complexes. Recall
from Alternative Definition 1.2.13 a framing of a simplicial complex may
be considered as an ordering on the complex and a compatible collection of
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framings on its ordered simplices. We take a similar approach to defining
proframed complexes.

Definition 3.2.25 (Proframings of simplicial complexes). An n-
proframing of a simplicial complex K is an ordering of K together with a
sequence P = (pn, pn−1, ..., p1) of ordered simplicial surjections

K = Kn
pn−→ Kn−1

pn−1−−−→ ...
p2−→ K1

p1−→ K0 = [0]

such that on each simplex x : [m] ↪→ K, the restricted sequence P|x is an
n-embedded proframe of that simplex [m].

Naturally we will refer to the pair (K,P) of a simplicial complex with an
n-proframing P = (pn, pn−1, ..., p1) as an ‘n-proframed simplicial complex’.
For convenience we will keep the ordering implicit; henceforth, we simply say
‘simplicial complex’ in place of ‘simplicial complex with a choice of ordering’,
and we assume all simplicial maps are order preserving.

Example 3.2.26 (Proframings of complexes). In Figure 3.11 we illustrate
three 2-proframed simplicial complexes. Each projection pi is suggested as a
geometric projection, but we also highlight the affine kernels of every pi on
each simplex, as before.

p2

p1

p2

p1

p2

p1

Figure 3.11. 2-Proframings of simplicial complexes.

Definition 3.2.27 (Maps of proframings). Given n-proframed simplicial
complexes (K,P = (pn, ..., p1)) and (L,Q = (qn, ..., q1)), a proframed map
F : (K,P)→ (L,Q) is a map of sequences

K = Kn Kn−1 · · · K1 K0 = [0]

L = Ln Ln−1 · · · L1 L0 = [0]

Fn

pn

Fn−1

pn−1

· · ·

p2

F1

p1

F0

qn qn−1 q2 q1

such that, on every simplex x : [k] ↪→ K, with image y = im(Fn ◦x) : [l] ↪→ L,
the sequence restricts to a proframed map F : P|x → Q|y of n-embedded
proframed simplices.
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Notation 3.2.28 (Category of proframings). The category of n-
proframed simplicial complexes and their proframed maps will be denoted by
ProFrSimpCplxn.

Notation 3.2.29 (Truncations of proframings). Given an n-proframing
P = (Kn

pn−→ Kn−1
pn−1−−−→ ...

p1−→ K0) of the simplicial complex K, its (lower)
i-truncation P≤i is the i-proframing (Ki

pi−→ Ki−1
pi−1−−−→ ...

p1−→ K0) of the
simplicial complex Ki. By similarly truncating maps, we obtain i-truncation
functors (−)≤i : ProFrSimpCplxn → ProFrSimpCplxi.

3.2.2.2. ♢Gradients and integrals for simplicial complexes. From
a proframed simplicial complex, we can constructively form the associated
gradient framed simplicial complex, as follows.

Definition 3.2.30 (Gradients of proframed simplicial complexes). Given
an n-proframing P of a simplicial complex K, the gradient framing ∇P is
the n-framing of K with the same ordering as P and with the n-embedded
frame (∇P)x on each simplex x : [m] ↪→ K given by the gradient frame
∇(P|x) of the restricted proframe P|x.
The fact that the frames (∇P)x are compatible with face restrictions, as
required, follows from the compatibility of gradients with face restriction, as
in Observation 3.2.20.

Definition 3.2.31 (Gradients of proframed maps). Given a proframed
map F = (Fn, Fn−1, ..., F1, F0) : (K,P) → (L,Q) of n-proframed simplicial
complexes, the gradient framed map ∇F : (K,∇P) → (L,∇Q) is the
framed map given by the simplicial map Fn : K → L.

Terminology 3.2.32 (The gradient framing functor). The construction
of gradients on proframings and their maps yields the ‘gradient framing’
functor

∇ : ProFrSimpCplxn → FrSimpCplxn.

Going the other way, we would like to take a framing and produce an
integral proframing, which is to say something whose gradient is the original
framing, as follows.

Definition 3.2.33 (Integral proframings). Given an n-framed simpli-
cial complex (K,F), an integral proframing of (K,F) is an n-proframed
simplicial complex (K,P) whose gradient framing ∇P is the given framing
F.

However, not all framings are integrable, and even for an integrable
framing, the integral proframing may not be unique.

Example 3.2.34 (Non-uniqueness of integral proframings). In Figure 3.12
we illustrate a 2-proframed simplicial complex and its gradient, a 2-framed
simplicial complex. Note that the proframing is not the unique integral of
the framing: another integral proframing could be obtained by modifying p2
to have only a single 1-simplex in its image.
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p3

p2

p1

∇

Figure 3.12. Proframed simplicial complex with its gradient
framing.

Example 3.2.35 (Non-integrable framings). In Figure 3.13 we depict two
2-framings of the boundary ∂[2]un of the unordered 2-simplex [2]un. Neither
framing admits an integral proframing.

Figure 3.13. Two framings without integral proframings.

Remark 3.2.36 (Integrating simplex boundary framings). The failures
of integrability in the previous example may be seen in the context of the
following more general observation. An n-framing F of the unordered simplex
boundary ∂[m]un is integrable if and only if it is the restriction of some
n-framing F of the unordered m-simplex [m]un; that is, F = F

∣∣
∂[m]un

.

3.2.2.3. ♢Collapsible proframings. Recall that a collapsible framing is a
framing that admits a sequence of elementary simplicial collapses degener-
ating all the frame vectors in descending order, such that suitable collapse
subsequences satisfy unique lifting properties. We will define an analogous no-
tion of collapsibility for proframings, and then show that collapsible framings
have unique integral collapsible proframings.

The notion of collapsible proframing will be formulated in terms of fiber
categories, which we develop presently, of the component projections of the
proframing.

Terminology 3.2.37 (Fiber set). Given a simplicial map p : K → K ′,
and a simplex z : [m] ↪→ K ′, the ‘fiber set’ over z is the set of all simplices
x : [k] ↪→ K such that the composite p ◦ x has image identical to the image
of z; denote, leaving the map p implicit, the fiber set over z by Kz.

Simplices in fiber sets Kz of proframing projections pi : Ki → Ki−1 fall into
only two classes, as follows.
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Definition 3.2.38 (Section and spacer simplices in proframings). Given
an n-proframed simplicial complex (K,P) and a simplex x : [k] ↪→ Ki in the
fiber set over z : [m] ↪→ Ki−1, then the simplex x is a section simplex if
k = m and a spacer simplex if k = m+ 1.

Terminology 3.2.39 (Upper and lower sections of spacers). Consider
an n-proframed simplicial complex (K,P) and a spacer simplex x : [k] ↪→ Ki.
Let v : [1]→ [k] be the unique simplicial vector in the affine kernel of pi ◦ x.

(1) The ‘upper section’ ∂+x : [k − 1] ↪→ Ki of x is the face of x not
containing x ◦ v(0).

(2) The ‘lower section’ ∂−x : [k − 1] ↪→ Ki of x is the face of x not
containing x ◦ v(1).

Given a spacer simplex x, its upper and lower sections ∂±x are, in particular,
section simplices in the previous sense.

Definition 3.2.40 (Fiber categories). Consider an n-proframed simplicial
complex (K,P = (pn, ..., p1)) and a simplex z : [m] ↪→ Ki−1. The fiber
category over z, denoted ΦP(z), is the free category whose objects are
section simplices y ∈ Kz, and whose generating morphisms y− → y+ are
spacer simplices x ∈ Kz with y± = ∂±x.

Construction 3.2.41 (Transition functors of fiber categories). For an
n-proframed simplicial complex (K,P), consider simplices z : [m] ↪→ Ki−1

and w : [l] ↪→ Ki−1 such that w is a face of z. Note that each simplex
x ∈ Kz in the fiber set over z, has a face simplex x|w⊂z ∈ Kw in the fiber set
over w. Moreover, this restriction x 7→ x|w⊂z takes sections to sections, but
takes spacers either to spacers or to sections. The restriction thus induces a
‘transition functor’ −|w⊂z : ΦP(z)→ ΦP(w).

Example 3.2.42 (Fiber categories and transition functors). In Figure 3.14,
for the indicated 3-proframingK3

p3−→ K2 → · · · , we depict the fiber categories
and transition functors for selected simplices in K2. Note that each fiber
category object (indicated by a colored circle) corresponds to a section simplex,
and each generating morphism (indicated by a colored arrow) corresponds
to a spacer simplex. The transition functors between fiber categories are
indicated by dotted arrows.

We now have the components in place to define collapsibility for profram-
ings.

Definition 3.2.43 (Collapsible proframings). An n-proframed simplicial
complex (K,P = {Ki

pi−→ Ki−1}) is collapsible if, either n = 0 and K is the
point ∗, or n > 0 and the following two conditions hold.

(1) Fibers are linear : For any simplex z : [m] ↪→ Ki−1, the fiber category
ΦP(z) is a total order.

(2) Fiber transitions are endpoint-preserving : For simplices w ⊂ z in
Ki−1 the transition functor −|w⊂z is endpoint-preserving, that is it
preserves least and greatest elements as a map of total orders.
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p3

· · ·

Figure 3.14. Fiber categories and transition functors.

Remark 3.2.44 (Linear complexes). We will refer to a simplicial complex
consisting of 0- and 1-simplices, whose geometric realization is either a point
or a closed interval, as a ‘linear complex’. For a collapsible proframing
(K,P = (pn, pn−1, ..., p1)), the preimages p−1

i (x) of 0-simplices x are linear
subcomplexes of Ki.

Notation 3.2.45 (Category of collapsible proframings). The full subcat-
egory of the category of n-proframed simplicial complexes, with objects the
collapsible proframings, is denoted by CollProFrSimpCplxn.

Proposition 3.2.46 (Integrals of collapsible framings). Collapsible n-
framings have unique (up to isomorphism) integral collapsible proframings.

Proof. Let (K,F) be a collapsible n-framed simplicial complex. Recall
from the Definition 1.2.31 of collapsible framed simplicial complexes, that
there is a map qn : K = Kn → Kn−1 collapsing all the n-frame vectors and
that Kn−1 itself carries inductively a collapsible framing, so there is another
map qn−1 : Kn−1 → Kn−2 collapsing all the (n− 1)-frame vectors, and so on.
This provides a tower of simplicial quotient maps:

K = Kn
qn−→ Kn−1

qn−1−−−→ · · · q2−→ K1
q1−→ K0 = [0]

By construction, the gradient of this tower is the original framing, and so we
have produced an n-proframing Q integrating F.

However, we must still verify that Q is collapsible in the sense of Defini-
tion 3.2.43. Arguing inductively, it suffices to check this for the fibers and
fiber transitions of qn. Observe that for any simplex z : [m] ↪→ Kn−1, the
fiber category ΦQ(z) must be connected, since qn is a quotient of n-vectors,
and qn maps all simplices in the fiber over z to the single simplex z. Now,
using the frame flow continuation uniqueness of collapsible framings, one
checks that ΦQ(z) must, in fact, be a total order: indeed, no object in that
category can have two or more generating arrows pointing to it or from it.
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From the flow section existence property it follows that fiber transitions are
endpoint-preserving.

It remains to show that Q is the unique collapsible integral profram-
ing of F. Assume there exists another integral n-proframing (K,P =
(pn, pn−1, ..., p2, p1)) of F. Since pk must degenerate all k-frame vectors,
the universal property of quotients yields a surjective simplicial map of towers
F : Q→ P. Arguing by contradiction, take the lowest index i such that Fi is
not a simplicial isomorphism. In particular, Fi fails to be an isomorphism
of the fibers q−1

i (x) and p−1
i (y), where y = Fi−1(x), for some x ∈ Ki−1.

Since Fi is a simplicial surjection, p−1
i (y) must be a strictly smaller linear

complex, and thus Fi : q
−1
i (x)→ p−1

i (y) degenerates at least one 1-simplex in
q−1
i (x). By inductively lifting that simplex to a 1-simplex of K = Kn using

the flow section existence property, one derives a contradiction: that lifted
simplex cannot have the same frame label in Q and P, which contradicts the
assumption that they have the same gradient. □

Remark 3.2.47 (Gradient collapsibility is insufficient). Note that given
an n-proframing P, requiring that the gradient framing ∇P be collapsible,
does not ensure that the proframing itself is collapsible.

Observation 3.2.48 (Integration as a functor). Given an n-framed map
F : (K,F)→ (L,G) of collapsible framed simplicial complexes, the integral n-
proframed map ∫ F : (K, ∫ F)→ (L, ∫ G) is inductively constructed by setting
F = Fn and then defining Fi−1 such that pi ◦ Fi = Fi−1 ◦ qi where qi and pi
are the ith maps in the proframings ∫ F and ∫ G, respectively. The association
from collapsible framings to their unique integral collapsible proframings thus
provides a functor

∫ : CollFrSimpCplxn → CollProFrSimpCplxn .

This observation, together with previous definitions and constructions, as-
sembles into the following result.

Proposition 3.2.49 (Gradient and integral equivalence). The gradient
and integral functors yield an equivalence of categories

□∇ : CollProFrSimpCplxn ≃ CollFrSimpCplxn : ∫ .
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3.3. ♢Proofs of the classifications

Recall the lullaby from the introduction to Section 3.2: take your framed
regular cell and consider the underlying framed simplicial complex, inductively
quotient by the integral foliations of the highest frame vectors to obtain a
proframed simplicial complex, then take the fundamental poset to deliver
a truss block; conversely realize your truss block to a proframed simplicial
complex, and assemble gradient-like vector fields for the various subquotients
in the proframing, to produce a framed simplicial structure supporting a
framed cell. It is now time to actually establish the correspondence so
adumbrated.

In detailing and making precise the necessary processes of forming the
integral truss and conversely the gradient cell, a crucial matter arises, which
is to demonstrate that the face-order posets of trusses are actually cellular.
By definition this requires the component truss blocks to have spherical
boundaries; in a bit of excess we show this by proving that truss block
posets actually have shellable piecewise-linear spherical boundaries. Roughly
speaking, a spherical complex is shellable when its facets can be removed in
some order one by one such that, after each removal, the complex is always a
ball. Recall the regular cell and corresponding truss block from Figure 3.1,
and the proframed simplicial complex realization of that truss block shown
in Figure 3.4. In Figure 3.15 we illustrate a shelling of the boundary of the
top complex of that proframing, thus of the boundary of that regular cell; in
fact, as we will see in the construction, that shelling is obtained inductively
via shelling each layer of the proframed complex in turn.

Figure 3.15. A shelling of a regular cell boundary.

Outline. In Section 3.3.1, we introduce the section–spacer dichotomy
for framed cells, and describe for any framed cell an associated integral
proframed cell tower. In Section 3.3.2, we construct the gradient functor
from closed trusses to collapsible framed cell complexes, via in particular
a proof that the component truss blocks are shellable, and we present the
converse integral functor from collapsible framed cell complexes to closed
trusses. Finally in Section 3.3.3, we assemble the proofs of the framed-cell–
truss correspondences and record corollaries regarding enumerabililty and
piecewise-linearity of framed cells.
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3.3.1. ♢Integrating framed regular cells. Recall that a framed regular
cell has, forgetting the cellular poset structure, an underlying collapsible
framed simplicial complex. By the results of the previous section, that
collapsible framed simplicial complex has an associated integral collapsible
proframed simplicial complex. What is not, a priori, clear is that the layers of
that proframed simplicial complex admit cellular poset structures for which
they are framed regular cells, and that the projection maps in the proframed
complex are framed cellular maps with respect to those poset structures. In
this section we show that that is indeed the situation: any framed regular cell
has an associated integral proframed regular cell, that is a tower of framed
regular cells and framed cellular projections.

Synopsis. We differentiate the cells of an n-framed regular cell into
section and spacer cells, and show that every spacer cell has distinguished
lower and upper section cells in its boundary. Using the section–spacer
dichotomy, we then show that the top simplicial projection of the integral
simplicial proframing of a framed regular cell admits the structure of a cellular
poset map, and thereby inductively construct an integral proframed regular
cell tower for any framed regular cell.

3.3.1.1. Central cell structure. We discuss the distinction of framed
cells into section cells and spacer cells ; a spacer cell consistutes a bulk region
with lower and upper sections cells in its boundary. (Section and spacer cells
are analogous to the section and spacer simplices previously discussed in the
context of simplices in proframed simplicial complexes, see Definition 3.2.38.)

Consider an n-framed regular cell (X,F); in a substantive abuse of no-
tation we will not introduce separate notation for the underlying framed
simplicial complex of a framed regular cell, and will rely on the reader to
distinguish when we are referring to a cellular structure, i.e., to a simplicial
complex together with its cellular poset order, or merely to a simplicial
complex structure. Recall the framed regular cell (X,F) gives in particular
the following structures: (1) its cellular poset X, (2) the associated ordered
simplicial complex NX, (3) the distinct framing-induced order on the un-
ordered simplicial complex NXun; see Notation 1.3.28 and Remark 1.3.34.
Recall further that in illustrations of a framed regular cell, we typically draw
the simplicial complex realizing the cellular poset and indicate the order
recording the cellular structure by small blue arrows emanating from vertices,
and then indicate the framing and its order by frame arrows on edges; see
Figures 1.40 and 1.41.

The underlying collapsible framed simplicial complex of the framed cell
(X,F) has an associated integral collapsible proframed simplicial complex
denoted P = ∫ F = (pn, ..., p1), with pi : Xi → Xi−1. As before let ⊥ denote
the initial element of the cellular poset X, and write ⊥n−1 = pn(⊥) ∈ Xn−1

for the image of this initial element in the next simplicial layer. Framed cells
are distinguished by the nature of the fibers of the projected element ⊥n−1,
as follows.
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Definition 3.3.1 (Section and spacer cells). An n-framed regular k-cell
(X,F) is a section cell if the fiber category ΦP(⊥n−1) is trivial. An n-framed
regular k-cell is a spacer cell if the fiber category ΦP(⊥n−1) is isomorphic to
the category (⊥− → ⊥→ ⊥+) (by an isomorphism taking the initial element
⊥ to the middle element of the linear fiber).

Terminology 3.3.2 (Central fiber bounds). For a framed regular cell,
we refer to the fiber category ΦP(⊥n−1) as the ‘central fiber’. When it is a
spacer cell, we call the 0-simplices ⊥± the (upper resp. lower) ‘central fiber
bounds’ of the cell.

Example 3.3.3 (Section and spacer cells). In Figure 3.16 we illustrate
a 3-framed regular section 2-cell and a 3-framed regular spacer 3-cell. We
indicate the cellular poset structure with blue arrows, and highlight the
central fiber elements in red.

p3 p3

⊥−

⊥+

⊥
⊥

2

31
2

31

⊥n−1
⊥n−1

Figure 3.16. Framed regular section and spacer cells.

Lemma 3.3.4 (Framed cells are sections or spacers). For any n-framed
regular k-cell (X,F), either the cell is a section, in which case the map
pn : Xn → Xn−1 is an isomorphism of frame-ordered simplicial complexes,
or the cell is a spacer.

Proof. Since ⊥ is initial in the poset X, and since fibers over 0-simplices
are linear complexes (see Remark 3.2.44), ΦP(⊥n−1) must have ≤ 3 objects.

If ΦP(⊥n−1) has 1 object, we show pn : Xn → Xn−1 is an isomorphism.
This holds iff Xn has no spacer simplices. Arguing by contradiction, let
x : [m] ↪→ Xn be a spacer simplex with maximal m. Since ⊥ is initial in the
poset X, ⊥ must already be a vertex in x. Maximality of m guarantees no
other simplex contains x as a face, and so m must equal the dimension k of
the cell. As a spacer simplex, x represents a morphism in some fiber category
ΦP(z) over z = pn(x). Pick the initial or terminal object in that category,
which represents a (k − 1)-simplex y±. This simplex must also contains ⊥,
since z = pn(y±). However, y lies in the boundary of the cell |X| and thus so
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must ⊥, which contradicts the assumption that X is a cellular poset with
initial object ⊥.

If ΦP(⊥n−1) has 2 objects, a similar argument applies: note, that one
of y± contains ⊥, and now a spacer simplex must exist. Thus, this case is
impossible.

This leaves only the case of ΦP(⊥n−1) having 3 objects, in which case the
fiber category must be of the required form (⊥− → ⊥→ ⊥+); and so the cell
is a spacer. □

Construction 3.3.5 (Upper and lower sections). For an n-framed
regular cell (X,F), define the frame-ordered simplicial maps γ− : Xn−1 → Xn

resp. γ+ : Xn−1 → Xn, called the ‘lower section’ resp. ‘upper section’ of the
cell, by mapping each j-simplex z of the complex Xn−1 to the j-simplex of
the complex Xn that is initial resp. terminal in the fiber category ΦP(z) over
z.

Note that γ− = γ+ exactly when (X,F) is a section cell. When (X,F) is a
spacer cell, then ⊥± ∈ im(γ±).

We now show that the images of upper and lower sections are exactly the
cells with initial elements ⊥±.

Lemma 3.3.6 (Section images are cells). If the framed regular cell (X,F)
is a spacer k-cell, with lower and upper sections γ±, then the posets X≥⊥±

are regular (k− 1)-cells, whose simplices are exactly those in the image of the
sections γ±.

Proof. We argue in the case of the lower section γ− (the case of the
upper section is similar). First observe that any simplex in X containing ⊥−

but not ⊥ is a section simplex for pn. (Otherwise, we could pick some spacer
simplex y containing ⊥− but not ⊥. Then there must be some k-simplex y′
containing y, which itself is a spacer not containing ⊥, and that is impossible.)

We show that X≥⊥− is a (k − 1)-cell in ∂X. We start by picking some
x ∈ ∂X such that X≥x is a (k − 1)-cell and such that ⊥− ∈ X≥x. This
implies that the framed cell (X≥x,F|X≥x) must be a section cell (indeed, X≥x

will contain a (k − 1)-simplex containing ⊥− which, as we’ve just observed,
must be a section simplex). In fact, each (k − 1)-simplex in X≥x must either
contain ⊥− or ⊥+: this follows, since taking the cone of the section (k − 1)-
simplices in X≥x with cone point ⊥ must yield spacer k-simplices. Observe
that X≥x cannot, however, contain both ⊥− and ⊥+, without contradicting
the collapsibility of the framing F restricted to X≥x. It follows that all
(k − 1)-simplices of the (k − 1)-cell X≥x must contain the vertex ⊥−. But
this is only possible if x = ⊥−.

Finally, we check im(γ−) contains the same simplices as X≥⊥− . This
follows since any simplex in Xn−1 lies in a simplex containing ⊥n−1. □

Terminology 3.3.7 (Central section cells). Given a spacer cell (X,F),
we refer to the subposets X≥⊥± , determined by the images of the sections
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γ±, as the ‘lower central section cell’ resp. ‘upper central section cell’ of
(X,F).

3.3.1.2. Integral proframed cells. Equipped with the dichotomy be-
tween section and spacer cells and knowing that a spacer cell has in its
boundary lower and upper central section cells, we may now inductively
construct cellular structures on the layers of the proframed simplicial complex
associated to a framed regular cell.

As in the previous section we fix an n-framed regular k-cell (X,F), and con-
sider its associated proframed simplicial complex P = ∫ F = (pn, pn−1, ..., p1),
with pi : Xi → Xi−1. Recall that by definition, for any x ∈ X, the re-
striction of the framing F to the subcell X≥x ↪→ X provides a framed cell
(X≥x,F|X≥x); in particular, the restriction F|X≥x is a collapsible framing.

Notation 3.3.8 (The proframing of subcells). For brevity we denote
the integral proframed simplicial complex of the subcell (X≥x,F|X≥x) by
Px = ∫(F|X≥x) = (pxn, p

x
n−1, ..., p

x
1), with pxi : Xx

i → Xx
i−1.

Observation 3.3.9 (Integral restrictions are restricted integrals). From
the construction of integral proframings for collapsible framings, it follows
that the integral of the restricted framing ∫(F|X≥x) is simply the restriction
of the integral (∫ F)|X≥x . In particular, the first projection pxn of the subcell
proframe is the restriction of the global projection pn to the subcellX≥x.

Lemma 3.3.10 (Cellular structure on projected complexes). For an n-
framed k-cell (X,F) with integral proframe simplicial projection pn : X =
Xn → Xn−1, there exists a unique cellular poset structure on the simplicial
complex Xn−1 such that the projection pn is a cellular map of regular cells.

Proof. If (X,F) is a section cell, then pn is a simplicial isomorphism
and thus we must have pn : Xn

∼= Xn−1 as cellular posets.
If (X,F) is a spacer cell, we define the poset structure on Xn−1 by identi-

fying γ− : Xn−1
∼= X≥⊥− as posets via γ− (of course, we could equivalently

use γ+). One checks that pn : X = Xn → Xn−1
∼= X≥⊥− is a cellular poset

map, which follows by induction (in the cell dimension k), and using Obser-
vation 3.3.9, projecting boundary cells onto their respective lower section
cells. □

Remark 3.3.11 (Isomorphism of lower and upper central section cells).
The preceding result provides a cellular poset isomorphism γ+ ◦ pn : X≥⊥− ∼=
X≥⊥+ between the lower and upper central section cells.

Construction 3.3.12 (Integral of a framed cell). Applying Lemma 3.3.10
inductively, we obtain a tower of regular cells

X = Xn
pn−→ Xn−1

pn−1−−−→ · · · p2−→ X1
p1−→ X0 = [0]

(As before we quite abuse notation and level the cell structure implicit.)
The proframed simplicial complex P = ∫ F = (pn, pn−1, ..., p1) truncates to
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a proframe P≤i, and the gradient Fi := ∇P≤i provides a framing of the
complex Xi. In fact the cell structure and that framing gives a framed regular
cell (Xi,Fi), and so we obtain a tower of framed regular cells:

(X,F) = (Xn,Fn)
pn−→ (Xn−1,Fn−1)

pn−1−−−→ · · · p2−→ (X1,F1)
p1−→ (X0,F0) = [0]

Note that each projection pi in this cell tower is either a cell isomorphism (if
its domain is a section cell) or a cell projection (if its domain is a spacer cell).

Terminology 3.3.13 (Integral proframed cell). We refer to the tower of
framed cells in the previous construction as the ‘integral proframed cell’ of
the framed regular cell (X,F).

Remark 3.3.14 (Integral proframed cell complex). The preceding con-
struction generalizes to the case of collapsible framed regular cell complexes
(X,F), yielding their associated ‘integral proframed cell complexes’.

Example 3.3.15 (Projected framed cell structure). In Figure 3.17 we
illustrate the 3-framed 3-globe cell and the induced projection to the 2-
framed 2-globe cell that forms the next stage of its integral proframed cell.
We emphasize with the green arrows the cellular poset structure on the image
2-complex, provided by Lemma 3.3.10.

2
1

p3

2

31

Figure 3.17. The projected 2-framed cell of a 3-framed cell.

Observation 3.3.16 (Highest frame vectors form a framed 1-cell). Given
an n-framed k-cell (X,F), recall from Terminology 1.3.48 that axl⊥ denotes
the subcomplex of the frame-ordered simplicial complex X spanned by the
highest frame vectors of the cell. As stated earlier in Remark 1.3.49, provided
the cell is not 0-dimensional, this complex axl⊥ is the concatenation of two
1-simplices; that complex corresponds to a cellular subposet of the cellular
poset X that is canonically isomorphic to the fundamental poset of a 1-cell.

Given a framed cell (X,F), then by Lemma 3.3.4, it is either a spacer
cell or a section cell. If it is a spacer cell, then axl⊥ ∼= (⊥− → ⊥ → ⊥+)
as needed. If it is a section cell, then axl⊥ ∼= axl⊥n−1, where ⊥n−1 is the
initial object of the next cell (Xn−1,Fn−1) in the integral cell tower given in
Construction 3.3.12. The observation follows by induction.
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3.3.2. ♢Functors between collapsible cell complexes and trusses.
Now equipped with a better understanding of the cellular structure of framed
regular cells and their associated integral proframed simplicial complexes, we
can construct the relevant equivalence functors between collapsible framed
cell complexes and closed trusses. At a distance, the translations are clear:
framed cell complexes integrate to proframed cell complexes (by the work
of the previous section), which then have associated fundamental poset
trusses; and trusses realize to proframed simplicial complexes which have
associated gradient framed cell complexes. The remaining substantive issue
is establishing that the gradient complex of the proframed complex of a truss
is in fact cellular. We take the occasion to prove the rather stronger fact that
these complexes are locally shellable PL cellular posets.

Synopsis. We construct the gradient functor from closed trusses to
collapsible framed cell complexes, by building a proframed simplicial complex
from the face orders of the truss and then taking its associated gradient
framed simplicial complex; to see that the resulting complex is cellular, we
prove that the component truss blocks are pure, shellable, and thin. We then
present the converse integral functor from collapsible framed cell complexes
to closed trusses, by taking the associated integral proframed cell complex
previously constructed and then passing to its fundamental poset truss.

3.3.2.1. From trusses to collapsible cell complexes. We will now
construct the ‘gradient cell’ functor from closed n-trusses to collapsible framed
regular cell complexes:

∇C : T̄rsn → CollFrCellCplxn.

We first give the construction on objects, and then separately on morphisms.

Construction 3.3.17 (Gradient cell complexes of closed trusses). Given
a closed n-truss T = (Tn

pn−→ Tn−1
pn−1−−−→ ...

p1−→ T0), we need to produce a
collapsible framed cell complex ∇C T = (X,F). Recall by definition such a
complex is a cellular poset X together with an n-framing F of its underlying
simplicial complex, such that the framed simplicial complex (X,F) is collapsi-
ble and each closed cell (X≥x,F|X≥x) is itself a collapsible framed simplicial
complex.

By the correspondence, established in Proposition 3.2.49, between col-
lapsible framed simplicial complexes and collapsible proframed simplicial
complexes, it suffices to produce a cellular poset X together with a collapsible
proframed simplicial complex (X,P) (beginning with the underlying simplicial
complex of the poset X), whose restriction to each closed cell (X≥x,P|X≥x)
is also collapsible. Explicitly, the desired framing is the gradient F := ∇P of
the given proframing.

It furthermore suffices to provide, a priori more, the following: (1) a tower
of cellular poset maps

Xn
qn−→ Xn−1

qn−1−−−→ · · · q2−→ X1
q1−→ X0
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together with (2) orderings on the underlying simplicial complexes Xi, with
respect to which P = (qn, qn−1, ..., q1) becomes a proframed simplicial complex,
that is (3) collapsible and whose restriction to each closed cell is again
collapsible. We now construct in turn (1) that tower and (2) those orderings,
and then verify (3) the collapsibility conditions.

(1) We fix the poset Xi to be the face-order truss poset (Ti,⊴), and set
the poset map qi : Xi → Xi−1 to be the projection pi : (Ti,⊴)→ (Ti−1,⊴).
The heart of the matter is showing that the posets Xi are cellular ; we excise
that to Lemma 3.3.23 below, which will in turn depend on the subsequent
Lemmas 3.3.24, 3.3.25, and 3.3.26. That the maps qi are cellular follows from
the fact that 1-truss bundles have lifts in the sense of Observation 2.1.83.

(2) Inductively assume we have defined the order on the simplicial com-
plex Xi−1. To provide an order on the simplicial complex Xi, we need to
consistently order the vertices of each of the k-simplices x : [k]un ↪→ Xi in the
unordered simplicial complex Xi. To give such a consistent order it suffices
to do so for the 1-simplices. Such a 1-simplex x either projects to an object
y of Xi−1, or else it projects to an (ordered) 1-simplex z : z(0) → z(1) in
Xi−1. In the first case, order x = x(0)→ x(1) such that x(0) ≺ x(1) in the
frame order (Ti,⪯). In the second case, order x such that its projection to z
is order preserving. By construction, the poset map qi is a simplicial map
qi : Xi → Xi−1 of ordered simplicial complexes, and the collection {qi} forms
a proframed simplicial complex.

(3) Recall that the given proframing P = (qn, qn−1, ..., q1) is collapsible if
its fiber categories are linear and the fiber transitions are endpoint-preserving.
Since the maps in the proframing are the truss poset projections, those
two conditions are exactly the ones verified via truss induction in Observa-
tion 2.2.38. Applying that same observation to the 1-truss bundles in each
truss block T⊵x implies that the cell-restricted proframings (X≥x,P|X≥x) are
also collapsible, as required.

Construction 3.3.18 (Gradient cellular maps of singular truss maps).
Given a singular n-truss map F : T → S, we provide the poset map ∇C F :
∇C T → ∇C S by setting ∇C F = Fn : Tn → Sn. By the construction of the
gradients ∇C T and ∇C S via proframe towers, we also have a poset map
∇C F≤n−1 : ∇C T≤n−1 → ∇C S≤n−1, which by induction we may assume is
framed cellular (that is, is a cellular poset map and preserves highest frame
vectors). That ∇C F is then framed cellular follows by investigating the map
∇C F → ∇C F≤n−1, using that F is singular.

The crucial matter remains, to prove that the truss posets are cellular.
We take a roundabout approach by showing that these posets are moreover
PL cellular, i.e., that the realizations of the strict upper closure of any element
is PL homeomorphic to the standard PL sphere (see Definition 1.3.30). And
in fact, along the way we will demonstrate the yet stronger claim that those
strict upper closure PL spheres are shellable.
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We will utilize the following convenient condition for PL cellular spheri-
cality.

Proposition 3.3.19 (See [Bjö84, Prop. 4.5 ff.]). If a poset X is pure
of dimension m, shellable, and thin, then its realization |X| is a regular cell
complex that is PL homeomorphic to the PL m-sphere. □

Terminology 3.3.20 (Pure poset). A simplicial complex is called ‘pure
of dimension m’ if its facets (that is, nondegenerate simplices that are not
the face of any other nondegenerate simplex) are all of the same dimension
m. Similarly, a poset X is called pure of dimension m if its nerve simplicial
complex NX is pure of dimension m.

Terminology 3.3.21 (Shellable poset). A poset X is called ‘shellable’
if the simplicial complex NX is pure of dimension m and its facets admit
an ordering K0,K1,K2, ...,Kj , such that, for all 0 < l ≤ j, the subcomplex
(∪i<lKi) ∩ Kl (obtained by intersecting the simplex Kl with the union of
the preceding simplices Ki, i < l) is a pure simplicial complex of dimension
(m− 1).

Terminology 3.3.22 (Thin poset). Finally, a poset X is called ‘thin’ if
for every non-refinable length-2 chain x < y < z in X there is exactly one
y′ ̸= y such that x < y′ < z. (This is also sometimes called the ‘diamond
property’.)

We proceed to the cellularity result.

Lemma 3.3.23 (Cellularity of closed trusses). For a closed n-truss T ,
each face order poset (Ti,⊴) is a PL cellular poset.

Proof. As the condition of PL cellularity applies to the strict upper
closures T>x of elements, it suffices to assume that the truss T is in fact an n-
truss block, with initial element ⊥ = x, and to show that the boundary ∂Tn =
T▷⊥n of the truss block realizes to a PL m-sphere. By Proposition 3.3.19, it
is enough to establish that the boundary ∂Tn is pure, shellable, and thin.

Needless to say we proceed by inductively assuming that the boundary
∂Tn−1 is itself pure (of dimension k−1), shellable, and thin. Let⊥n−1 = pn(⊥)
denote the projection of ⊥ ∈ Tn to Tn−1. If the element ⊥ is singular in the
fiber over ⊥n−1, then the 1-truss bundle pn : Tn → Tn−1 is an isomorphism
of (face order) posets; thus the boundary ∂Tn is itself pure (of dimension
k − 1), shellable, and thin.

For the case when instead the element ⊥ is regular, we parcel out the
proofs to the following Lemmas 3.3.24, 3.3.25, and 3.3.26. □

Lemma 3.3.24 (Truss blocks are pure). The boundary of every truss block
T is of pure dimension.

Proof. From discussion in the proof of Lemma 3.3.23, we assume that
the boundary ∂Tn−1 is pure of dimension k − 1, and that ⊥ is a regular
element over ⊥n−1.



3.3. ♢PROOFS OF THE CLASSIFICATIONS 197

Observe that facets of the block Tn project to facets of the block Tn−1;
this follows since the projection pn is surjective on simplices, and the fiber
transition maps are also surjective, see Observation 2.2.38. Each facet of Tn−1

must contain the vertex ⊥n−1. Since by assumption the fiber over ⊥n−1 has
spacers, there must also be spacers in the fiber over each facet of Tn−1. Thus
facets in Tn must themselves be spacers. From the inductive assumption,
we know that all facets in Tn−1 have dimension k, so the facets of Tn have
dimension k + 1, and thus finally the facets of ∂Tn are of dimension k, as
required. □

⋄ Above proof not
carefully treatedLemma 3.3.25 (Truss blocks are shellable). The boundary of every truss

block T is shellable.

Proof. From discussion in the proof of Lemma 3.3.23, we assume that
the boundary ∂Tn−1 is shellable, and that ⊥ is a regular element over ⊥n−1.
Initiality of the element ⊥ implies the fiber p−1

n (⊥n−1) must be of the form
⊥− ▷⊥◁⊥+.

Let tn−1 be the number of facets in ∂Tn−1, and similarly tn the num-
ber of facets in ∂Tn. Consider, by the inductive assumption, a shelling
K1,K2, ...,Ktn−1 order of the facets of ∂Tn−1. This order induces a shelling
K• = (K⊥

1 ,K
⊥
2 , ...K

⊥
tn−1

) of Tn−1, where K⊥
i is obtained from Ki by adjoining

a new first vertex ⊥n−1. Now build a shelling L• = (L1, L2, ...Ltn) of ∂Tn in
the following three steps.

(1) Lower section shelling : We define the first tn−1 facets

L1, L2, ..., Ltn−1

in the sequence L•, by setting Li to be the lowest section lying over
K⊥

i . Note that these facets have Li(0) = ⊥−.
(2) Side shelling : We next define the subsequence

Ltn−1+1, Ltn−1+2, ..., Ltn−tn−1

of L• to be the sequence

L(1,1), L(1,2), ...L(1,j1),

L(2,1), L(2,2), ..., L(2,j2), ...,

L(tn−1,1), L(tn−1,2)..., L(tn−1,jn−1)

where L(i,j) is the jth spacer (in the scaffold order!) lying over Ki.
(3) Upper section shelling : Finally, we define the last tn−1 facets

Ltn−tn−1+1, Ltn−tn−1+2, ..., Ltn

in the sequence L• by setting Ltn−tn−1+i to be the top section lying
over K⊥

i . Note that these facets have Ltn−tn−1+i(0) = ⊥+.
Altogether, this constructs a shelling of ∂Tn. (In Figure 3.18 we illustrate an
example of the resulting shelling in the case n = 2.) □
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|∂T2| ∼= S1

|∂T1| ∼= S0
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Figure 3.18. Inductive shelling of the boundary of a truss
block

Lemma 3.3.26 (Truss blocks are thin). The boundary of every truss block
T is thin.

Proof. From discussion in the proof of Lemma 3.3.23, we assume that
⊥ is a regular element over ⊥n−1. We also assume by induction that the
block Tn−1 is thin. We will show that the block Tn is thin, which implies
that the boundary ∂Tn is thin, since the block is the boundary with an initial
element adjoined. Consider a 2-simplex K : [2] → Tn such that the chain
im(K) = (x→ y → z) is non-refinable. There are two cases, distinguished
based on the dimension of the base projection simplex J : [j] ↪→ Tn−1 with
im(J) = im(pnK); either j = 2 or j = 1.

First assume j = 2. Then the base projection J is a chain (xn−1 →
yn−1 → zn−1) in Tn−1. Note this chain J must be non-refinable (otherwise,
K would be refinable). Thinness of Tn−1 implies there is exactly one other
non-refinable chain J ′ : xn−1 → y′n−1 → zn−1. Since the 1-truss bordisms
lying over the chain J compose to the same 1-truss bordism as the 1-truss
bordisms lying over the chain J ′, there must be at least one chain K ′ from x
to z lying over J ′. Now, there cannot be a third chain K ′′ from x to z, since
that would have to lie over either J or J ′; assume, without loss of generality,
that it lies over J and that K ≺ K ′′ in the scaffold order of sections over J ;
all spacers over J between K and K ′′ must now have fiber morphisms in the
fiber over yn−1. Thus the 3-spacer containing the 2-section K as its lower
section, has a spine that refines K, contradicting that K was non-refinable.
It follows that a third chain K ′′ cannot exist.

Next assume j = 1. In this case, the base projection J is a 1-simplex
(xn−1 → zn−1) in Tn−1. Thus K must be a spacer over J . Arguing by
truss induction on the 1-truss bundle pn over J , we find that exactly two
non-refinable chains from x to z must exist. Namely, either the lower or
the upper section of K must have a jump morphism that lies over J (this
follows from the arguments in the proof of Lemma 2.2.29, or can be seen by
thinking of the section order as a directed path through jump morphisms,
see Figure 2.31). In the former case the two non-refinable chains are given by
the spine of K and the spine of its predecessor, and in the latter case, by the
spine of K and the spine of its successor. □
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⋄ The above proof
has not been seri-
ously scrubbed3.3.2.2. From collapsible cell complexes to trusses. Conversely to

the gradient cell construction in the previous section, we now construction
the ‘integral truss’ functor from collapsible framed regular cell complexes to
trusses:

∫T : CollFrCellCplxn → T̄rsn

We first give the construction on objects, and then briefly mention the case
of morphisms. The construction can be relatively succinct because the real
work here already happened in the earlier construction of integral proframed
cell structures.

Construction 3.3.27 (Integral trusses of collapsible framed cell com-
plexes). Given a collapsible n-framed regular cell complex (X,F), we need
to produce a closed n-truss ∫T(X,F) = T = (Tn

qn−→ Tn−1
qn−1−−−→ ...

q1−→ T0).
Using crucially Construction 3.3.12 and its generalization Remark 3.3.14,

construct the integral proframed cell complex of the framed cell complex
(X,F); this entails having cellular posets Xi, cellular poset maps pi : Xi →
Xi−1, and orderings on the simplicial complexes Xi such that the maps
pi are also ordered simplicial and form the proframed simplicial complex
P = ∫ F = (pn, ..., p1).

We will now define (1) the face-order posets (Ti,⊴) and poset maps
qi : (Ti,⊴) → (Ti−1,⊴); (2) a dimension functor dim : (Ti,⊴) → [1]op; and
(3) a frame order (Ti,⪯); and then we verify that (4) the fibers of qi over
objects are closed 1-trusses, and (5) the fibers over morphisms are 1-truss
bordisms.

(1) Define the face order poset (Ti,⊴) to be the cellular poset Xi, and
set the projection qi := pi : Xi → Xi−1.

(2) Define dim : (Ti,⊴) → [1]op to map x ∈ Ti to 0 if X≥x is a section
cell, and to 1 if X≥x

i is a spacer cell in Xi (see Definition 3.3.1). Since section
cells can only contain other section cells in their closure, this defines a poset
map as required.

(3) Define two elements x, y in Ti to be related in the frame order (Ti,⪯)
by x ≺ y if and only if they are in the same fiber of qi and there is a linear
subcomplex x→ · · · → y in the frame-ordered simplicial complex Xi.

(4) Using our characterizations of collapsibility, section, and spacer cells,
one checks that the structures ⊴, dim, and ⪯ restrict on fibers q−1

i (z) over
objects z in Ti−1, to give closed 1-trusses Tz = (q−1

i (z),⊴,dim,⪯).
(5) Let f : z → w be an arrow in Ti−1. Denote by R : Tz −7−→ Tw the

functorial relation q−1
i (f) coming from the face order poset Ti. Since the

proframing P is collapsible, it follows that R ⊂ (Tz,⪯)×(Tw,⪯) is bimonotone.
Since the fiber transition functors are surjective, it follows that R fully relates
elements (and thus preserves singular endpoints). Moreover, if x ∈ sing(Tz)
there is a unique y ∈ sing(Tw) such that R(x, y): indeed, the projection pi
restricts on section cells X≥x to poset isomorphisms pi : X≥x ∼= X≥z, and
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thus R(x, y) holds if and only if X≥y = p−1
i (X≥w). The statement that the

relation R is a 1-truss bordism now follows from Corollary 2.1.66.
⋄ Did not check, or
scrubb, the above
proof, particularly
the end.

Construction 3.3.28 (Integral truss maps of framed cellular maps).
Given a framed cellular map F : (X,F)→ (Y,G) of collapsible framed regular
cell complexes, we construct the singular truss map ∫T F : ∫T(X,F) →
∫T(Y,G). The ith truss component of ∫T F is defined to be the ith component
of the integral proframed simplicial map ∫ F of the framed simplicial map
associated to the cellular map F . The resulting truss map ∫T F is singular, i.e.,
maps singular objects to singular objects, because in fact the simplicial map
Fi sends section cells in (Xi,∇((∫T F)≤i)) to section cells in (Yi,∇((∫T G)≤i)).

⋄ The above con-
struction remains
sketchy / pushing
things under the rug3.3.3. ♢Equivalences of framed cell and truss structures. Finally, we

can record that truss integration and cell gradient assemble into the following
equivalences of categories.

Proof of Theorem 3.1.1 and Theorem 3.1.2. Given the functors
∇C : T̄rsn → CollFrCellCplxn and ∫T : CollFrCellCplxn → T̄rsn defined in
the preceding sections, observe that there are unique natural isomorphisms
id ∼= ∫T ◦∇C and id ∼= ∇C ◦ ∫T. (Cf. the rigidity of natural transformations
of trusses from Lemma 2.3.71.) Furthermore this equivalence restricts to
an equivalence of the subcategories FrCelln ↪→ CollFrCellCplxn and Blkn ↪→
T̄rsn. □

Proof of Theorem 3.1.3. We have an equivalence between the cate-
gories of framed regular cells FrCelln and of truss blocks Blkn, and we want
an equivalence between the categories of framed regular cell complexes and of
regular block complexes. Regular block complexes are by definition ‘regular
presheaves’ on the category of blocks (and their injections); here regularity
demands that each block maps injectively into the complex. It remains only to
observe that framed regular cell complexes can be recast as regular presheaves
on the category of framed regular cells (and their inclusions); again regularity
demands that each cell maps injectively into the complex. □

Of course, we could have considered more general classes of not-necessarily-
regular presheaves on framed cells and truss blocks.

Recall that regular cells are algorithmically unrecognizable among posets,
and so in particular it is impossible to decidably enumerate regular cells (cf.
Section 1.3.2.5). These computability issues evaporate in the framed context,
in the following sense.

Corollary 3.3.29 (Framed regular cells are decidably enumerable).
There is an algorithm for decidably enumerating framed regular cells among
all framed posets.



3.3. ♢PROOFS OF THE CLASSIFICATIONS 201

Proof. By virtue of their inductive combinatorial definition, we can
certainly exhaustively enumerate truss blocks up to a given bound on the
size of their underlying poset. By Theorem 3.1.1, we can therefore decidably
enumerate framed regular cells. □

Remark 3.3.30 (Efficient enumeration of blocks and framed cells). Unlike
for instance convex polytopes, which are only enumerable by an exceptionally
expensive search, the enumeration of truss blocks is quite efficient in the size
of the truss.

Finally, let us record a consequence, anticipated back in Remark 1.3.62,
of the fact that the boundaries of truss blocks are shellable posets—namely
that the notions of cellular and PL cellular coincide in the context of framed
regular cells.

Corollary 3.3.31 (Framed regular cell complexes are piecewise linear).
For any n-framed regular cell complex (X,F), the cellular poset X is PL
cellular, and every cell X≥x and its boundary X>x are shellable.

Proof. By Construction 3.3.27, we know the cellular poset of our framed
regular cell complex is the face poset of the corresponding closed truss. And
by Lemma 3.3.23, we know that the face poset of a closed truss is PL cellular.
Any cell X≥x inherits a framed regular cell structure, thus corresponds to a
truss block, whose boundary, and therefore also the whole block, is shellable
by Lemma 3.3.25. □



CHAPTER 4

♦Constructible framed topology: meshes

↪→

↪→

⇝

⇝

In this chapter, we develop the theory of meshes. Meshes are iterated
constructible stratified bundles of framed stratified intervals. In Chapter 2,
we introduced the combinatorial counterpart, namely trusses, as iterated con-
structible bundles of framed fence posets. The stratified geometric realization
of a truss is a mesh, and conversely the stratified fundamental poset of a mesh
is a truss. Those geometric realization and fundamental poset operations
constitute an equivalence of the combinatorial and geometric theories, and
so in particular provide a combinatorial model of the local structures of
constructibly framed stratified spaces. As an application, leveraging the
equivalence of truss blocks and framed regular cells from Chapter 3, we
obtain a constructive classification of framed subdivisions of framed regular
cells. In the subsequent Chapter 5, we introduce tame stratifications, as the
comprehensive class of stratifications that are refinable by a mesh, and prove
that all tame stratifications are combinatorially classified by stratified trusses.

The first half of this chapter, namely Section 4.1, introduces 1-meshes,
1-mesh bundles, and n-meshes. The second half of this chapter, namely
Section 4.2, builds the fundamental truss of a mesh and the mesh realization
of a truss, proves that those constructions are inverse equivalences, and
discusses applications thereof.

202
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4.1. ♦1-Meshes, 1-mesh bundles, and n-meshes

Arbitrary stratifications, even after imposing strong local regularity prop-
erties, and even after restricting attention to stratifications of euclidean space,
are drastically and uncontrollably complicated. Needless to say at this point,
one would like to identify a tractable class of stratifications of euclidean
space, that on the one hand can be combinatorially classified, and on the
other hand are sufficiently general. Here by ‘sufficiently general’ we mean,
for instance, that they coarsen to a class of stratifications that encodes all
topological phenomena we might reasonably care about in a finitary context.
Our fundamental contention is that such a tractable class is obtained by
insisting that the stratifications behave well with respect to the standard
framing of euclidean space, where by ‘standard framing’ we really mean a
complete flag of foliations by standard euclidean subspaces, and where by
‘behave well’ we mean that the stratification projects along the foliations,
constructibly and inductively, to a stratification of the same type in lower
dimension.

We already have, of course, a reasonable class of stratifications of 1-
dimensional euclidean spaces, namely finite stratifications by points and
open intervals, i.e. by contractible submanifolds without boundary. Such
a stratification of the euclidean space R1, or more generally a connected
submanifold thereof or yet more generally of another manifold framed by
an embedding in R1, is the essence of the notion of a 1-mesh. An example
1-mesh is illustrated on the lower left in Figure 4.1; this open interval in R1

is stratified by two point strata and three open interval strata.
The decisive subtleties arise in considering stratified families of such

euclidean stratifications. We certainly want to restrict attention to stratified
bundles of 1-mesh stratifications, but that by itself is insufficient to provide
a controllably iterable theory. We insist then that the boundaries of the fiber
1-meshes vary continuously in the base, and, critically, that the bundle is
constructible in the sense that, roughly speaking, entrance paths in the base
stratification lift uniquely to singular entrance paths in the total stratification.
Such a continuous, constructible stratified bundle of 1-meshes will be called
a 1-mesh bundle. An example 1-mesh bundle is illustrated, for instance, by
the left map in Figure 4.1; the fiber 1-meshes are closed intervals, stratified
by two or three points and one or two open intervals, with the point strata
constructibly wandering as indicated.

The crucial, if swift and obvious, maneuver of the whole theory is iterating
this operation: consider a 1-mesh bundle over a 1-mesh bundle over a 1-mesh
bundle over . . . a 1-mesh. Such a sequence defines our concept of n-mesh.
Seen, not as built up by bundles on bundles from the base 1-mesh, but
conversely and as advertised from the perspective of the total stratification,
an n-mesh is a stratification in (or suitably embedded in) n-dimensional
euclidean space that projects constructibly, with fiber 1-meshes, to an (n−1)-
mesh stratification in (n − 1)-dimensional euclidean space. An example
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3-mesh is illustrated by the whole of Figure 4.1; the 1-mesh fibers of the top
projection are generically closed intervals but degenerate to point fibers along
the left and right seams.

3

2

R3

1

1

1

2

R2

R1

p3

p2

Figure 4.1. A 3-mesh.

Outline. In Section 4.1.1, we describe 1-framed realizations of manifolds
into standard 1-dimensional euclidean space, and define 1-meshes as finitely
stratified manifolds with 1-framed realizations. In Section 4.1.2, we then
introduce 1-mesh bundles as boundary-continuous, constructible stratified
bundles of 1-meshes, and illustrate various local phenomena in 1-mesh bundles.
Finally in Section 4.1.3, we define n-meshes as towers of 1-mesh bundles,
discuss maps of such towers, and present the resulting categories and ∞-
categories of meshes and their maps.

4.1.1. ♦1-Meshes.

Synopsis. We introduce 1-framed realizations of manifolds as embeddings
into standard 1-framed 1-manifolds. We then define 1-meshes as stratified
manifolds with a 1-framed realization, and distinguish linear, circular, and
trivial 1-meshes. Finally we describe maps of 1-meshes, as those respecting
both the stratification and the framing, delineate the notions of singular,
regular, and balanced maps, and define submeshes and degeneracies and
coarsenings of meshes.

4.1.1.1. ♦1-Framed realizations. Classically, a tangential framing of a
smooth manifold is a trivialization of the tangent bundle. When the manifold
does not have a smooth structure, we can ask instead for a trivialization of the
tangent microbundle. Whether we work in the smooth or topological category,
any sufficiently nice codimension-k embedding (or immersion) of a manifold
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M , into a framed target n-manifold, induces a framing of the k-stabilized
tangent (micro)bundle of M ; we call such a map a framed realization.

In the case of 1-dimensional manifolds, we will focus on the following
standard targets, endowed with their respective standard framings.

Terminology 4.1.1 (Standard 1-framed target manifolds). The ‘stan-
dard 1-framed euclidean space’ is the standard real line R, equipped with
its positive orientation. The ‘standard 1-framed circle’ is the standard circle
S1 ⊂ C, equipped with its counterclockwise orientation.

Convention 4.1.2 (Manifolds are topological). Unless mentioned other-
wise, the term ‘manifold’ will mean connected topological manifold, with or
without boundary.

Definition 4.1.3 (1-Framed realizations of manifolds). We distinguish
two types of 1-framed realizations, as follows:

››››› A 1-framed linear realization of a manifold M is an embedding
γ :M → R.

››››› A 1-framed circular realization of a manifold M is a homeomorphism
γ :M → S1.

The pair (M,γ), consisting of a manifold M and a 1-framed (linear or
circular) realization γ, will be called a ‘1-framed realized manifold’, or simply
a ‘1-realized manifold’, for short.

Terminology 4.1.4 (Support and boundedness of realizations). Given
a 1-framed linearly realized manifold (M,γ), we refer to γ(M) ⊂ R as the
‘support’ of M . We call the realization ‘bounded’ if the support is a bounded
subset of R.

Terminology 4.1.5 (Normal versus tangential framings). For a 1-
realized manifold (M,γ), we refer to the structure provided by the 1-framed
realization differently depending on the dimension:

››››› When dim(M) = 0, we say that M obtains a ‘normal 1-framing’ from
the target standard framed R.

››››› When dim(M) = 1, we say that M obtains a ‘tangential 1-framing’ from
the target R or S1.

Remark 4.1.6 (Framed realizations up to homotopy). For a 1-manifold
M , the space of linear or circular 1-realizations of M (as a subspace of
Map(M,X), for X either R or S1) is homotopy equivalent to Z2. That
is, up to homotopy there are exactly two 1-framed realizations of any 1-
manifold.

Next we may consider framed maps between framed realized manifolds,
as maps that preserve the frame structure of the realization target, in the
following sense.

Terminology 4.1.7 (Framed maps of standard framed targets). For X
and Y both being either R or S1, a ‘framed map’ F : X → Y is an orientation



4.1. ♦1-MESHES, 1-MESH BUNDLES, AND N -MESHES 206

preserving map. (More generally, we may allow either source or target to
be a connected 1-dimensional submanifold of R.) Concretely, we have the
following cases.

››››› A framed map F : R→ R is a monotone map.
››››› A framed map F : R → S1 is a map of the form x 7→ eiϕ(x), where
ϕ : R→ R is monotone.

››››› A framed map F : S1 → S1 is a map of the form eix 7→ eiϕ(x), where
ϕ : R→ R is monotone.

››››› A framed map F : S1 → R is a constant map.

Definition 4.1.8 (Framed maps of 1-realized manifolds). Given 1-framed
realized manifolds (M,γ) and (N, ρ), a framed map of 1-realized mani-
folds is a map F :M → N that induces a framed map F : γ(M)→ ρ(N) of
the realization images.

4.1.1.2. ♦The definition of 1-meshes. A 1-mesh is a suitably stratified
1-framed manifold, as follows.

⋄ Could use some
more words here, cf
truss sectionDefinition 4.1.9 (General 1-meshes). A 1-mesh (M,f, γ) is a manifold

M , with a finite stratification f whose strata are manifolds without boundary,
and a 1-framed realization γ.

Terminology 4.1.10 (Linear, circular, and trivial 1-meshes). A 1-mesh
(M,f, γ) is called ‘linear’ when γ is linear, and ‘circular’ when γ is circular;
it is called ‘trivial’ when the stratification has a single stratum.

Terminology 4.1.11 (Closed and open 1-meshes). A linear 1-mesh
(M,f, γ) is called ‘closed’ or ‘open’ when the image γ(M) ⊂ R is closed or
open, respectively, as a subspace of R.

Example 4.1.12 (1-Meshes). In Figure 4.2, we illustrate 1-meshes of
various types. In each case, we color the 0-dimensional strata in red, and the
1-dimensional strata in blue. For linear 1-meshes, we depict the euclidean
space target R of the realization; later on, we will omit illustration of that
target, and instead include a small purple ‘coordinate arrow’, indicating
the orientation direction of the realization target. Similarly, we indicate
the realization of circular meshes by an arrow giving the orientation of the
realization target S1. Note that the figure distinguishes three types of trivial
1-meshes: the trivial 0-dimensional mesh, the trivial linear 1-dimensional
mesh, and the trivial circular 1-dimensional mesh.20

Though much of the theory of meshes can be developed in parallel for
the linear and circular cases, our concern will be (as in the case of 1-trusses)

20By contrast, we had distinguished only two trivial 1-trusses in Figure 2.4. This discrepancy
indicates that the trivial 1-truss, whose element is of dimension 1, should have two
distinct combinatorial incarnations: the ‘trivial linear’ and the ‘trivial circular’ 1-truss.
We will not bother rectifying the combinatorial situation to accommodate this distinction,
since we are ultimately interested predominately in the linear case.
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trivial linear circular

Figure 4.2. Trivial, linear, and circular 1-meshes.

almost exclusively with the linear case, and we therefore adopt the following
convention.

Convention 4.1.13 (Linear 1-meshes by default). Henceforth, we will use
the term ‘1-meshes’ to mean ‘linear 1-meshes’ unless otherwise noted.

Moreover, it will be technically convenient to, and we will, assume that all our
linear realizations are bounded. Note that we can always obtain a bounded
linear realization from a general linear realization by post-composing with a
bounded framed embedding R ↪→ R.

Convention 4.1.14 (Bounded linear realizations by default). We will
assume that the realization of any linearly realized 1-mesh (M,f, γ) is
bounded.

Notation 4.1.15 (Realization bounds). For a 1-mesh (M,f, γ) with
realization γ : M ↪→ R, we refer to the lower and upper bounds of the
subspace γ(M) ⊂ R as the ‘lower realization bound’ γ− and ‘upper realization
bound’ γ+.

Remark 4.1.16 (Contractible choice of equivalent 1-realizations). We
say two 1-realizations of a manifold are ‘framed homeomorphic’ if they differ
by post-composition with a framed homeomorphism of R. The theory of
1-meshes could be developed by taking only a framed homeomorphism class
of 1-realizations (rather than a specific 1-realization) to be part of the data of
the 1-mesh. Indeed, for a given 1-mesh (M,f, γ), the space of 1-realizations
framed homeomorphic to the given 1-realization is contractible.

4.1.1.3. ♦Maps of 1-meshes. A map of 1-meshes preserves both the
stratification and the framing, as follows. Recall the notion of framed map
from Definition 4.1.8.

Definition 4.1.17 (Maps of 1-meshes). A map of 1-meshes F :
(M,f, γ)→ (N, g, ρ) is a continuous map F :M → N that is both a stratified
map F : (M,f)→ (N, g) and a framed map F : (M,γ)→ (N, ρ).
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Corresponding to our earlier definitions of ‘singular’, ‘regular’, and ‘balanced’
maps of 1-trusses (see Definition 2.1.17), we have the following terminology
for maps of 1-meshes.

Definition 4.1.18 (Singular, regular, and balanced maps of 1-meshes).
Let F : (M,f, γ)→ (N, g, ρ) be a map of 1-meshes.

››››› The map F is singular if it maps point strata to point strata.
››››› The map F is regular if it maps interval strata to interval strata.
››››› The map F is balanced if it is both singular and regular.

Furthermore, in parallel with our earlier definitions of ‘subtruss’, ‘degeneracy’,
and ‘coarsening’ of 1-trusses (see Terminology 2.3.61 and Terminology 2.3.63),
we have the following properties of mesh maps.

Terminology 4.1.19 (Submeshes of 1-meshes). A map of 1-meshes
F : (M,f, γ)→ (N, g, ρ) is called a ‘submesh’ when F : (M,f)→ (N, g) is a
substratification (see Definition B.2.6).

Terminology 4.1.20 (Degeneracies and coarsenings of 1-meshes). A
map of 1-meshes F : (M,f, γ) → (N, g, ρ) may be of one of the following
types.

››››› The 1-mesh map F is called a ‘degeneracy’ when it is surjective, singular,
and maps each interval stratum either homeomorphically onto its image
stratum or to a point stratum.

››››› The 1-mesh map F is called a ‘coarsening’ if it is a coarsening of stratifica-
tions F : (M,f)→ (N, g) (see Definition B.2.4). (Note that coarsenings
are necessarily surjective regular 1-mesh maps, and homeomorphisms of
underlying spaces by definition.)

Example 4.1.21 (Maps of 1-meshes). In Figure 4.3, in the first row,
we depict a singular, a regular, and a balanced map of 1-meshes. In the
second row, we depict a degeneracy, a coarsening, and a submesh (which are,
respectively, themselves singular, regular, and balanced maps by definition).
In the third row, the map is a ‘mixed’ 1-mesh map, which is neither singular
nor regular.

4.1.2. ♦1-Mesh bundles.

Synopsis. We introduce families of 1-meshes as stratified bundles whose
fibers are 1-meshes, together with parametrized 1-framed realizations. We
then define 1-mesh bundles as families of 1-meshes satisfying a boundary
continuity condition and a constructibility condition. We illustrate various
local phenomena that occur in 1-mesh bundles, along with an assortment of
families of 1-meshes that fail to be 1-mesh bundles, due to disparate failures
of continuity or constructibility. Next we briefly describe maps of 1-mesh
bundles, along with pullback and compactification constructions. Finally,
we show that cellularity and cellulability properties lift from the base to the
total stratifications of 1-mesh bundles.
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neither singular nor regular
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Figure 4.3. Types of maps of 1-meshes.

4.1.2.1. ♦1-Framed realizations of families. As defined, a 1-mesh is a
stratified manifold with a 1-framed realization. We now describe a notion of
1-framed realization parametrized by a stratified base space, and use that
notion to define parametrized families of 1-meshes. For brevity we adopt the
following convention.

Convention 4.1.22 (Finiteness). We henceforth assume all stratifications
are finite, i.e. have finitely many strata, unless otherwise noted.

Definition 4.1.23 (1-Framed realizations of manifold families). Given a
‘family of manifolds’ p : M → B indexed by a space B (meaning that p is
a continuous map and each fiber p−1(b), b ∈ B, is a manifold), a 1-framed
realization of the family is a bundle embedding γ : M ↪→ B × R into the
trivial bundle π : B × R→ B (i.e. an embedding such that π ◦ γ = p).

Recall from Definition B.2.25 that a stratified bundle is a stratified map
that is a locally trivial bundle within each stratum of the base.

Definition 4.1.24 (Family of 1-meshes). A family of 1-meshes (p, γ) :
(M,f)→ (B, g), indexed by the stratified space (B, g), is a stratified bundle
p : (M,f)→ (B, g), together with a 1-framed realization γ of the underlying
family of manifolds p : M → B, such that the stratification f and the
realization γ restrict to give every fiber (Mb := p−1(b), fb, γb) the structure
of a 1-mesh.

Notation 4.1.25 (Realization bounds for families). For a family of 1-
meshes (p, γ) : (M,f) → (B, g), we denote by γ± : B → B × R the (not
necessarily continuous) functions given by the fiberwise lower and upper
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realization bounds b 7→ (b, γ±b ) (see Notation 4.1.15). (Abusing notation we
let γ± also refer to the composite B → B × R→ R.)

Consider a stratified bundle p : (E, f)→ (B, g) such that any stratum of
f intersects each fiber p−1(b) in a manifold. Note that, for a given stratum s
of f , the dimension of the fiber s∩p−1(b) is, when non-empty, independent of
which fiber is considered. We refer to that dimension as the ‘fiber dimension’
of the stratum. In a family of 1-meshes, each stratum of the family has fiber
dimension 0 or 1; we distinguish the strata as singular or regular accordingly.

Terminology 4.1.26 (Regular and singular strata). For a family of 1-
meshes, we call a stratum of the total space singular when its fiber dimension
is 0, and we call it regular when its fiber dimension is 1.

4.1.2.2. ♦The definition of 1-mesh bundles. 1-Mesh bundles will be
particularly well-behaved families of 1-meshes, namely those whose realization
bounds are continuous and whose stratified bundle is constructible in an
appropriate sense. The constructibility condition will be formulated in
stratified-topological terms, but, leveraging later results of Section 4.2, it will
be the case that the stratified-topological constructibility condition implies
constructibility in the usual categorical sense, namely that bundles can be
constructed by pullback along functors into a suitable classifying category.

To formulate the constructibility condition for 1-mesh bundles, we recall
the notions of formal entrance paths and fundamental posets of stratifications.

Terminology 4.1.27 (Fundamental posets of stratifications). Given a
stratification (X, f) and two strata r, s ∈ f , we say there exists a ‘formal
entrance path’ from r to s, when r ∩ s, the intersection of the closure of r
with s, is nonempty. The ‘fundamental poset’ Π(X, f) (also written simply
Πf) is the poset whose objects are the strata of (X, f), and whose morphisms
are the transitive closure of the formal entrance path relation. Note that the
fundamental poset provides a functor from the category of stratifications to
the category of posets. See Definitions B.1.7 and B.1.11, Construction B.2.15,
and surroundings for further discussion of these notions.

Definition 4.1.28 (1-Mesh bundles). A 1-mesh bundle (p, γ) :
(M,f) → (B, g) over a base stratification (B, g) is a family of 1-meshes
satisfying the following conditions.

(1) Continuity : The realization bounds γ± : B → R are continuous.
(2) Constructibility : For every arrow r → s in the fundamental poset

Π(B, g), and every lift of the stratum r to a singular stratum t of
the total stratification (M,f), there exists a unique lift of r → s to
an arrow t → u in the fundamental poset Π(M,f) and u is itself
singular.

Roughly speaking, the constructibility condition ensures that point strata in
the fibers behave functionally, during fiber transitions that cover entrance
paths in the base. Notice that the condition does not refer to regular strata
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at all, but the behavior of those strata is nevertheless constrained by the
functionality of their boundary singular strata.

Terminology 4.1.29 (Open and closed 1-mesh bundles). A 1-mesh
bundle is called ‘closed’ or ‘open’ when all its fibers are, respectively, closed
or open 1-meshes.

Example 4.1.30 (A 1-mesh bundle over the stratified 1-simplex). In
Figure 4.4, we depict a 1-mesh bundle over the stratified 1-simplex ∥[1]∥.
(The stratified 1-simplex is the stratified realization of the combinatorial
1-simplex, cf. Section B.1.5.) The fibers over points of the base stratum [0, 1)
are open, but the fiber over {1} is half-open, and thus the bundle altogether
is neither open nor closed.

The fundamental poset of the total stratification of this bundle is the
1-truss bordism previously illustrated in Figure 2.9, and the fundamental
poset functor applied to the bundle projection is the projection of that
1-truss bordism, considered as a 1-truss bundle over the combinatorial 1-
simplex.

Figure 4.4. A 1-mesh bundle over the stratified 1-simplex.

Example 4.1.31 (A 1-mesh bundle over a poset realization). In Figure 4.5,
we depict a 1-mesh bundle (p, γ) over the stratified realization (B, g) = ∥P∥
of the poset P = (a← b← c→ d). The bundle is drawn together with its
1-framed realization as a subbundle of the projection bundle B×R→ B; the
orientation of the fiber R is indicated by an adjacent purple arrow.

Note that the fibers over the points in the stratum str(c) ⊂ ∥P∥ are
open 1-meshes, while the fibers over the points of the strata str(a) and str(d)
are closed 1-meshes, and the fibers over the points of the stratum str(b) are
neither open nor closed. The fundamental poset of this 1-mesh bundle is the
1-truss bundle previously illustrated in Figure 2.19.

Remark 4.1.32 (Omitting orientations). When depicting 1-mesh bundles
as subbundles of the standard projection bundleB×R→ B, we will sometimes
forgo indicating an orientation of the fiber R, as we did for 1-truss bundles,
cf. Remark 2.1.82. This omission leaves, of course, a Z2 ambiguity, which
though is typically without consequence.
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Figure 4.5. A 1-mesh bundle over a poset realization.

A general stratified bundle is only locally trivial over each base stratum,
and so admits some stratified monodromy. By contrast, due to the rigid
nature of their fibers, 1-mesh bundles are in fact globally trivial over each
base stratum, as follows.

Notation 4.1.33 (Restriction to base strata). Let p : (M,f) → (B, g)
be a 1-mesh bundle. The restriction of this bundle to a stratum s ∈ g is a
1-mesh bundle denoted p|s : (p−1(s), f)→ s.

Observation 4.1.34 (Trivialization over base strata). Because the auto-
morphism space of every 1-mesh is contractible, the restricted 1-mesh bundle
p|s (of any 1-mesh bundle p to any base stratum s) is isomorphic to a trivial
1-mesh bundle:

(p−1(s), f) s× fib(s)

s

∼=

p|s

Here fib(s) denotes a 1-mesh, called the ‘fiber 1-mesh’, over the stratum
s.

Remark 4.1.35 (Mapping cylinders as bundles). Recall from Sec-
tion 2.1.2.5 that suitable singular 1-truss maps had associated mapping
cylinder 1-truss bordisms, and suitable regular 1-truss maps had associated
mapping cocylinder 1-truss bordisms. We have an analogous relationship for
1-meshes: the mapping cylinder of a suitable singular 1-mesh map is a 1-mesh
bundle over the stratified 1-simplex, and similarly the mapping cocylinder of
a suitable regular 1-mesh map is again a 1-mesh bundle over the stratified
1-simplex. These cylinder and cocylinder constructions are discussed later
on, in Remark 4.2.6, as a consequence of the constructions in the truss case
and the equivalence of meshes and trusses.
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As given above, the constructibility condition for a 1-mesh bundle refers
to a lifting condition involving arrows in the fundamental posets; such arrows
are generated by the transitive closure of the formal entrance path relations,
and the condition is in principle a bit unwieldy as a result. However, with
mild assumptions on the behavior of the base stratification, we can refine the
constructibility condition as follows.

Terminology 4.1.36 (Frontier-constructibility and local path-connect-
edness). We may impose the following conditions on a stratification (X, f).

››››› The stratification (X, f) is ‘frontier-constructible’ if (r∩s ≠ ∅)⇒ (s ⊂ r)
for any two strata r, s ∈ f .

››››› The stratification (X, f) is ‘pairwise locally path-connected’ if the union
s ∪ r is locally path-connected, for any two strata r, s ∈ f .

››››› We refer to a stratification as ‘reasonably regular’ if it satisfies both of
the preceding conditions.

In a reasonably regular stratification, the fundamental poset has an arrow
r → s precisely when there is an entrance path from r to s; see Lemma B.1.30
and Observation B.1.31. We can therefore, in that case, rephrase the con-
structibility condition for 1-mesh bundles in terms of entrance paths, as
follows.

Observation 4.1.37 (1-Mesh bundle over a reasonably regular base).
Let (p, γ) : (M,f)→ (B, g) be a family of 1-meshes over a reasonably regular
base (B, g). This family is a 1-mesh bundle if it satisfies the ‘continuity’
condition from Definition 4.1.28, as well as the following condition.

(2’) Path-independent constructibility : For every entrance path α : r → s
in the base (B, g), and every lift of the stratum r to a singular
stratum t of the total stratification (M,f), there exists a unique lift
of α : r → s to an entrance path β : t→ u in (M,f) and u is itself
a singular stratum. Furthermore, the resulting singular stratum u,
that is the target of the lifted entrance path β, is independent of
which entrance path α from r to s was chosen initially.

Since eventually we will be considering 1-mesh bundles over 1-mesh
bundles iteratively, it is worth noting that if the base stratification of a 1-
mesh bundle is reasonably regular, then it follows that the total stratification
is also reasonably regular; see later Observations 4.1.67 and 4.1.68. However,
various elementary constructions may break reasonable regularity; for instance,
restricting the standard stratification of the realized simplex ∥[k]∥ to its
boundary yields a stratification that is not frontier-constructible.

The definition of 1-mesh bundles has a natural generalization, that allows
the base to be a category, not just a poset. (This generalization will not play
a substantive role later and can be safely skipped.) However, this categorical
version requires a stronger regularity condition on the base stratification,
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namely ‘conicality’ (see Section B.3.1); conical stratifications are, in particular,
reasonably regular. In the following categorical discussion, we will implicitly
assume stratifications are conical as needed.

To begin, in place of the fundamental poset of a stratification, we need
a notion of the fundamental ∞-category and fundamental 1-category of a
stratification, as follows.

Terminology 4.1.38 (Fundamental ∞-category). The ‘fundamental ∞-
category’ Π∞f of a stratification (X, f) is the quasicategory whose n-simplices
are the stratified maps ∥[n]∥ → (X, f).

Terminology 4.1.39 (Fundamental 1-category). The ‘fundamental cat-
egory’ Π1f of a stratification (X, f) is the truncation of the fundamental
∞-category to a 1-category. (See Definition B.3.10 and Construction B.3.14
and the intervening discussion of truncation.)

Moreover, the fundamental poset Πf of a stratified space (X, f), given by
Terminology 4.1.27, is equivalent to the 0-truncation of the fundamental
∞-category Π∞f ; see Terminology B.3.12 and Observation B.3.13.21

Example 4.1.40 (Base posets versus base categories). In Figure 4.6, in
the middle we depict a bundle that is locally a well-behaved 1-mesh bundle.
However, it is not a 1-mesh bundle in the sense of Definition 4.1.28, because
it fails the constructibility condition; the relevant failure of unique lifts is
illustrated on the left. The bundle will be, though, a categorical 1-mesh
bundle, in the sense that the constructibility condition will be restored when
we consider not the fundamental poset but the fundamental categories of the
stratifications; the relevant uniqueness of lifts is illustrated on the right. The
necessary categorical notion is formalized in the next remark. (Note that
the fundamental category of the total stratification here was illustrated as a
categorical 1-truss bundle in Figure 2.20.)

We are now equipped to describe the anticipated categorical version of
1-mesh bundles.

Remark 4.1.41 (Categorical 1-mesh bundles). A ‘categorical 1-mesh
bundle’ p : (M,f)→ (B, g) is a family of 1-meshes, over a reasonably regular
base (B, g), satisfying the ‘continuity’ condition from Definition 4.1.28, as
well as the following condition.

(2’) Path-dependent constructibility : For every entrance path α : r → s
in the fundamental category Π1g, and every lift of the stratum r to
a singular stratum t of the total stratification (M,f), there exists
a unique lift of α : r → s to an entrance path β : t → u in the

21There is a useful analogy that sets are to spaces what posets are to stratified spaces.
For instance, the fundamental ∞-category of a stratified space admits a conservative
functor to its (0-truncated) fundamental poset, as the fundamental ∞-groupoid of a
space admits a conservative functor to its (0-truncated) connected component set; see
Remark B.3.15.
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(B, g)Π(g) Π1(g)

unique liftsnon-unique lifts

fundamental
category

fundamental
poset

Figure 4.6. A categorical 1-mesh bundle.

fundamental category Π1f , and furthermore u is itself a singular
stratum.

We could have formulated the path-dependent constructibility condition by
merely asking every literal entrance path r → s in the base stratification (not
in the quotient fundamental category) to lift uniquely to a suitable literal
entrance path t→ u in the total stratification. In fact, the resulting notion
is unchanged: a homotopy αt of entrance paths provides a homotopy βt of
lifts, which gives a path of singular strata ut; since the fibers in a family of
1-meshes are 1-meshes and therefore have discrete sets of singular points, any
such path of singular strata is constant. Henceforth, we will freely work with
either version of categorical 1-mesh bundles, as convenient.

To emphasize the distinction from the case of categorical 1-mesh bundles,
we sometimes refer to 1-mesh bundles in the sense of Definition 4.1.28 as
‘posetal 1-mesh bundles’. As discussed, the bundle shown in Figure 4.6 is
categorical but not posetal.

Remark 4.1.42 (Categorical versus posetal 1-mesh bundles). Every
posetal 1-mesh bundle over a reasonably regular base is, of course, a categorical
1-mesh bundle. Conversely, if the base stratification is posetal, meaning its
fundamental ∞-category is 0-truncated (or, in other words, the stratification
is ‘stratified homotopy equivalent’ to the stratified realization of a poset P ),
then any categorical 1-mesh bundle is in fact posetal.

We give an explicit statement and proof of the converse implication in that
last remark, in the concrete case where the base is a realization of a poset.

Proposition 4.1.43 (Categorical bundles over posets are posetal). A
categorical 1-mesh bundle over the stratified realization of a poset (or a
constructible substratification thereof) is a posetal 1-mesh bundle.

Proof. Given a poset X with stratified realization ∥X∥, consider a
categorical 1-mesh bundle p : (M,f) → ∥X∥. Let r ≡ str(x) be a stratum
in ∥X∥ with a lift to a singular stratum t, and let α : r → s be an entrance
path. Since the stratum r, its closure, the stratum s, and its closure are all
contractible, every entrance path r → s is homotopic to α and so equivalent
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to it in the fundamental category. Thus no matter the entrance path, there
is altogether a unique lift to an entrance path β : t→ u, and u is singular, as
required for a posetal 1-mesh bundle. □

Remark 4.1.44 (Classification of categorical 1-mesh bundles). We will
later that the posetal constructibility condition in Definition 4.1.28 precisely
ensures that posetal 1-mesh bundles over (sufficiently regular) base stratifica-
tions (B, g) are classified up to bundle isomorphism by functors Πg → TBord1

from the fundamental poset of the base to the classifying category of 1-trusses
and their bordisms.

The categorical case is similar: the categorical constructibility condition
in Remark 4.1.41 ensures that categorical 1-mesh bundles are classified up
to bundle isomorphism by ∞-functors Π∞(g) → TBord1, and so (since the
codomain is a 1-category) by 1-categorical functors Π1(g)→ TBord1.

Remark 4.1.45 (Categorical 1-mesh bundles are higher constructible).
Entrance paths are stratified maps from the stratified 1-simplex. The path con-
structibility condition for a categorical 1-mesh bundle, given in Remark 4.1.41,
is thus a lifting condition for the stratified 1-simplex. One might imagine
that there is a (k ∈ N)-indexed family of ‘higher constructibility’ condi-
tions, given by analogous lifting conditions for maps out of the stratified
k-simplex. However, in the context of conical stratifications, all those higher
constructibility conditions are automatically satisfied by categorical 1-mesh
bundles, as defined just with the ‘1-constructibility’ requirement.

4.1.2.3. ♦Local phenomena in families of 1-meshes. We describe and
illustrate various local phenomena that occur in families of 1-meshes: first
examples of families that are indeed 1-mesh bundles, then examples that
violate either or both of the continuity and constructibility conditions, to
different extents and in sundry ways, and so fail to be 1-mesh bundles.

Example 4.1.46 (Local forms of 1-mesh bundles). In Figure 4.7 we
illustrate some local behaviors in 1-mesh bundles. The top three are ‘collisions’
in the sense that two singular strata in the generic fiber converge into a single
singular stratum of the special fiber. The bottom three are ‘creations’ in
the sense that a new singular stratum appears in the special fiber, with no
singular stratum of the generic fiber converging to it. The right two are also
‘collapses’ in the sense that the interval of the generic fiber degenerates into
a point of the special fiber.

The 1-truss bordisms obtained as the fundamental posets of these 1-mesh
bundles were illustrated in Figure 2.12.

Example 4.1.47 (Families of 1-meshes that are almost continuous and
constructible). In Figure 4.8 we illustrate three families of 1-meshes that
are not 1-mesh bundles, because they fail one or both of the continuity and
constructibility conditions. In the first case, the upper realization bound has
an upward discontinuity at the special fiber. In the second case, the upper
realization bound has a downward discontinuity at the special fiber; this
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Figure 4.7. Local forms of 1-mesh bundles.

case also fails constructibility since the singular stratum of the generic fiber
does not converge to any stratum of the special fiber. In the third case, the
realization bounds are continuous, but again the generic singular stratum
does not converge to any special stratum, and so this case fails constructibility.
However, all three of these failures are rather mild in the sense that, in each
case, either the generic or special fiber can be extended to resolve the issue;
in other words, these families of 1-meshes embed as subfamilies of actual
1-mesh bundles.22

upwards
discontinuity

downwards
discontinuity

boundary
disappearance

Figure 4.8. Mild mesh mishaps of constructible continuity.

The combinatorial counterparts of each of these families, namely the
relations obtained by taking fundamental posets, were illustrated in Fig-
ure 2.13.

Example 4.1.48 (Families of 1-meshes that fail constructible lift exis-
tence). In Figure 4.9 we illustrate three families of 1-meshes that are not

22One could enlarge the class of valid 1-mesh bundles to include families that allow
certain boundary discontinuities or certain boundary disappearances, but we forego that
generalization here.
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1-mesh bundles, again because they fail one or both of the continuity and
constructibility conditions. In the first case, the generic fiber singular stratum
converges, but to a regular stratum of the special fiber, violating constructibil-
ity. That same violation occurs in the second case, though with a boundary
singular stratum; this case also evidently fails realization continuity. The
third case appears to violate constructibility in the same way as the other
two cases. However, this case is in fact, in a sense, even worse, because
there are two lifts (of the entrance path in the base) starting at the generic
fiber singular stratum—namely the entrance path converging to the regular
stratum, and the transitive composite of that entrance path and the entrance
path into the singular stratum of the special fiber.

interior
evaporation

boundary
evaporation

boundary
dislocation

Figure 4.9. Lamentable lapses of liftability.

None of these three families are subfamilies of mesh bundles, as the
constructibility failure is intrinsic. Nevertheless, one could refine the special
fiber by adding a singular stratum inside the regular stratum, in order to
obtain either a mesh bundle or a subfamily of a mesh bundle.

The combinatorial counterparts of these families were illustrated earlier,
the first two cases as the first two relations in Figure 2.14, and the third case
as the first relation in Figure 2.15.

Example 4.1.49 (Families of 1-meshes with divergent realization bounds).
In Figure 4.10 we illustrate two families of 1-meshes that fail both continuity
and constructibility in a most serious and irresolvable manner. In both cases,
the upper realization bound is not only discontinuous but also fails to have a
limit as it approaches the special fiber. Furthermore, in the first case, there
are distinct formal entrance paths from the generic fiber singular stratum
to all three of the special fiber strata, and in the second case to both of the
special fiber strata, contravening constructibility. The second case has a yet
more serious pathology, namely that there is a formal entrance path from
the generic fiber regular stratum to the special fiber regular stratum, which
crosses (in the framing direction) the formal entrance path from the generic
fiber singular stratum to the special fiber singular stratum.

The combinatorial counterparts of these families were illustrated earlier,
the first case as the last relation in Figure 2.14, and the second case as the
last relation in Figure 2.15.
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point
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boundary
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Figure 4.10. Brazen breaches of boundaries.

Example 4.1.50 (Families of 1-meshes that fail constructible lift unique-
ness). In Figure 4.11 we illustrate two families of 1-meshes that fail con-
structibility in a more subtle, if no less serious, manner. Both families have a
conical total stratification and a conical base stratification, and so demon-
strate that even in the better-behaved context of conical stratifications, the
constructibility condition remains crucial.

boundary skew
divergence

skew
divergence

Figure 4.11. Subtle skews of mesh lift uniqueness.

These are both families over the stratified 2-simplex. The first case has a
stratified closed interval fiber over the 0-simplex, a single stratum over the
1-simplex and a single stratum over the 2-simplex. Though the stratum over
the 1-simplex converges uniquely to a singular stratum over the 0-simplex,
the (singular) stratum over the 2-simplex admits entrance paths to all three
of the strata over the 0-simplex, violating the uniqueness of lifts in the
constructibility condition. In the second case, every fiber of the family is
the same standard stratified closed interval; when restricted to the 0- and
1-simplex the family is the trivial (in particular, constructible) bundle, and
when restricted to the 1- and 2-simplex the family is again the trivial (in
particular, constructible) bundle; nevertheless, the entrance paths over the
entrance path from the 2- to 0-simplex fail constructibility as in the first case.

The fundamental poset of the first case here contains the fundamental
poset of the first case of Figure 4.10 (namely the last relation of Figure 2.14).
The fundamental poset of the second case here contains the fundamental
posets of both cases of Figure 4.10 (the second of which is the last relation of
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Figure 2.15) and also the fundamental poset of the last case of Figure 4.9
(namely the first relation of Figure 2.15); the inherited constructibility failures
are pervasive.

4.1.2.4. ♦Maps of 1-mesh bundles. Maps of 1-mesh bundles are simply
stratified bundle maps that restrict to maps of 1-meshes on each fiber, and
require little fanfare.

Definition 4.1.51 (Maps of 1-mesh bundles). For 1-mesh bundles (p, γ) :
(M,f)→ (B, g) and (p′, γ′) : (M ′, f ′)→ (B′, g′), a map of 1-mesh bundles
F : p → p′ is a stratified map F : (M,f) → (M ′, f ′) that descends along
p and p′ to a stratified map G : (B, g)→ (B′, g′), such that the restriction
of F to each fiber Mb := p−1(b), b ∈ B, is a 1-mesh map (Mb, fb, γb) →
(M ′

G(b), f
′
G(b), γ

′
G(b)).

Terminology 4.1.52 (Singular, regular, and balanced 1-mesh bundle
maps). We call a 1-mesh bundle map ‘singular’ or ‘regular’ or ‘balanced’ if it
is respectively singular or regular or balanced on every fiber, in the sense of
Definition 4.1.18.

Terminology 4.1.53 (Degeneracies and coarsenings of 1-mesh bundles).
We call a 1-mesh bundle map a ‘degeneracy’ or ‘coarsening’ when it is such
on every fiber, in the sense of Terminology 4.1.20.

Notation 4.1.54 (Implicit realizations). Henceforth, we often keep the
1-framed realization γ of 1-mesh bundles (p, γ) implicit, denoting the 1-mesh
bundle by simply p : (M,f)→ (B, g).

Example 4.1.55 (1-Mesh bundle map). In Figure 4.12, we depict a
1-mesh bundle map, neither singular nor regular as it happens.

F−→

G−→

p p′

(B′, g′)(B, g)

Figure 4.12. 1-Mesh bundle map.

Remark 4.1.56 (Mapping 1-realized bundles). We often think about
the total space M of 1-mesh bundle (p, γ) being more or less identified with
its embedded image γ(M) under its 1-framed realization γ : M ↪→ B × R.
That convenient identification is compatible with bundle maps in the sense
that every 1-mesh bundle map F : (p, γ) → (p′, γ′) induces a commutative
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diagram of continuous maps as follows:

γ(M) M B

γ′(M ′) M ′ B′

F̃

π

γ p

F G

π

γ′ p′
.

A useful construction in the context of 1-mesh bundle maps is pullback
bundles, as follows.

Construction 4.1.57 (Pullbacks of 1-mesh bundles). Given a 1-mesh
bundle p : (M,f)→ (B, g) with 1-framed realization γ :M ↪→ B × R, and a
stratified map G : (B′, g′)→ (B, g), the ‘pullback 1-mesh bundle’ (G∗p,G∗γ)
is given as follows. The stratified bundle G∗p : (G∗M,G∗f)→ (B′, g′) is the
stratified pullback of the bundle p along the map G (see Definition B.2.27):

(G∗M,G∗f) (M,f)

(B′, g′) (B, g)

⌟

TotG

G∗p p

G

The 1-framed realization G∗γ : G∗M ↪→ B′ × R for G∗p is defined by
(G∗γ)(x) := ((G∗p)(x), (πR ◦ γ ◦TotG)(x)) ∈ B′ ×R, where πR : B ×R→ R
is the projection.

Another construction of 1-mesh bundle maps is the inclusion of a 1-
mesh bundle into its fiberwise compactification, as follows. (This canonical
compactification will be particularly pertinent in our later comparison of
meshes and trusses, allowing us to reduce certain statements to the case of
closed bundles.)

Construction 4.1.58 (Fiberwise compactifications of 1-mesh bundles).
Given a 1-mesh bundle p : (M,f)→ (B, g) with 1-framed realization γ :M ↪→
B × R, the ‘fiberwise compactification’ 1-mesh bundle p : (M,f) → (B, g)
is given as follows. Set the space M to be the closure of γ(M) in B × R,
with projection p : M → B being the restriction of π : B × R → B to M .
The stratification (M,f) has each stratum being either an image γ(r) of a
stratum r ∈ f or an image γ±(s) of a stratum s ∈ g. Of course the 1-framed
realization γ :M ↪→ B × R is simply the inclusion.

Example 4.1.59 (1-Mesh bundle compactification). In Figure 4.13, we
depict the compactification p of a 1-mesh bundle p over the standard stratified
1-simplex.

Observation 4.1.60 (Pullbacks preserve fiberwise compactifications).
Consider a 1-mesh bundle p : (M,f)→ (B, g), together with a stratified map
G : (B′, g′)→ (B, g). The pullback G∗p of the fiberwise compactification of
p is the fiberwise compactification G∗p of the pullback G∗p.
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p p

(M, f)

(B, g) (B, g)

(M, f)

Figure 4.13. The compactification of a 1-mesh bundle.

4.1.2.5. ♦ Lifting regularity to total stratifications. When consider-
ing 1-mesh bundles, we usually assume that the base stratification satisfies
some regularity properties. These regularity properties often ‘lift’ from the
base stratification to the total stratification of the bundle, as we will discuss
presently. These lifting properties are particularly useful when we begin to
iterate 1-mesh bundles.

Eventually, we will be comparing iterated mesh bundles to the purely
combinatorial iterated truss bundles; we cannot expect to combinatorialize
mesh bundles unless the base stratification is itself combinatorializable. Recall
from Section 1.3.1 that regular cell complexes (stratifications by open disks
whose closures are closed disks) are faithfully modeled by their fundamental
posets, and so are a suitable class of base stratifications. We broaden our
attention to stratifications that refine to constructible substratifications (see
Definition B.2.9) of regular cell complexes, as follows.

Terminology 4.1.61 (Cellular stratifications, cf. Definition B.3.22). A
‘cellular stratification’ is a constructible substratification of a locally finite
regular cell complex (stratified by its cells).

Terminology 4.1.62 (Cellulable stratifications, cf. Definition B.3.20).
A ‘cellulable stratification’ is a stratification that admits a refinement to a
cellular stratification.

See Section B.3.3 for a more extensive discussion of cellular and cellulable
stratifications.23

Cellulability provides a sufficiently broad class of sufficiently combinatori-
alizable and sufficiently regular stratifications; this class admits the following
lifting property, as desired.

Proposition 4.1.63 (Cellulability lifts). Let p : (M,f) → (B, g) be a
1-mesh bundle. If the base stratification (B, g) is cellulable then the total
stratification (M,f) is as well.

This property will follow from the liftability of cellularity, as follows.

23In fact, it is often convenient to restrict attention to PL cellular stratifications, i.e.
constructible substratifications of locally finite regular cell complexes whose fundamental
posets are PL cellular, see Definition 1.3.30. However, we will not insist on piecewise-
linearity as a matter of course.
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Lemma 4.1.64 (Cellularity lifts). Let p : (M,f) → (B, g) be a 1-mesh
bundle. If the base stratification (B, g) is cellular then the total stratification
(M,f) is too.

The proof of this lemma will use the following technical observation.

Observation 4.1.65 (Cells bundled over cells). Let Dm be the closed
m-disk, and Sm−1 its boundary sphere. Let p : X → Dm be a subbundle of
the projection π : Dm × R→ Dm, whose fibers over x ∈ Dm are subsets of
R of the form [γ−x , γ

+
x ], where γ± : Dm → Dm ×R are continuous sections of

the form γ±(x) = (x, γ±x ). If γ−x < γ+x for all x ∈ Dm, except possibly when
x ∈ Sm−1, then X is a closed (m+1)-disk. (Construct a bundle isomorphism
to a compact convex set with non-empty interior, which is then necessarily a
disk.) A similar observation holds in the PL case.

To prove Lemma 4.1.64, it will be convenient to use the correspondence,
established later, of 1-mesh bundles and 1-truss bundles; specifically we
perform constructions in terms of 1-truss bundles and translate them to
1-mesh bundles by realization.

Proof of Lemma 4.1.64. Let the base stratification (B, g) be cellular.
By definition, there is a constructible substratification inclusion (B, g) ↪→ X
into some regular cell complex X. By removing cells in X \ B, we may
assume B is dense in X. Write Y = Π(B, g) for the fundamental poset of the
stratification, and (abusing notation) X = ΠX for the fundamental poset of
the cell complex. Note that the stratified realization of the poset X recovers
the original regular cell complex X; in particular that cell complex is the
realization of a simplicial complex.

We now claim that we can choose the cell complex X such that for any
x ∈ X \ Y there exists a unique y ∈ Y such that y <cov x is a covering in
Y ∪ {x} (see Notation B.1.33). Indeed, pick a cell x ∈ X \ Y of highest
dimension that fails the desired uniqueness, i.e. is covered by distinct y, y′ ∈ Y ;
observe that dim(y) = dim(y′) = dim(x) + 1. Then ‘blow-up’ X at x,
replacing x by the simplices in the boundary of its simplicial star in NX,
and thereby constructing a new regular cell complex X ′ (that still contains
B as a constructible substratification). This process does not create any new
cells that fail the unique covering condition and are of dimension dim(x), and
it does remove the cell x as such a failing cell; the claim follows by induction.
(The blow-up process could instead be described using cellular stars, see
Remark B.3.28.)

Consider a 1-mesh bundle p : (M,f) → (B, g), and take fundamental
posets to form its fundamental 1-truss bundle q : T → Y (as described
later in Construction 4.2.11). Pick a complex X satisfying the above unique
covering condition. We can extend q to a 1-truss bundle q̃ : T̃ → X as
follows. Define the fiber of q̃ over the unique arrow y <cov x to be the
identity idq−1(y); one checks this uniquely extends to a well-defined 1-truss
bundle q̃. Take the mesh realization (as described later in Section 4.2.5.4),
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to form a 1-mesh bundle p̃ : (M̃, f̃) → X such that p̃|B ∼= p. Furthermore
forming the fiberwise compactification of the 1-mesh bundle p̃ constructs
a closed 1-mesh bundle over X whose total stratification is a regular cell
complex (by Observation 4.1.65). Since that compactified bundle contains p
as a constructible substratification, the total stratification of p is cellular as
required. □

Proof of Proposition 4.1.63. Suppose the base stratification (B, g)
is cellulable; refine it by a cellular stratification G : (B, c) → (B, g). The
pullback bundle G∗p : (M,d)→ (B, c) has cellular total stratification (M,d)
by Lemma 4.1.64. The coarsening TotG : (M,d) → (M,f) exhibits (M,f)
as cellulable, as required. □

Though our standard regularity condition will be cellulability, we men-
tion that various other regularity properties lift from the base to the total
stratification of 1-mesh bundles, as follows.

Observation 4.1.66 (Finiteness and local finiteness lifts). Though we
have assumed our stratifications are finite by convention, note that the
definition of 1-mesh bundles generalizes to the setting of infinite stratifications.
In that broader context, consider a 1-mesh bundle p : (M,f) → (B, g) in
which the base stratification is finite or locally finite. It follows (because the
fibers in 1-mesh bundles are finite stratifications) that the total stratification
is, respectively, finite or locally finite as well.

Observation 4.1.67 (Frontier-constructibility lifts). Consider a 1-mesh
bundle p : (M,f) → (B, g), and suppose the base (B, g) is frontier-
constructible. It follows that the total stratification (M,f) is again frontier-
constructible.

Observation 4.1.68 (Pairwise locally path-connectedness lifts). Consider
a 1-mesh bundle p : (M,f)→ (B, g), and suppose the base (B, g) is pairwise
locally path-connected. Then the total stratification (M,f) is also pairwise
locally path-connected.

Together, the preceding two observations imply that reasonable regularity
lifts from the base to the total stratifications of 1-mesh bundles.

4.1.3. ♦n-Meshes and their bundles.

Synopsis. We define n-meshes as towers of 1-mesh bundles, and describe
their realizations in the standard euclidean n-proframe. We then introduce,
more generally, n-mesh bundles as towers over a stratified base space. Next
we discuss maps of n-meshes and n-mesh bundles, and delineate notions of
singular, regular, balanced, submesh, degeneracy, and coarsening such maps.
Finally, we mention various categories and ∞-categories of n-meshes and
their bundles.
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4.1.3.1. ♦The definition of n-meshes. As n-trusses were towers of 1-truss
bundles, so n-meshes will be towers of 1-mesh bundles, as follows.

Definition 4.1.69 (n-Meshes). An n-mesh M is a sequence of 1-mesh
bundles

(Mn, fn)
pn−→ (Mn−1, fn−1)

pn−1−−−→ · · · p2−→ (M1, f1)
p1−→ (M0, f0) = ∗

in which the base stratification of each bundle pi is the total stratification of
the subsequent bundle pi−1.

A 1-mesh comes equipped with a 1-framed realization, embedding the
mesh in R; as a byproduct of the 1-framed realizations of its constituent
1-mesh bundles, an n-mesh will have an ‘n-framed realization’, embedding
the mesh in Rn, as follows. Recall from Terminology 3.2.8 that the standard
euclidean n-proframe Pn

R = (πn, πn−1, . . . , π1) is the tower of projections
πi : Ri = Ri−1 × R→ Ri−1, forgetting the last coordinate.

Construction 4.1.70 (n-Framed realizations of n-meshes). Consider an
n-mesh M , consisting of the 1-mesh bundles pi : (Mi, fi)→ (Mi−1, fi−1) with
1-framed realizations Mi ↪→Mi−1 × R. Define a map γ = (γn, γn−1, . . . , γ0)
of towers of spaces

Mn Mn−1 · · · M1 M0 = ∗

Rn Rn−1 · · · R1 R0

pn

γn

pn−1

γn−1

p2

· · ·

p1

γ1 γ0

πn πn−1 π2 π1

by inductively setting γi to be the composite of the realizationMi ↪→Mi−1×R
with the product γi−1 × R :Mi−1 × R ↪→ Ri−1 × R.

We refer to the embedding (of towers of spaces) γ : M ↪→ Pn
R as the

‘n-framed realization’, or simply ‘n-realization’, of the n-mesh M . Note
that the n-realization γ is determined by its top component γn :Mn ↪→ Rn

and, abusing terminology, we may refer to that top embedding itself as the
n-realization.

Terminology 4.1.71 (Support of n-realized meshes). Given an n-mesh
M with n-realization γ, we refer to γn(Mn) ⊂ Rn as the ‘support’ of the
(n-realized) mesh.

Given an n-mesh M with n-realization γ, note that the components γi of
γ may either be considered as subspace embeddings γi : Mi ↪→ Ri or as
stratified maps γi : (Mi, fi) → Ri; as stratified maps they are coarsenings
onto their images.

Terminology 4.1.72 (Closed and open n-meshes). An n-mesh is called
‘closed’ or ‘open’ if each of the constituent 1-mesh bundles in its tower is
closed or open, respectively, and is called ‘mixed’ if it is neither closed nor
open.
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Example 4.1.73 (2-Meshes). In Figure 4.14, we depict two 2-meshes via
their 2-framed realizations in the standard proframe R2 → R1 → R0. The
first 2-mesh (on the left) has half-open half-closed fibers in both the mesh
bundles p1 and p2, and so is mixed. Note that the 2-truss, obtained as the
tower of fundamental posets of this 2-mesh, was illustrated in Figure 2.42.

The second 2-mesh (on the right) has open fibers in both its bundles, and
thus is an open 2-mesh. The fundamental 2-truss of this 2-mesh is illustrated
later on the lower right of Figure 5.31.

1

2

R2 R1

R0

1

2

R2

p2−−→
p1−−→

R1

R0
p2−−→

p1−−→

Figure 4.14. 2-Meshes and their framed realizations.

Example 4.1.74 (3-Meshes). Earlier in Figure 4.1, we depicted a 3-mesh
via its realization in the standard proframe R3 → R2 → R1 (we usually
omit the last projection R1 → R0). In this mesh, the bundle p1 is open,
while the bundles p2 and p3 are both closed. The 3-truss arising as the
fundamental poset tower of this 3-mesh is illustrated later in Figure 5.32.
(That figure also indicates a subposet of the total poset of the 3-truss tracing
out a combinatorial Dehn-twist, and depicts the corresponding geometric
Dehn-twist stratification of the cylinder; the 3-mesh depicted here is in fact
the coarsest mesh refining that geometric stratification, as illustrated on the
left in Figure 5.20.)

In Figure 4.15, we depict another 3-mesh, again via its realization. Here,
all three 1-mesh bundles p1, p2, and p3 are open. The 3-truss given by the
fundamental poset tower of this 3-mesh was illustrated at the beginning of
this Chapter 4 and is illustrated again later in Figure 5.22. (That latter figure
also indicates a subposet of the total poset delineating a combinatorial cusp
configuration, and depicts, roughly speaking, a corresponding geometric cusp
stratification; the 3-mesh depicted here is in fact the coarsest mesh refining a
version of that geometric stratification. That refinement is illustrated, though
in a partially compactified form, on the right in Figure 5.20. Notice that the
top slice of that partially compactified 3-mesh is, up to frame reflection, the
first 2-mesh from Figure 4.14.)

Observation 4.1.75 (n-Meshes are cellular). By Lemma 4.1.64, cellu-
larity lifts along 1-mesh bundles; that property implies that for n-meshes
M , each stratification (Mi, fi) is cellular, and thus also conical (see Observa-
tion B.3.26).
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R1
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Figure 4.15. An open 3-mesh.

4.1.3.2. ♦n-Mesh bundles. Of course we may consider suitably
parametrized families of n-meshes, and those are most simply and conveniently
encoded as towers of 1-mesh bundles over a nontrivial base stratification, as
follows.

Definition 4.1.76 (n-Mesh bundles). An n-mesh bundle over a strati-
fication (B, g) is a sequence of 1-mesh bundles

(Mn, fn)
pn−→ (Mn−1, fn−1)

pn−1−−−→ · · · p2−→ (M1, f1)
p1−→ (M0, f0) = (B, g)

in which the base stratification of each bundle is the total stratification of
the next bundle.

We call a bundle ‘closed’ or ‘open’ if all its constituent 1-mesh bundles are,
respectively.

Construction 4.1.77 (n-Framed realizations of bundles). Consider an n-
mesh bundle p = (pn, pn−1, . . . , p1) over a base stratification (B, g). Replacing,
in Construction 4.1.70, the standard projections πi by the products B × πi,
define a map of towers

Mn Mn−1 · · · M1 M0 = B

B × Rn B × Rn−1 · · · B × R1 B × R0

pn

γn

pn−1

γn−1

p2

· · ·

p1

γ1 idB

B×πn B×πn−1 B×π2 B×π1

We refer to the map γ = (γn, γn−1, . . . , γ0) as the ‘n-framed realization’ or
‘n-realization’ of the bundle; as before we also refer similarly just to the top
map γn :Mn ↪→ B × Rn.
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Terminology 4.1.78 (Support of n-realized mesh bundles). The ‘sup-
port’ of a mesh bundle M is the image γn(Mn) ⊂ B × Rn of its n-
realization.

Recall from Remark 4.1.16 that there is a contractible space of suitable
1-realizations of a 1-mesh; the same applies to 1-mesh bundles. The situation
for n-meshes and n-mesh bundles is similar, as follows.

Remark 4.1.79 (Contractible choice of equivalent n-realizations). As
discussed in Remark 4.1.16, we could have defined 1-meshes to come equipped
with a framed-homeomorphism class of 1-realizations, rather than a specific
1-realization, and such a class is contractible. By applying that shift in
perspective to every fiber of all the 1-mesh bundles in the tower of an n-
mesh bundle, Construction 4.1.77 produces, for any n-mesh, a contractible
space of n-framed realizations, all of which are framed homeomorphic on
every fiber. In fact, that contractible space is exactly the space of maps
(of towers into the standard proframe) that are obtained from any given
n-framed realization by post-composing with an n-framed homeomorphism
of euclidean space; that notion of n-framed homeomorphism is made precise
shortly in Definition 4.1.86. We thus may and will implicitly conceive of
n-mesh realizations up to n-framed homeomorphism when convenient.

Terminology 4.1.80 (Truncations). Given an n-mesh bundle p =
(pn, pn−1, . . . , p1) over the base stratification (B, g), its (lower) ‘k-truncation’
p≤k is the k-mesh bundle (pk, pk−1, ..., p1) over the same base, obtained by
preserving only the k lowest 1-mesh bundles of the tower.

Recall from Remark 4.1.41 the notion of categorical 1-mesh bundle, in
which the entrance path structure of the total stratification is allowed to
depend on the base entrance path (and thus on the fundamental category,
not just fundamental poset, of the base). The corresponding notion in the
context of n-meshes is as follows.

Terminology 4.1.81 (Categorical n-mesh bundles). A ‘categorical n-
mesh bundle’ p over a stratification (B, g) is a sequence of categorical 1-mesh
bundles (Mn, fn)

pn−→ (Mn−1, fn−1)
pn−1−−−→ · · · p2−→ (M1, f1)

p1−→ (M0, f0) =
(B, g). .

Remark 4.1.82 (Posetal refinements of categorical bundles). Every cate-
gorical n-mesh bundle over a posetal base stratification (B, g) is necessarily a
posetal n-mesh bundle (see also Proposition 4.1.43). From this it follows that
any categorical n-mesh bundle over a cellulable base stratification can be
refined by a posetal mesh bundle: indeed, cellular stratifications are posetal
(see Observation B.3.30), and the required refinement can be obtained by a
pullback (see Construction 4.1.93).

Remark 4.1.83 (Unified classification of posetal and categorical bundles).
We will see later that (posetal) n-mesh bundles over (sufficiently nice) base
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stratifications (B, g) are classified by functors Πg → TBordn from the funda-
mental poset of the base to the classifying category of n-trusses and their
bordisms. In the case of categorical mesh bundles the same classifying cate-
gory applies (see also Remark 4.1.44), in that categorical n-mesh bundles are
classified by ∞-functors Π∞(g)→ TBordn, or equivalently by 1-categorical
functors Π1(g)→ TBordn.

4.1.3.3. ♦Maps of n-meshes and their bundles. The notion of map of
1-mesh bundles from Definition 4.1.51 straightforwardly provides a notion of
map of n-meshes and n-mesh bundles, as follows.

Definition 4.1.84 (Maps of n-mesh bundles). Consider an n-mesh bundle
p = (pn, pn−1, . . . , p1) over (B, g) and an n-mesh bundle q = (qn, qn−1, . . . , q1)
over (C, h). A map of n-mesh bundles F : p→ q is a map of towers

(Mn, fn) (Mn−1, fn−1) · · · (M1, f1) (M0, f0) = (B, g)

(Nn, gn) (Nn−1, gn−1) · · · (N1, g1) (N0, g0) = (C, h)

pn

Fn

pn−1

Fn−1 · · ·

p2 p1

F1 F0

qn qn−1 q2 q1

where F0 is a stratified map, and each Fi (for i > 0) is a 1-mesh bundle map
pi → qi. When the base stratifications are trivial, i.e. (B, g) = (C, h) = ∗,
this definition provides a notion of map of n-meshes.

Example 4.1.85 (A 3-mesh map). In Figure 4.16, we depict a map of
open 3-meshes, which is a substratification on each stage. The source 3-mesh
was depicted earlier in Figure 2.41 along with its fundamental 3-truss. (That
3-truss is shown again later in Figure 5.33, with an indication of a subposet of
the total poset tracing out a combinatorial braid. That same figure depicts,
roughly speaking, a corresponding geometric braid stratification; the 3-mesh
depicted here is in fact the coarsest mesh refining a version of that geometric
stratification.)

Note that the target 3-mesh has as its 2-mesh truncation the one previously
shown on the right in Figure 4.14. Though we do not anywhere illustrate
the fundamental 3-truss of the target 3-mesh, the dual of that fundamental
3-truss appeared in Figure 3.2.

⋄ It would be good
to have an example
of a map that’s not
an embedding

In the previous example, we implicitly illustrated a mesh map, via its
realization, in terms of the effect on the mesh supports in the standard
proframed euclidean space. The maps of subspaces of euclidean spaces
that arise in this way are extremely constrained by respecting the proframe
structure, and we describe them precisely as follows.

Definition 4.1.86 (Framed maps of euclidean subspaces). For euclidean
subspaces Z ⊂ Rn and W ⊂ Rn, an n-framed map is a map F : Z → W
that, for every 0 ≤ i < n, descends along the standard projection π>i =
πi+1 ◦ ... ◦ πn : Rn → Ri, to a map Fi : π>i(Z) → π>i(W ); i.e. the map Fi

satisfies Fi ◦ π>i = π>i ◦ F .
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Figure 4.16. A 3-mesh map.

Similarly, given subspaces Z ⊂ B × Rn and W ⊂ C × Rn and a map G :
B → C, an n-framed map over the base map G is a map F : Z →W that,
for every 0 ≤ i < n, descends to a map Fi : (idB×π>i)(Z)→ (idC×π>i)(W ),
with F0 = G; i.e. the map Fi satisfies Fi ◦ (idB×π>i) = (idC×π>i)◦F .

Note that the notion of an n-framed map F : Z →W may equivalently be
specified by asking for there to exist a tower of maps Fi : π>i(Z)→ π>i(W ),
with F = Fn, such that Fi−1 ◦ πi = πi ◦ Fi.

Terminology 4.1.87 (Framed maps for n-realized spaces and bundles).
Given surjective maps p : M → B and q : N → C equipped with base-
preserving ‘n-realizations’ γp :M ↪→ B×Rn and γq : N ↪→ C×Rn, a ‘framed
bundle map’ F : M → N is a bundle map (i.e., q ◦ F = G ◦ p for some
G : B → C) that induces an n-framed map F : γp(M) → γq(N) over the
base map G. When B and C are trivial, we simply speak of a ‘framed map’
F :M → N .

Observation 4.1.88 (Framed maps and mesh bundle maps). Con-
sider n-mesh bundles p =

(
(Mn, fn) → · · · → (M0, f0) = (B, d)

)
and

q =
(
(Nn, gn) → · · · → (N0, g0) = (C, e)

)
with respective realizations

γM :Mn ↪→ Rn and γN : Nn ↪→ Rn.
(1) Any stratified map F : γp(Mn, fn)→ γq(Nn, gn) that is framed over

a base map F0 in the sense of Definition 4.1.86 determines a mesh
bundle map F̃ : p→ q (such that γq ◦ F̃n = F ◦ γq and F̃0 = F0).

(2) Conversely, given a mesh bundle map F : p→ q the top component
Fn is a framed bundle map in the sense of Terminology 4.1.87 on
underlying spaces. Thus, F determines a framed stratified map
F̃ : γp(Mn, fn)→ γq(Nn, gn) (such that γq ◦ Fn = F̃ ◦ γq).

The above remark
could probably be
clearer. Option:
both ways. Rechar-
acterize mesh maps
in terms of framed
maps. Ie given
mesh map, get a
framed map that re-
spects the stratifica-
tion; given framed
map that’s stratified,
descends to a mesh
map. [Following that
option, statements
are now very clear]
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We record the following obvious extensions of 1-mesh bundle terminology
to the case of n-mesh bundle maps.

Terminology 4.1.89 (Singular, regular, and balanced maps of n-mesh
bundles). We call an n-mesh bundle map F ‘singular’ or ‘regular’ or ‘balanced’
if all of its constituent 1-mesh bundle maps Fi (for 1 ≤ i ≤ n) are respectively
singular or regular or balanced, in the sense of Terminology 4.1.52, i.e. if
every bundle map Fi satisfies the respective condition on every fiber.

Terminology 4.1.90 (Subbundles and submeshes). We call an n-mesh
bundle map F a ‘subbundle’ if the map F0 is a substratification and all the
maps Fi (for i > 0) are fiberwise submesh inclusions of 1-meshes in the sense
of Terminology 4.1.19. A subbundle map between n-meshes is called simply
a ‘submesh’.

Terminology 4.1.91 (Degeneracies and coarsenings of n-meshes and
n-mesh bundles). An n-mesh bundle map F is called a ‘degeneracy’ or a
‘coarsening’ when all the constituent 1-mesh bundle maps Fi (for i > 0)
are, on every fiber, degeneracies or coarsenings of 1-meshes as defined in
Terminology 4.1.20, and the stratified base map F0 is of a corresponding
designation (i.e. a quotient map or a homeomorphism on underlying spaces).24

Note that any n-mesh coarsening induces a tower of homeomorphisms of
underlying spaces, and thus provides a tower of coarsenings of stratifications
in the usual sense (see Definition B.2.4).

Terminology 4.1.92 (Base preserving maps). We call an n-mesh bundle
map F ‘over the base’ (B, g) or ‘base preserving’ when the 0-stage map F0 is
an identity idB.

We next generalize pullbacks of 1-mesh bundles (see Construction 4.1.57)
to n-mesh bundles. Note that we may pullback not only along a map of base
stratifications, but along a truncated mesh bundle map, as follows.

Construction 4.1.93 (Pullbacks of mesh bundles). Consider an n-mesh
bundle p = ((Mn, fn)

pn−→ · · · p1−→ (M0, f0)), and a stratification (N0, g0)

or an i-mesh bundle q = ((Ni, gi)
qi−→ · · · q1−→ (N0, g0)) for some fixed 0 <

i < n. Given an i-mesh bundle map G : q → p≤i from the bundle q to
the truncation p≤i, apply inductively the pullback of 1-mesh bundles, from
Construction 4.1.57, to obtain the tower of maps

(G∗Mn, G∗fn) · · · (G∗Mi+1, G
∗fi+1) (Ni, gi) · · · (N0, g0)

(Mn, fn) · · · (Mi+1, fi+1) (Mi, fi) · · · (M0, f0)

G∗pn G∗pi+2 G∗pi+1

pi+1pi+2pn

qi

pi

q1

p1

GiTot1GTotn−iG G0

⌟ ⌟ ⌟

24Analogously to the truss case discussed in Terminology 2.3.67, we refer to a ‘coarsening
of meshes’ as a ‘refinement of meshes’, albeit with a grammatical contravariance.
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Here, for 1 ≤ j ≤ n − i, the maps G∗pi+j and TotjG are defined by the
pullback of pi+j along Totj−1G (with Tot0G = Gi). We call the top tower
the ‘pullback n-mesh bundle’ G∗p, and we call the vertical map of towers the
‘pullback n-mesh bundle map’ TotG : G∗p→ p.

Terminology 4.1.94 (Bundle restrictions). In the special case of the
previous construction where i = 0, i.e. the pullback is along simply a stratified
map, and when G0 : (C, h) ≡ (N0, g0) ↪→ (M0, f0) ≡ (B, g) is a substratifi-
cation, we call the pullback G∗p → p the ‘restriction of the n-mesh’ along
the base map C ↪→ B, and we denote the restriction by p|C ↪→ p. Note that
restricting an n-mesh bundle to a point in its base provides a notion of the
‘fiber n-mesh’ at that point.

4.1.3.4. ♦Categories of n-meshes and their bundles. Equipped with
the notions of n-meshes, n-mesh bundles, and their maps, we can now
introduce various categories of meshes and mesh bundles.

Notation 4.1.95 (Categories of n-meshes and n-mesh bundles). Using
the previously defined notions of maps, we have the following categories:

Meshn n-Meshes and their maps.
MeshBunn n-Mesh bundles and their maps.

Meshn(B, g) n-Mesh bundles over (B, g) and their base-preserving maps.
In each case, the decoration M̊ or M̄ will indicate the restriction to the open
objects and regular maps, or closed objects and singular maps, respectively.

The set of mesh maps, between any two meshes, has a natural topology,
and hence the category of meshes (or mesh bundles) is topologically enriched
[Kel82], as follows.

Convention 4.1.96 (∞-Categories modeled by Top-enriched categories).
Unless otherwise indicated, we will use the term ‘∞-category’ to refer to
a Top-enriched category (see [Lur09a, §1]). In certain circumstances, for
instance involving posets with the specialization topology, we also use kTop-
enriched categories (see Notation B.1.2) as a model of ∞-categories, but
in those cases will refer to the enrichment specifically. We use the term
‘quasicategory’ to refer to a simplicial set with inner horn fillers (see [Joy02]).

The primary contravention of that convention is that we use the term
‘fundamental ∞-category’ to refer to a quasicategory. Note also that for
suitable emphasis we let ‘∞-functor’ refer either to a Top-enriched functor in
the context of∞-categories, to a kTop-enriched functor in the context of kTop-
enriched categories, or to a simplicial map in the context of quasicategories.
Of course, we may and sometimes will consider ordinary 1-categories as ∞-
categories, by giving their hom sets the discrete topology, or as quasicategories,
by taking their simplicial nerve.

Notation 4.1.97 (∞-Categories of n-mesh bundles). By topologizing the
hom sets Meshn(M,N) as subspaces of the hom spaces Map(Mn, Nn) ∈ Top
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(and similarly for mesh bundles and mesh bundles with a fixed base), we
obtain the following ∞-categories:

Meshn n-Meshes and their spaces of maps.
MeshBunn n-Mesh bundles and their spaces of maps.

Meshn(B, g) n-Mesh bundles over (B, g) and their spaces of base-
preserving maps.

As before, in each case, the decoration M̊ or M̄ will indicate the restriction to
the (Top-enriched) subcategory of open objects and regular maps, or closed
objects and singular maps, respectively. We further write Meshbal

n (B, g)
for the wide subcategory of Meshn(B, g) comprising only balanced mesh
maps.

Remark 4.1.98 (Truncating is continuous). Truncating from an n-
mesh to a k-mesh provides a Top-enriched functor (−)≤k : Meshn(B, g) →
Meshk(B, g) of the ∞-categories of mesh bundles over the base (B, g).

Notation 4.1.99 (∞-Categories with degeneracies and coarsenings).
By restricting the morphisms to be degeneracies or coarsenings, we obtain
two wide sub-Top-categories of Meshn, namely the ∞-category Meshdeg

n of
n-meshes and degeneracies and the ∞-category Meshcrs

n of n-meshes and
coarsenings.

Recall from Remark 2.2.75 that there is a quasicategory TBord1 of ‘1-
trusses and their bordisms’, which has 0-simplices being the 1-trusses, 1-
simplices being the 1-truss bordisms, and more generally k-simplices being
1-truss bundles over the combinatorial k-simplex. There is an analogous
quasicategory MBord1 of ‘1-meshes and their bordisms’, which has 0-simplices
being the 1-meshes, 1-simplices being the 1-mesh bundles over the standard
stratified 1-simplex, and k-simplices being 1-mesh bundles over the standard
stratified k-simplex. The same scheme provides the following quasicategory
in the n-mesh case.

Definition 4.1.100 (Quasicategories of n-meshes and their bordisms).
The quasicategory of n-meshes and their bordisms MBordn has k-
simplices being the n-mesh bundles over the stratified k-simplex ∥[k]∥; simpli-
cial maps f : [k]→ [l] operate by bundle pullback along the stratified maps
∥f∥ : ∥[k]∥ → ∥[l]∥.
Echoing the truss terminology, we sometimes refer to the 1-simplices of
MBordn, i.e. the n-mesh bundles over the stratified 1-simplex, as ‘n-mesh
bordisms’. However, once we establish an equivalence between the quasicate-
gory MBordn and the 1-category TBordn, we will for the most part work with
the latter truss category, and so mesh bordisms will not play a substantial
direct role henceforth.

Remark 4.1.101 (Categorical mesh bordisms). Recall from Proposi-
tion 4.1.43 that categorical bundles over posets are posetal. As a consequence,
if we replaced posetal mesh bundles by categorical mesh bundles in Defini-
tion 4.1.100, the resulting ‘quasicategory of categorical n-meshes and their
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bordisms’ would be identical to the quasicategory of n-meshes and their
bordisms. This coincidence is also encoded in the fact that posetal and
categorical mesh bundles will have the same classifying category.
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4.2. ♦Weak equivalence of meshes and trusses

From the outset, the notion of 1-trusses was designed to model the
fundamental posets of certain stratifications of intervals, namely 1-meshes,
and the notion of 1-truss bundles was formulated to model the fundamental
posets of suitable constructible bundles of stratified intervals, namely 1-mesh
bundles; thus the whole theory of n-trusses is motivated, in retrospect, from
the structures arising in the fundamental posets of n-meshes. It will come as
no surprise, then, that the fundamental poset induces a fundamental truss
functor ΠT from meshes to trusses. An example of a mesh and its associated
fundamental truss is illustrated in Figure 4.17. The total stratification of the
3-mesh is depicted on the left, and the total poset of the associated 3-truss is
depicted on the right; the lower stages of the mesh and the truss are obtained
by successively (from highest to lowest) projecting out the realization or
frame vectors, respectively.

What is less immediate than the existence of a fundamental truss asso-
ciated to a mesh, is that the fundamental truss is a faithful combinatorial
encoding of the topological mesh. The encoding is faithful in the sense that
meshes with isomorphic fundamental trusses are themselves isomorphic, and
moreover mesh maps inducing the same fundamental truss map are them-
selves homotopic. Furthermore, every truss arises as the fundamental truss of
some mesh. Indeed, at least for closed trusses, the stratified realization of the
truss posets induces a mesh realization functor ∥−∥M from trusses to meshes.
(And the fundamental truss of the mesh realization of a truss is isomorphic
to the original truss.) Read now from right to left, Figure 4.17 also provides
an example of a truss and (up to homotopic artistic license) its associated
mesh realization. Notice that the two horizontal 2-disc strata of the 3-mesh
are visible in the 3-truss as the 2-truss fibers over the two singular points of
the projected 1-truss; similarly the central skew 2-disc stratum of the 3-mesh
is visible in the 3-truss as the downward closure of the 1-truss fiber over the
central singular point of the projected 2-truss.

3

2

1

ΠT

∥−∥M

Figure 4.17. A corresponding 3-mesh and 3-truss.
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Outline. In Section 4.2.1, we overview the equivalences between meshes
and trusses, emphasizing the cases of closed meshes and trusses, of open
meshes and trusses, and of mesh and truss bordisms. In Section 4.2.2, we
construct the fundamental truss functor from meshes to trusses, first as
an ordinary functor and then as an ∞-functor. Then in Section 4.2.3, we
prove the fundamental truss functor is essentially injective, in the sense that
meshes with isomorphic fundamental trusses are isomorphic. Furthermore in
Section 4.2.4, we prove the fundamental truss ∞-functor is weakly faithful,
in that the hom fibers of that functor are either empty or contractible. Next
in Section 4.2.5, we construct the mesh realization functor from trusses
to meshes, as a right inverse to the fundamental truss functor. Finally
in Section 4.2.6, we assemble the proof of the equivalences of meshes and
trusses, and present two applications, namely to the classification of framed
subdivisions of framed cells and to the dualization equivalence of open and
closed meshes.

4.2.1. ♦Overview of the equivalences. We state and sketch the context
and relationships among several incarnations of equivalences between meshes
and trusses, specifically for closed meshes and trusses, open meshes and
trusses, closed or open mesh bundles and truss bundles, suitably enriched
categories of general mesh bundles and truss bundles, and quasicategories
of mesh bordisms and truss bordisms. We then preview two applications
of these equivalences, namely to a classification of framed subdivisions of
framed regular cells by truss subdivisions of truss blocks, and to a dualization
equivalence between closed and open meshes.

The equivalences between meshes and trusses will be witnessed by a
‘fundamental truss functor’ ΠT and conversely by a ‘mesh realization functor’
∥−∥M. As the names suggest, the former is a variation of the fundamen-
tal poset functor, and the latter is a variation of the stratified realization
functor.25

The fundamental truss functor will take an n-mesh M , given by a tower
of 1-mesh bundles, to an n-truss ΠTM , given by a tower of 1-truss bundles,
defined by applying the fundamental poset functor to the mesh tower. The
mesh realization functor will take an n-truss T , given by a tower of 1-truss
bundles, to an n-mesh ∥T∥M, given by a tower of 1-mesh bundles, defined
(roughly speaking) by applying the stratified realization functor to the truss
tower. For both the fundamental truss and mesh realization functors, the
1-mesh structure of every fiber in the mesh tower induces or is induced by
the 1-truss structure of every fiber in the truss tower.

25In general the mesh realization will not strictly preserve identities, and so will be just a
semifunctor, but we suppress that subtlety in our overview.
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Theorem 4.2.1 (Weak equivalence of meshes and trusses). The funda-
mental truss and mesh realization functors provide weak equivalences

M̄eshn T̄rsn M̊eshn T̊rsn
ΠT

∥−∥M

ΠT

∥−∥M

between the ∞-category of closed n-meshes and the 1-category of closed n-
trusses, and correspondingly for open meshes and open trusses.

That core theorem, worth demarcating, is simply the specialization to the
trivial base of the corresponding statement for mesh and truss bundles, as
follows.

Theorem 4.2.2 (Weak equivalence of mesh and truss bundles). Given
a cellulable stratification (B, g), the fundamental truss and mesh realization
functors provide weak equivalences

M̄eshn(B, g) T̄rsn(Πg) M̊eshn(B, g) T̊rsn(Πg)
ΠT

∥−∥M

ΠT

∥−∥M

between the ∞-category of closed n-mesh bundles over the base stratification
(B, g) and the 1-category of closed n-truss bundles over the base poset Πg,
and correspondingly for open mesh bundles and open truss bundles.

These results are established, following the development of the necessary
tooling, in Section 4.2.6.

Remark 4.2.3 (Equivalence of categorical bundles). The preceding result
generalizes to an equivalence between the ∞-category of closed (or open)
categorical n-mesh bundles (see Terminology 4.1.81) and the 1-category of
closed (or open) categorical n-truss bundles (see Remark 2.3.53). Thereby,
a categorical n-mesh bundle over a stratification (B, g) corresponds to a
categorical n-truss bundle over the fundamental category Π1(B, g). (The
proofs given in the posetal case will carry over to the categorical case, keeping
in mind that certain key steps presume the base stratification is cellular,
therefore 0-truncated, in which case the notions of categorical and posetal
mesh bundles coincide, and the fundamental category and fundamental poset
are identical.)

The above theorems restrict attention to closed or open meshes and
trusses, and thereby avoid complications arising from non-invertible higher
morphisms in the case of mixed meshes and trusses; those complications may
be encoded obliquely in an enriched version of the fundamental truss functor,
as follows.

Remark 4.2.4 (Enriched fundamental truss functor). Recall from Re-
mark 2.3.39 that natural transformations between truss bundle maps provide
a poset structure on the hom sets in the category of truss bundles, and pass-
ing to the specialization topology yields the kTop-enriched category Trsn(X)
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of n-truss bundles over the base poset X. The (mixed) fundamental truss
functor ΠT will be suitably continuous, giving an ∞-functor on all meshes:

Meshn(B, g) Trsn(Πg)
ΠT

∥−∥M

This functor will be recorded in Proposition 4.2.16. However, the (mixed)
mesh realization functor ∥−∥M : Trsn(Πg)→Meshn(B, g) (which will be given
in Notation 4.2.60 and Construction 4.2.73) is not suitably continuous, and so
does not provide an ∞-functor, as indicated (see Observation 4.2.61).26

Complementary to the above primary results relating meshes and their
maps to trusses and their maps, there is a relationship of meshes and their
bordisms (see Definition 4.1.100) to trusses and their bordisms (see Nota-
tions 2.3.20 and 2.3.24 and Lemma 2.3.25), as follows.

Theorem 4.2.5 (Weak equivalence of mesh and truss bordisms). The
fundamental truss functor induces a trivial fibration of quasicategories

MBordn TBordn
ΠT

and thus provides an equivalence between the quasicategory of n-meshes and
their bordisms and the 1-category of n-trusses and their bordisms.

Here we regard the 1-category TBordn of trusses and their bordisms as a
quasicategory by implicitly taking its simplicial nerve. The indicated fibration
of quasicategories is given on k-simplices by the fundamental truss functor
on mesh bundles over the stratified k-simplex. Crucially, this result concerns
only mesh and truss bordisms and so is unaffected by the non-invertible higher
morphisms that arise in considering mesh and truss maps (see Footnote 26).
This result is established after the mesh and truss map equivalences in
Section 4.2.6.

Remark 4.2.6 (Mapping cylinders as mesh bordisms). Recall from Con-
struction 2.1.68 that to certain truss maps, there were associated ‘mapping
cylinder’ truss bordisms. The above results and discussion combine to provide
a relationship between mesh maps and mesh bordisms, parallel to that earlier
relationship between truss maps and truss bordisms. To an appropriate mesh

26The mixed fundamental truss ∞-functor is nevertheless a weak equivalence in an
appropriate sense. That sense, accounting for non-invertible higher morphisms, is
(∞, 2)-categorical: the category of stratified spaces, and therefore meshes, is secretly
(∞, 2)-categorical, and the category of posets, and therefore trusses, is not-so-secretly 2-
categorical. Indeed, the kTop-enrichment (crucially not a Top-enrichment) of the category
of posets is a topological simulacrum of the presence of non-invertible 2-morphisms—
entrance paths in non-Hausdorff spaces need not be invertible. To avoid the technicalities
and diversions of (∞, 2)-categories, we must restrict attention to the rigid cases of open
or closed meshes and trusses.



4.2. ♦WEAK EQUIVALENCE OF MESHES AND TRUSSES 239

map, we expect to be able to form the geometric mapping cylinder to obtain
a mesh bordism; formally, we combine the homotopy coherent nerve Nhc

(see [Qui06, §II.3] and [Joy07]) of the fundamental truss ∞-functor (from
Remark 4.2.4), with the nerve of the truss mapping cylinder, and the inverse
of the bordism fundamental truss equivalence (from Theorem 4.2.5), to obtain
the ‘mesh mapping cylinder’ Cyl , as follows:

NTrss,∂1 NTBord1

NhcMeshs,∂
1 MBord1

NCyl

NhcΠT

Cyl

ΠT ∼

Here, Meshs,∂
1 denotes the wide subcategory of Mesh1 whose morphisms

are the singular maps that preserve singular endpoints. (That the functor
NhcΠT restricted to Meshs,∂

1 indeed lands in NTrss,∂1 requires consideration, cf.
Lemma 2.3.71 and Proposition 4.2.18 and its corollaries.) A similar diagram
constructs the ‘mesh mapping cocylinder’ functor coCyl : Nhc(Meshr,∂

1 )op →
MBord1.

We conclude by previewing two applications of the equivalences of meshes
and trusses, namely to the classification of subdivisions of framed cells, and
to the dualization of meshes.

Composing the weak equivalence of closed meshes and closed trusses from
Theorem 4.2.1, with the equivalence of closed trusses and collapsible framed
regular cell complexes from Theorem 3.1.2, we obtain the composite weak
equivalence

M̄eshn T̄rsn CollFrCellCplxn

∇C ◦ΠT

ΠT ∇C

∥−∥M

∥−∥M◦∫T

∫T

⋄ Transport this ar-
row fix to other
similar asymmetric
curved arrows.
⋄ The label position-
ing in the above dis-
play isn’t great, but
small tweaking does
not fix it.

Terminology 4.2.7 (Mesh-to-cell gradient and cell-to-mesh realization).
We denote the composite functors in the above equivalence by

∇MC := ∇C ◦ΠT

∥−∥CM := ∥−∥M ◦ ∫T
and call them the ‘mesh-to-cell (gradient) functor’ and the ‘cell-to-mesh
(realization) functor’, respectively.

We can leverage the cell-to-mesh realization functor to provide a notion
of framed subdivision of a framed regular cell: a framed cell complex framed
subdivides a framed cell when equipped with a stratified coarsening between
their cell-to-mesh realizations, which on every cell of the complex is a map of
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meshes (see Definition 4.2.87). Quite unlike non-framed subdivisions, these
framed subdivisions are combinatorially classifiable, as follows.

Theorem 4.2.8 (Classifying subdivisions of framed cells). A framed
regular cell complex Y framed subdivides a framed regular cell X exactly when
the framed complex Y is the cell gradient ∇C T of a truss T that combinatorially
subdivides a truss block B whose cell gradient ∇CB is the framed cell X.

This result is explained, illustrated, and established in Section 4.2.6.1.
Finally, the duality of closed and open trusses may be transported across

the equivalence of meshes and trusses to provide a duality of closed and open
meshes.

Corollary 4.2.9 (Dualization of meshes). There is a dualization weak
equivalence between the ∞-categories of closed n-meshes and open n-meshes:

† : M̄eshn ≃ M̊eshn : † .

This result is established and discussed in Section 4.2.6.2. Notice that framed
regular cell complexes provided a target context for topological realization of
closed trusses, but there was no evident corresponding cell-like topological
realization of open trusses. The constructible stratified framework of meshes,
by contrast, conveniently accommodates realizations of both closed and open
trusses and of course the duality between them.

4.2.2. ♦Fundamental trusses. We will now construct the fundamental
truss functors from various categories of n-meshes to corresponding categories
of n-trusses. We first address the foundational case of the functor of 1-
categories

ΠT : Meshn(B, g)→ Trsn(Πg).

We then observe that that functor is suitably continuous on hom spaces, and
so provides an ∞-functor

ΠT : Meshn(B, g)→ Trsn(Πg).

Of course, the functor Trsn(Πg)→ Trsn(Πg) (from the kTop-enriched category
to the discrete category) is not continuous on hom spaces, but it is continuous
when restricted either to the subcategory of closed trusses and singular maps,
or to the subcategory of open trusses and regular maps. We will therefore
obtain, as composites, fundamental truss∞-functors, from the∞-category of
(closed or open) meshes to the discrete category of (closed or open) trusses:

ΠT : M̄eshn(B, g)→ T̄rsn(Πg)

ΠT : M̊eshn(B, g)→ T̊rsn(Πg).

The construction of all these fundamental truss functors is mainly
straightforward—take the fundamental poset of each stage—but we will
need to check that the resulting towers of posets indeed satisfy the conditions
for being trusses, truss bordisms, and truss bundles accordingly.
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The following examples, collected from past figures, serve as an informal
visual guide to the correspondence of meshes and their fundamental trusses,
and can be kept in mind during the detailed constructions and arguments to
follow.

Example 4.2.10 (Fundamental trusses and truss bundles). Recall from
Figure 4.2 the three linear 1-meshes in the middle and the two trivial 1-meshes
on the left that are embedded in R1; the corresponding fundamental 1-trusses
are the three linear 1-trusses in the middle and the two trivial 1-trusses on
the left of Figure 2.4. Further recall from Figure 4.3 the various types of
maps of 1-meshes; for the singular, regular, and balanced cases, the induced
maps of fundamental 1-trusses are those shown in Figure 2.6.

Next recall from Figure 4.4 a 1-mesh bordism (i.e. a 1-mesh bundle over
the stratified 1-simplex); the corresponding fundamental 1-truss bordism was
depicted in Figure 2.9. The six local forms of 1-mesh bordisms depicted
in Figure 4.7 have as corresponding fundamental 1-truss bordisms the six
local forms in Figure 2.12. More generally, recall from Figure 4.5 the 1-
mesh bundle over the stratified realization of a poset; the corresponding
fundamental 1-truss bundle was shown in Figure 2.19.

Furthermore, recall from Figure 2.42 both a 2-mesh and its corresponding
fundamental 2-truss, and finally, recall from Figure 2.41 both a 3-mesh and
its corresponding fundamental 3-truss.

Synopsis. We construct the fundamental n-truss bundle associated to
an n-mesh bundle, and observe that association provides a functor from the
1-category of mesh bundles to the 1-category of truss bundles. We then
show that functor is continuous with respect to a topological enrichment,
and, after restriction to closed or open meshes, yields an ∞-functor from the
∞-category of meshes to the discrete category of trusses.

4.2.2.1. ♦Fundamental trusses as an ordinary functor. We detail the
construction of the fundamental truss functor as an ordinary functor, from
the 1-category of mesh bundles to the 1-category of truss bundles.

Construction 4.2.11 (Fundamental 1-truss bundles). Given a 1-mesh
bundle p : (M,f) → (B, g), we will equip the fundamental poset map Πp :
Πf → Πg with the structure of a 1-truss bundle, yielding the ‘fundamental
1-truss bundle’ ΠT(p) of the 1-mesh bundle p.

We first describe the 1-truss structure on the fibers of the poset map Πp.
Trivialize the 1-mesh bundle p over a base stratum s, by an isomorphism
p−1(s) ∼= s × fib(s); here fib(s) is the fiber 1-mesh over the stratum s, see
Observation 4.1.34. Note that the fiber of the fundamental poset map over
the stratum s is simply, and canonically, the fundamental poset of the fiber
1-mesh: (Πp)−1(s) ∼= Π(p−1(s)) ∼= Π(fib(s)). Equip this fiber (Πp)−1(s) with
a frame order ⪯ that orders strata according to the 1-framing of the 1-mesh
fib(s), and equip the fiber with a dimension map dim : (Πp)−1(s) → [1]op

that sends each element t ∈ (Πp)−1(s) to the fiber dimension fibdim(t̃) of the
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corresponding fiber stratum t̃ ∈ fib(s). We subsequently will tend to elide,
even notationally, the distinction between a poset element t ∈ (Πp)−1(s) and
its corresponding stratum t ≡ t̃ ∈ fib(s).

We next and finally check that the poset map Πp, now with its 1-truss
point fibers, in fact has 1-truss bordism fibers over arrows of the base poset.
Specifically, given an entrance path r → s in the base poset Πg, we need
that the functorial relation R = (Πp)−1(r → s) : (Πp)−1(r) −7−→ (Πp)−1(s) is a
1-truss bordism. Constructibility of the mesh bundle constrains this relation
as follows. Let t ∈ (Πp)−1(r) be an element in the generic fiber. When t is
singular, by constructibility there is a unique element u ∈ (Πp)−1(s) of the
special fiber, such that R(t, u) holds, and u is moreover singular. Otherwise
for t a regular element of the general fiber and u an element of the special
fiber, the relation R(t, u) holds exactly when the following two implications
both hold: first, when the stratum t is bounded above by a singular stratum
t+, then there is a frame order relation u ⪯ u+ in the special fiber, for a
stratum u+ with relation R(t+, u+); second, when the stratum t is bounded
below by a singular stratum t−, then there is a frame order relation u− ⪯ u
in the special fiber, for a stratum u− with relation R(t−, u−). (If the stratum
t is bounded neither above nor below, then it is in fact related to every
element of the special fiber.) Altogether, this relation is specified as in the
construction of singular-determined 1-truss bordisms in Lemma 2.1.63, and
in particular is indeed a 1-truss bordism as required.

Definition 4.2.12 (Fundamental truss bundles). For an n-mesh bundle
p over the stratification (B, g), given by the sequence of 1-mesh bundles

(Mn, fn)
pn−→ (Mn−1, fn−1)

pn−1−−−→ · · · p2−→ (M1, f1)
p1−→ (M0, f0) = (B, g),

its fundamental truss bundle ΠT(p) is the n-truss bundle over Πg, given
by the sequence of 1-truss bundles

Π(fn)
ΠT(pn)−−−−→ Π(fn−1)

ΠT(pn−1)−−−−−−→ · · · ΠT(p2)−−−−→ Π(f1)
ΠT(p1)−−−−→ Π(f0) = Π(g),

where each ΠT(pi) is the fundamental 1-truss bundle of the 1-mesh bundle
pi.

Definition 4.2.13 (Fundamental truss bundle maps). For a mesh bundle
map F : p→ q between an n-mesh bundle p over (B, g) and an n-mesh bundle
q over (C, h), with components Fi : (Mi, fi) → (Ni, gi), the fundamental
truss bundle map ΠTF : ΠT(p) → ΠT(q) is the truss bundle map with
components (ΠTF )i = Π(Fi) : Π(fi)→ Π(gi).

Notation 4.2.14 (The fundamental truss functor). The previous two
definitions together give the fundamental truss functor ΠT : MeshBunn →
TrsBunn from mesh bundles to truss bundles. That functor restricts to the
fundamental truss functor ΠT : Meshn(B, g)→ Trsn(Πg) from mesh bundles
over the stratification (B, g) to truss bundles over the poset Πg.
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Observation 4.2.15 (The fundamental truss functor preserves pullbacks).
Recall from Construction 4.1.93 and Construction 2.3.54 the notions of
pullback of n-mesh bundles and pullback of n-truss bundles respectively.
The fundamental truss functor preserves pullbacks in the sense that the
fundamental truss of the pullback is the pullback of the fundamental truss:
ΠT(G

∗p) = (ΠG)∗ΠT(p); here p is an n-mesh bundle over (B, g), and G :
(C, f)→ (B, g) is a map of stratifications.

4.2.2.2. ♦Fundamental trusses as an ∞-functor. We now upgrade the
fundamental truss functor to an ∞-functor, with target either the kTop-
enriched category of trusses or, when restricted to closed or open mesh
bundles, the corresponding discrete categories of trusses.

Recall from Notation 4.1.97 that Meshn(B, g) denotes the Top-enriched
category of n-mesh bundles over the stratification (B, g), with the hom sets
topologized as subspaces of the literal mapping spaces of the total spaces of
the mesh bundle towers. Recall further from Remark 2.3.39 that Trsn(X)
denotes the kTop-enriched category of n-truss bundles over the poset X, with
the hom sets given the specialization topology of the poset of truss bundle
maps and natural transformations of their total posets.

The fundamental truss provides an ∞-functor (between kTop-enriched
categories) as follows.

Proposition 4.2.16 (The fundamental truss as an enriched functor).
The fundamental truss induces an ∞-functor ΠT : Meshn(B, g)→ Trsn(Πg).

Proof. One needs to check that the hom space map ΠT :
Meshn(B, g)(M,N) → Trsn(Πg)(ΠTM,ΠTN) is continuous. That follows
from the proof of the continuity on hom spaces of the functor Π : Stratlf →
Pos lf , detailed in Construction B.2.21. (Note as in Remark B.2.20 that the
kTop-enrichment of Pos lf is indeed the specialization topology on poset maps
and natural transformations.) □

Remark 4.2.17 (Non-invertible 2-morphisms of trusses and meshes). As
mentioned, the preceding functor is only kTop-enriched and not Top-enriched,
since the hom spaces in the category Trsn (and similarly Trsn(X)) are not
weak Hausdorff. These hom kTop spaces, qua spaces, do not accurately
represent the higher categorical structure of trusses: natural transformations
of maps of trusses provide in general non-invertible 2-morphisms, which are
not especially well represented in the associated specialization topology.

Though we introduced Meshn (and similarly Meshn(B, g)) as an ∞-
category (i.e. (∞, 1)-category), in fact entrance path deformations between
stratified maps provide non-invertible 2-morphisms of meshes, as well.27 Thus,
while one could show that the functor ΠT in Proposition 4.2.16 is a weak
equivalence in some appropriate sense, a more principled approach would be

27Similarly, entrance path deformations provide higher morphisms for stratifications more
generally; see Remark B.3.19.
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to establish an equivalence Meshn ≃ Trsn of (∞, 2)-categories; we quite forgo
that here.

We are at luxury to defer an (∞, 2)-categorical treatment because, in the
cases of our primary attention, namely closed trusses and singular maps or
open trusses and regular maps, non-invertible 2-morphisms are conspicuously
absent; see the next proposition.

Proposition 4.2.18 (Rigidity of closed or open truss bundles). The
subspace of singular maps in any hom space between closed truss bundles,
in the kTop-enriched category Trsn(X), is discrete. Similarly, the subspace
of regular maps in any hom space between open truss bundles, again in the
kTop-enriched category Trsn(X), is discrete.

Proof. These statements follow from the fact, established in
Lemma 2.3.72, that singular maps of closed truss bundles, similarly reg-
ular maps of open truss bundles, over a fixed base poset, do not admit any
non-trivial natural transformations. □

Corollary 4.2.19 (Rigidity of the fundamental truss for closed or
open mesh bundles). The fundamental truss functor restricts to ∞-functors
ΠT : M̄eshn(B, g)→ T̄rsn(Πg) and ΠT : M̊eshn(B, g)→ T̊rsn(Πg).

Corollary 4.2.20 (Rigidity of the fundamental truss for closed or
open meshes). The fundamental truss functor restricts to ∞-functors ΠT :

M̄eshn → T̄rsn and ΠT : M̊eshn → T̊rsn.

Lemma 2.3.72 suggests two other settings for ∞-categorical fundamental
truss functors. Note that the fundamental truss construction sends degen-
eracies of meshes to degeneracies of trusses, and coarsenings of meshes to
coarsenings of trusses; thus there are ordinary functors ΠT : Meshdegn → Trsdegn

and ΠT : Meshcrsn → Trscrsn (see Notation 2.3.66). Again by the rigidity of hom
posets for these truss categories, we have the following consequence.

Observation 4.2.21 (Rigidity of the fundamental truss for degeneracies
and coarsenings). The fundamental truss functor restricts to ∞-functors
ΠT : Meshdeg

n → Trsdegn and ΠT : Meshcrs
n → Trscrsn (see Notation 4.1.99).

The restricted functors in Corollary 4.2.19 (and similarly in Corol-
lary 4.2.20 and Observation 4.2.21) are in fact weak equivalences of ∞-
categories. In the next two sections we establish the two core ingredients for
those equivalences, namely that the fundamental truss functor is essentially
injective and weakly faithful.

4.2.3. ♦Essential injectivity of the fundamental truss functor. Of
course, given n-meshes M and M ′, by the functoriality of the fundamental
truss functor ΠT, if the meshes are isomorphic M ∼=M ′ then the fundamental
trusses are isomorphic ΠT(M) = ΠT(M

′). (We write equality for (balanced)
isomorphism since truss isomorphisms are necessarily unique.) Working
toward establishing that the fundamental truss functor, suitably restricted,
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is an equivalence, we will next show that when the fundamental trusses are
isomorphic, the meshes were too, i.e. the functor ΠT is ‘essentially injective’.
We record this result, also for mesh bundles, as follows.

Proposition 4.2.22 (Essential injectivity). For a cellulable stratification
(B, g), the functor ΠT : Meshn(B, g) → Trsn(Πg) is essentially injective;
that is, given n-mesh bundles p and p′ over the stratification (B, g), if the
fundamental trusses are isomorphic, ΠT(p) = ΠT(p

′), then the mesh bundles
are isomorphic, p ∼= p′.

The proof of this proposition will occupy the whole of this subsection. The
properties established during the construction of the mesh bundle isomor-
phism (specifically the continuity of the isomorphism for families of mesh
bundles) will be reused in our subsequent proof of the weak faithfulness of
the fundamental truss functor.

Observation 4.2.23 (Essential injectivity for degeneracies and coars-
enings). Note that any isomorphism of n-meshes is both a degeneracy and
a coarsening. Therefore the following proof of essentially injective of the
fundamental truss functor specializes to give the essential injectivity of the
restrictions ΠT : Meshdegn → Trsdegn and ΠT : Meshcrsn → Trscrsn .

Synopsis. We show that it suffices to establish essential injectivity of
the fundamental truss functor for bundles over cellular bases, then for 1-mesh
bundles, and finally for closed bundles. We then introduce regular contours of
1-mesh bundles, and catchment areas and radial catchment paths of cellular
stratifications. Equipped with those technical notions, we construct the
desired closed 1-mesh bundle isomorphism via affine interpolations. Finally,
we observe the construction of these mesh bundle isomorphisms is continuous
in families.

4.2.3.1. Reduction to closed 1-mesh bundles over a cellular base.
By several reduction steps, we show that it suffices to prove essential injectivity
for closed 1-mesh bundles over a cellular base. We begin with the reduction
from the general n-mesh bundle case to that case over a cellular base.

Observation 4.2.24 (Reduction to cellular base). For cellulable (B, g),
pick a refinement G : (B, c) → (B, g) by a cellular stratification (B, c).
Pullback (see Construction 4.1.93) the bundles p and p′ to n-mesh bundlesG∗p
and G∗p′ over (B, c). The assumption ΠT(p) = ΠT(p

′) (in the statement of
Proposition 4.2.22) implies that ΠT(G

∗p) = ΠT(G
∗p′) (see Observation 4.2.15).

Any n-mesh bundle isomorphism G∗p ∼= G∗p′ that fixes the base stratification
(B, c) will induce an n-mesh bundle isomorphism p ∼= p′. Thus, it suffices to
prove Proposition 4.2.22 for cellular base stratifications.

We will therefore now assume our base stratification (B, g) is cellular.
Next, arguing inductively, we find that it further suffices to prove essential

injectivity for the case of 1-mesh bundles.
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Observation 4.2.25 (Reduction to 1-mesh bundles). Consider n-mesh
bundles p and p′, with component 1-mesh bundles pi : (Mi, fi)→ (Mi−1, fi−1)
and p′i : (M

′
i , f

′
i) → (M ′

i−1, f
′
i−1), respectively, where (M0, f0) = (B, g) =

(M ′
0, f

′
0). Suppose we have ΠT(p) = ΠT(p

′), as assumed in Proposition 4.2.22.
That implies (ΠT(p))<n = (ΠT(p

′))<n, and so, assuming the proposition
inductively, we have an isomorphism G : p<n

∼= p′<n of truncated mesh
bundles. Set the n-mesh bundle G∗p′ to be the pullback of p′ along G
(see Construction 4.1.93); denote the top 1-mesh bundle of G∗p′ by p̃n :

(M̃n, f̃n)→ (Mn−1, fn−1) and denote the canonical map (M̃n, f̃n)→ (M ′
n, f

′
n)

by F , as shown in the next diagram.

f̃n f ′n

fn−1 f ′n−1

F

p̃n

⌟
p′n

Gn−1

Since by assumption G is an isomorphism, note that F is also an isomorphism.
To prove Proposition 4.2.22, it remains only to construct a bundle isomorphism
κpnp̃n , as shown below.

fn f̃n

fn−1

κpn
p̃n

∼

pn p̃n

The required bundle isomorphism κpnp̃n is provided by the next proposition.
(Note that since cellularity lifts (see Lemma 4.1.64) and since (B, g) is cellular,
the stratification fn−1 itself is cellular.)

Proposition 4.2.26 (Essential injectivity for 1-mesh bundles). For a
cellular stratification (B, g) and 1-mesh bundles p : (M,f) → (B, g) and
p̃ : (M̃, f̃) → (B, g) such that ΠT(p) = ΠT(p̃), there is a 1-mesh bundle
isomorphism κpp̃ : p

∼= p̃ that fixes the base (B, g).

The proof of this statement will take the remainder of this subsection. As a
preliminary matter we further reduce to the closed case as follows.

Observation 4.2.27 (Reduction to closed bundles). Fiberwise compact-
ifying both bundles in the preceding proposition, we obtain closed 1-mesh
bundles p̄ and ¯̃p (see Construction 4.1.58). These bundles certainly still admit
an isomorphism ΠT(p̄) = ΠT(¯̃p). Moreover, if we find a bundle isomorphism
κ : p̄ ∼= ¯̃p, then we obtain a bundle isomorphism κ : p ∼= p̃ by restriction, as
required. Therefore it suffices to prove Proposition 4.2.26 for closed 1-mesh
bundles over a cellular base stratification (B, g).

Minor: exact logic
of above arg [Fixed
the logic flow a little,
otherwise confirmed
as sound]

Fix closed 1-mesh bundles p and p̃ as in Proposition 4.2.26. The con-
struction of the prospective bundle isomorphism κpp̃ : f ∼= f̃ requires care; as
motivation for our approach, we first discuss how not to construct κpp̃. One
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would like to define a stratified homeomorphism κpp̃ : f ∼= f̃ fiberwise; naively
one might imagine, fiber by fiber, mapping point strata to point strata and
extending linearly to obtain the map on the intervening interval strata (recall
the fibers in 1-mesh bundles inherit, via their 1-framed realization embedding,
a linear structure from the standard linear structure of R). However, when
traversing an entrance path between two strata r → s in the base (B, g), new
singular strata can appear in the special fiber (of either the source or target
bundle) over s, that were not present in the generic fiber over r. Because of
these creation paths, the rudimentary linear interpolation construction fails;
we illustrate the issue in the following example.

Example 4.2.28 (Failure of continuity in fiberwise linear interpolation).
Consider the bundles p : (M,f)→ (B, g) and p̃ : (M̃, f̃)→ (B, g) shown in
Figure 4.18, whose fundamental 1-truss bundles coincide. We depict these
bundles, via their 1-framed realizations, as embedded in B × R; we indicate
by a green squiggle an entrance path in the base (B, g), together with a
generic fiber (also in green) and a special fiber (in purple) in both p and p̃.
If we were to build a bundle isomorphism fiberwise by first identifying the
point strata of fibers (as indicated by the mappings on the right) and then
linearly interpolating these mappings on interval strata, we would end up
with a discontinuous bundle isomorphism between p and p̃.

=

κp
p̃

p p̃

(M, f)

(B, g) (B, g)

(M̃, f̃)

Figure 4.18. Failure of continuity of fiberwise interpolation
of mesh bundle isomorphisms.

By contrast, our strategy to ensure continuity in the construction of the
bundle isomorphism κpp̃ will be to use affine combinations of maps on generic
and special fibers when traversing certain entrance paths.

4.2.3.2. Regular contours and catchment areas. We first introduce
a notion of ‘regular contours’, which will delineate the boundary strata in
the base stratification over which we need to use an affine combination
(as opposed to a simple linear interpolation) for the desired mesh bundle
isomorphism. We then describe ‘catchment areas’, which function as a sort
of tubular neighborhoods in the base stratification; we will later on define
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the bundle isomorphism via a combination of maps over a generic fiber on
the boundary of the catchment area and a special fiber at the core of the
area. Recall that we assume the base stratification (B, g) is cellular, and fix
a closed 1-mesh bundle p : (M,f)→ (B, g).

Construction 4.2.29 (Regular contours). Consider a regular stratum s
of the stratification f , lying over a stratum r = p(s) of the base stratification
g (note, by the assumption on (B, g), that r is a cell). The ‘regular contour
of the stratum s’, denoted cs ⊂ ∂r (where ∂r = r \ r), is the union of strata
t in the boundary of r, for which there exists a regular stratum u lying over
t, such that u lies in the boundary of s.

Example 4.2.30 (Regular contours). In Figure 4.19, we highlight the
regular contour of a chosen stratum s (for the bundle p from Figure 4.18).

p

(M, f)

(B, g)

s

r = p(s) ∂r

cs ⊂ ∂r

u ∈ ∂s

u′ ∈ ∂s

Figure 4.19. The regular contour of a regular stratum.

Observation 4.2.31 (Regular contours only depend on truss structure).
If p̃ : (M̃, f̃) → (B, g) is another closed 1-mesh bundle over (B, g) and
ΠT(p) = ΠT(p̃), we may identify strata s of f with strata s̃ of f̃ , and then
the regular countours cs and cs̃ of corresponding strata coincide as subspaces
of the base B.

With the notion of regular contours established, we turn to the separate
matter of catchment areas.

Construction 4.2.32 (Catchment areas and radial catchment paths).
Let r be a stratum in (B, g). Since (B, g) is cellular, it includes as a con-
structible substratification into a regular cell complex X. Consider the closed
cell R obtained as the closure of the cell r in X (and stratify R by its cells);
note that ∂r ⊂ ∂R where ∂R = R \ r and again ∂r = r \ r. We endow R with
simplicial structure via an identification R ∼= ∥ΠR∥. We say x ∈ r lies in the
‘catchment area Cb of an open cell b ⊂ ∂r’ if it lies in the open simplicial
star of the vertex corresponding to b, and does not lie in the open simplicial
star of a vertex corresponding to a higher-dimensional open cell b′ ⊂ ∂r. Set
the ‘closed catchment area Cb of b’ to be the closure Cb ⊂ r of Cb inside the
open cell r; note that the stratum b is not contained in its closed catchment
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area Cb. The radial projections of cellular stars28 (of cells b in ∂r) restrict
to ‘catchment projections’ πb : Cb → b. The radial lines of such a projection
decompose Cb into ‘radial catchment path’ families Cb

∼= Fb × [0, 1) ↪→ R,
where Fb is the boundary of the closed cellular star around b, but with the
boundary ∂b removed. (Note that as each radial catchment path approaches
1 in the decomposition Fb × [0, 1), the path in Cb is approaching the stratum
b.) See the next example and figure for an illustration.

Example 4.2.33 (Catchment areas and catchment paths). The previous
construction of catchment areas and radial catchment paths is illustrated in
Figure 4.20, in three cases. The left case is the stratification (B, g) with the
stratum r from Figure 4.19. In the middle case, the closed cell R is again the
square with its indicated stratification, and the stratum r is again the open
2-cell, but the stratification (B, g) is the union of the stratum r and the three
colored boundary strata. Similarly in the right case, the stratification (B, g) is
the union of the stratum r and the single colored boundary stratum. In each
case, we highlight the (open) catchment areas and their decomposition into
catchment path families, with catchment paths oriented from 0 to 1.

⊂ ∂R
∂r∂r

⊂ ∂R⊂ ∂R
∂r

b

b

c c

a

Ca

Ca

CaCb

Cb

Cc Cc

a

a

Figure 4.20. Catchment areas for cells and their decompo-
sition into radial catchment paths.

Remark 4.2.34 (Choice of catchment structure). Note that the preced-
ing construction depends on certain choices, namely a choice of regular cell
complex X and the identification of closed cells with the simplicial realization
of the cells’ fundamental posets. Henceforth when working with cellular
stratifications (B, g), we will implicitly fix such a regular complex and identi-
fications, and conceive of these as providing the stratification with a ‘regular
simplicial structure’.

4.2.3.3. Constructing the bundle isomorphism. Equipped with the
notions of catchment areas and radial catchment paths, we can proceed
to construct the bundle isomorphism κpp̃, and complete the proofs of both
Proposition 4.2.26 and Proposition 4.2.22.

28See Remark B.3.28 for a definition and discussion of cellular stars. Note that star(b) \ ∂b
is the product cone(link(b))× b. The radial projection is simply induced by the radial
projection cone(link(b))→ {1} of the closed cone to its cone point; see Terminology B.3.1.
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Construction 4.2.35 (The bundle isomorphism for essential injectivity).
Consider closed 1-mesh bundles p : (M,f)→ (B, g) and p̃ : (M̃, f̃)→ (B, g),
with a cellular base (B, g), and such that ΠT(p) = ΠT(p̃). We will define a
bundle isomorphism κpp̃ fiberwise by maps

κpp̃(x,−) : p
−1(x)→ p̃−1(x)

over points x ∈ r, where r is a stratum in the base g. We provide the
definition inductively in dim(r).

If dim(r) = 0 then the fiber isomorphism κpp̃(x,−) is simply defined by
mapping point strata of p−1(x) monotonically to corresponding point strata
of p̃−1(x) (where ‘corresponding’ refers to the identification provided by the
truss isomorphism ΠT(p) = ΠT(p̃)), and then extending the mapping linearly
to the interval strata in between those point strata.

Next, if dim(r) > 0, again define the fiber isomorphism κpp̃(x,−) to map
point strata of p−1(x) monotonically to corresponding point strata of p̃−1(x).
Interval strata sx in p−1(x) are restrictions of regular strata s in (M,f) to
the fiber p−1(x), and canonically correspond to interval strata s̃x in p̃−1(x).
Now we define κpp̃(x,−) via a collection of maps sx → s̃x, each depending on
the local structure around the regular stratum s.

››››› For all x which do not lie in a catchment area Cb of some cell b ⊂ ∂r,
define the required map sx → s̃x simply by linear interpolation.

››››› Now proceed inductively in the increasing cell dimension dim(b) of the
cell b for which x is in the catchment area Cb. When x ∈ Cb, the point
x is of the form (u, t) ∈ Cb

∼= Fb × [0, 1) for t ∈ (0, 1). When b is not
in the regular contour of the regular stratum s, i.e. b /∈ cs, we define
sx → s̃x again by linear interpolation. When b is in the regular contour
of the regular stratum s, i.e. b ∈ cs, more care is required and we define

κpp̃(x,−) = (1− t)κpp̃((u, 0),−) + tκpp̃(πb(x),−)

where πb(x) is the catchment projection from Construction 4.2.32. Both
the isomorphisms κpp̃ used in that interpolation are already defined by
the inductive assumption.

Observe that this induction exhaustively and continuously extends the def-
inition of the bundle isomorphism κpp̃ to all fibers over the stratum r, as
needed.

Proof of Proposition 4.2.26. The preceding construction provides
the required isomorphism κpp̃, when the 1-mesh bundles are closed. By
Observation 4.2.27, that implies the existence of such an isomorphism in the
case of general 1-mesh bundles. □

Proof of Proposition 4.2.22. By Observations 4.2.24 and 4.2.25, the
case of 1-mesh bundles over a cellular stratification implies the case of n-mesh
bundles over a cellulable stratification. □
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4.2.3.4. Continuity of the construction. We make a few useful-later
observations about the Construction 4.2.35 of the mesh bundle isomorphisms
κpp̃.

Firstly, though evident, we record the fact that the bundle isomorphism
only depends on the realized structure of the mesh bundles, as follows.

Observation 4.2.36 (The bundle isomorphism preserves strict identities).
Consider 1-mesh bundles p : (M,f) → (B, g) and p̃ : (M̃, f̃) → (B, g) with
a cellular base (B, g) and such that ΠT(p) = ΠT(p̃). Identify M and M̃ as
subspaces of B × R using their 1-framed realizations γ : M ↪→ B × R and
γ̃ : M̃ ↪→ B × R. If (M,f) and (M̃, f̃) have identical realizations in B × R,
then the inductive construction of κpp̃ (in Construction 4.2.35) yields the
bundle identity map id : p = p̃ on the bundle realizations.

Secondly, the construction of the mesh bundle isomorphism is continuous
in families, as follows.

Definition 4.2.37 (Families of 1-mesh bundles). Given a space Z, a
Z-family of 1-mesh bundles over (B, g) is a 1-mesh bundle p : (M,f) →
Z × (B, g). For z ∈ Z, the z-slice of p, denoted pz : (Mz, fz) → (B, g), is
the restriction of p to the subspace B ∼= {z} ×B ↪→ Z ×B.

Observation 4.2.38 (The mesh bundle isomorphism for families). For
a cellular stratification (B, g), consider Z-families of 1-mesh bundles p :

(M,f)→ Z × (B, g) and p̃ : (M̃, f̃)→ Z × (B, g), such that ΠT(p) = ΠT(p̃).
Choose a catchment structure for (B, g) (see Remark 4.2.34). This choice
provides a catchment structure for the bundles pz and p̃z for all z ∈ Z, and
we may thus construct the 1-mesh bundle isomorphisms κpzp̃z : pz ∼= p̃z, using
Construction 4.2.35. The fiberwise bundle isomorphisms κpzp̃z immediately
assemble into a single continuous bundle isomorphism κpp̃ : p

∼= p̃.

Finally, we mention a means of constructing Z-families of 1-mesh bundles,
namely by pullback along Z-families of stratified maps.

Remark 4.2.39 (Families of bundles from pullback along families of
maps). Consider cellular stratifications (B, g) and (B, g̃), and let F : Z →
Stratlf(g, g̃) be a continuous map from a space Z to the space of stratified
maps between g and g̃, such that F is constant on entrance path posets
(that is, Π ◦ F : Z → Pos lf(Πg,Πg̃) is constant). By the tensoredness of
stratified spaces (see Construction B.2.24), we can consider F as a stratified
map F : Z × g → g̃. Given a 1-mesh bundle p̃ : (M̃, f̃) → (B, g̃), we can
therefore construct a Z-family of 1-mesh bundles as the pullback F ∗p̃ of p̃
along F : Z × g → g̃ (see Construction 4.1.57).

4.2.4. ♦Weak faithfulness of the fundamental truss functor. We now
show that the fundamental truss functor ΠT is a ‘weakly faithful’ functor of
∞-categories.
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As usual, for m ∈ N, denote by Dm+1 the closed (m + 1)-ball and by
Sm its boundary. Recall that a topological space U is weakly contractible if
every map ζ : Sm → U has an extension to a map θ : Dm+1 → U (we will
refer to such an extension θ as a ‘filler’ for ζ).

Proposition 4.2.40 (Weak faithfulness, closed case). Given closed n-
mesh bundles p and p′, with cellulable base (B, g), the fundamental truss
functor hom space map

ΠT : M̄eshn(B, g)(p, p
′)→ T̄rsn(Πg)(ΠT(p),ΠT(p

′))

has empty or weakly contractible preimages.

Remark 4.2.41 (Weak faithfulness in other rigid cases). Though we will
give the explicit statement and proof of weak faithfulness only in the case of
closed n-mesh bundles, note that the following cases are immediate analogs
of our proof:

››››› The case of open n-mesh bundles and regular maps (M̊eshn(B, g))
››››› The case of general n-mesh bundles and balanced maps (Meshbal

n (B, g))
››››› The case of n-meshes and their degeneracies (Meshdegn )
››››› The case of n-meshes and their coarsenings (Meshcrsn )

The thread that ties these different cases together are the rigidity results of
Lemma 2.3.72.

The proof of Proposition 4.2.40 will occupy the whole of this subsection.

Remark 4.2.42 (The fundamental truss functor is weakly fully faithful).
Once we have constructed the weak inverse of the fundamental truss functor
ΠT, it will follow that the fibers of the hom space maps of ΠT are, in fact,
never empty.

Synopsis. We observe that it suffices to prove weak faithfulness of the
fundamental truss functor for bundles over cellular bases. We then reduce
weak faithfulness for n-mesh bundles to a filler lifting condition for 1-mesh
bundles. Finally, we prove that lifting condition by explicitly constructing a
filler via suitable fiberwise convex combinations of mesh maps.

Proof of weak faithfulness. We first observe that it suffices to prove
weak faithfulness for a cellular base.

Remark 4.2.43 (Reduction to cellular base, for weak faithfulness). Given
closed n-mesh bundles p and p′ as in Proposition 4.2.40, fix a refinement G :
(B, c)→ (B, g) of the cellulable stratification (B, g) by a cellular stratification
(B, c). Using Construction 4.1.93, we may pullback both p and p′ to n-mesh
bundles G∗p and G∗p′ over (B, c). Let F : ΠT(p) → ΠT(p

′) be a map of
the fundamental n-truss bundles. This map pulls back, along ΠG : Πc →
Πg, to an n-truss bundle map (ΠG)∗F : (ΠG)∗ΠT(p) → (ΠG)∗ΠT(p

′) (see
Construction 2.3.54). The fiber of ΠT in M̄eshn(B, c)(G

∗p,G∗p′) over (ΠG)∗F
is homeomorphic to the fiber of ΠT in M̄eshn(B, g)(p, p

′) over F . Thus it is
sufficient to prove Proposition 4.2.40 in the case of a cellular base.
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We next tackle the proof of Proposition 4.2.40 for a cellular base (B, g).
Let p and p′ be closed n-mesh bundles consisting of 1-mesh bundles pi :
(Mi, fi) → (Mi−1, fi−1) and p′i : (M

′
i , f

′
i) → (M ′

i−1, f
′
i−1), respectively, with

(M0, f0) = (B, g) = (M ′
0, f

′
0). Consider a map ζ : Sm → M̄eshn(B, g)(p, p

′)
such that ΠT(ζ) is constant (in other words, ζ maps into a single fiber of
ΠT). Note that, by rigidity of singular truss maps of closed trusses (see
Lemma 2.3.72), this constancy condition is satisfied automatically except
when m = 0.

Recall that truncation of meshes is an ∞-functor (see Remark 4.1.98).
Truncating the map ζ to degrees below n, we obtain the map β := ζ<n :
Sm → M̄eshn−1(B, g)(p<n, p

′
<n). Arguing by induction, we may assume that

β has a filler η : Dm+1 → M̄eshn−1(B, g)(p<n, p
′
<n). Using the tensoredness

of stratified spaces (see Construction B.2.24), we may consider the map ζ as a
stratified map Sm×fn → f ′n, the map β as a stratified map Sm×fn−1 → f ′n−1,
and the map η as a stratified map Dm+1× fn−1 → f ′n−1. To show that ζ has
a filler it will therefore be sufficient to prove the following.

Proposition 4.2.44 (Lifting fillers in closed 1-mesh bundles). Consider
closed 1-mesh bundles p : (M,f) → (B, g) and p̃ : (M̃, f̃) → (B̃, g̃), with
cellular bases, and maps ζ : Sm × f → f̃ and β : Sm × g → g̃ such that, for
each e ∈ Sm, the restriction (ζ(e,−), β(e,−)) : p→ p̃ is a 1-mesh bundle map.
(If m = 0, further assume ΠT(ζ(e,−), β(e,−)) is independent of e ∈ S0).

Then any filler η : Dm+1 × g → g̃ of β lifts to a filler θ : Dm+1 × f → f̃
of ζ such that, for each e ∈ Dm+1, the restriction (θ(e,−), η(e,−)) : p→ p̃ is
a 1-mesh bundle map.

Proof. It will be convenient to consider Dm+1 as the quotient of [0, 1]×
Sm by the subset {1} × Sm. As such, we will construct the required filler θ
as a mapping [0, 1]× Sm × f → f̃ , such that θ(1,−) is constant in the Sm

component. To construct the required filler θ of ζ, lifting the filler η of β, we
proceed in two steps.

First, by pulling back along the base filler η, we will construct a ‘homotopy
#1’ map θ1 : [0, 1] × Sm × f → f̃ , which homotopes θ1(0,−) = ζ into a
map θ1(1,−) : Sm × f → f̃ that descends to a map of base stratifications
Sm × g → g̃ that is constant in the first component Sm.

Second, using ‘fiberwise contractions’, we will construct a ‘homotopy #2’
map θ2 : [0, 1] × Sm × f → f̃ , which homotopes θ2(0,−) = θ1(1,−) into a
map θ2(1,−) : Sm × f → f̃ that is itself constant in the first component Sm.
Concatenating the homotopies θ1 and θ2 will provide the required filler θ of
ζ.
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(1) Define a closed 1-mesh bundle β∗p̃ by pulling back p̃ along β and
define a map ζ̂ as the factorization of ζ through this pullback as shown below.

Sm × f β∗f̃ f̃

Sm × g Sm × g g̃

Sm×p

ζ̂

ζ

⌟
β∗p̃ p̃

id β

Note β∗p̃ is an Sm-family of closed 1-mesh bundles over g (see Remark 4.2.39).
We may modify this into a ([0, 1]× Sm)-family by simply taking the product
[0, 1]×−. The resulting closed 1-mesh bundle [0, 1]×β∗p̃ is bundle isomorphic
to the closed 1-mesh bundle η∗p̃ defined by the pullback on the right below.

[0, 1]× β∗f̃ η∗f̃ f̃

[0, 1]× Sm × g [0, 1]× Sm × g g̃

κ
∼

[0,1]×β∗p̃
⌟

η∗p̃ p̃

id η

Here, the isomorphism κ can be constructed using Observation 4.2.38, since
g is assumed to be cellular. The homotopy #1 map θ1 : [0, 1]× Sm × f → f̃
is now defined as the composite

[0, 1]× Sm × f [0,1]×ζ̂−−−−→ [0, 1]× β∗f̃ κ−→ η∗f̃ → f̃ .

Since the κ construction preserves identities (see Observation 4.2.36) and
since β = η(0,−), we find that κ(0,−) is the identity on β∗f̃ . Thus, homotopy
#1 satisfies θ1(0,−) = ζ, and lifts η in the sense that

[0, 1]× Sm × f f̃

[0, 1]× Sm × g g̃

θ1

[0,1]×Sm×p p̃

η

This completes the first half of the construction of θ.
(2) It remains to construct the homotopy #2 map θ2 : [0, 1]×Sm×f → f̃

such that θ2(0,−) = θ1(1,−). Recall that for a stratification (Y, h) and a
subspace X ⊂ Y , we will use (X,h) to denote the restricted stratification (see
Definition B.2.8). We may define the homotopy θ2 by convexly combining
fiberwise maps θ1(1, e,−) : (p−1(y), f) → (p̃−1η(1, e, y), f̃), for e ∈ Sm and
y ∈ B (note that η(1, e, y) is in fact independent of e ∈ Sm). Specifically,
pick any e0 ∈ Sm, and for t ∈ [0, 1], e ∈ Sm, and y ∈ B, define the restriction
of θ2(t, e,−) to the fiber over y to be the map

θ2(t, e,−) : (p−1(y), f)→ (p̃−1η(1, e, y), f̃)

x 7→ (1− t) · θ1(1, e, x) + t · θ1(1, e0, x)
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Note that θ2(t, e,−) is indeed a 1-mesh map for all t and e, because
ΠT(θ1(1, e,−)) = ΠT(θ1(1, e0,−)), i.e. the convexly combined factors induce
the same maps on 1-trusses (that in turn is the case since, by assumption,
ΠT(ζ(e,−), β(e,−)) is independent of e ∈ Sm). Note that at t = 1, the
map θ2(t, e,−) becomes independent of e ∈ Sm. We can finally chain the
homotopies θ1 and θ2 into a single homotopy

θ := θ1 ∗ θ2 : [0, 1]× Sm × f → f̃

which defines the filler θ of ζ, lifting the filler η of β, as required. □

Proof of Proposition 4.2.40. By Remark 4.2.43, it suffices to ad-
dress the case of cellular base. The discussion preceeding the statement of
Proposition 4.2.44 shows that the desired weak faithfulness for closed n-mesh
bundles follows inductively from the lifting property of closed 1-mesh bundles
established in that proposition. □

CLD did not check
the above long proof.

2 : Will recheck one
last time

4.2.5. ♦Mesh realizations. We will now construct the mesh realization
functors from various categories of n-trusses to corresponding categories of
n-meshes.29 In the first and most foundational instance, we will have the
mesh realization functor

∥−∥M : Trsn →Meshn

Note that this functor is necessarily an ∞-functor because the hom spaces of
its domain have discrete topology. More generally, for a fixed cellulable base
stratification (B, g), we will have the mesh bundle realization functor

∥−∥M : Trsn(Πg)→Meshn(B, g)

Restricted to the subcategories of closed or open trusses and meshes, this
functor provides weak inverses to the corresponding previously constructed
fundamental truss functors. However, the construction of mesh realization
will not provide an enriched functor Trsn(Πg) Meshn(B, g), and so no
candidate inverse, in any case, for the enriched fundamental truss functor
Meshn(B, g)→ Trsn(Πg).

The simplest and most direct construction of mesh realizations occurs for
closed trusses; in this case, we will obtain the mesh realization ∥−∥M by a
direct application of the stratified realization ∥−∥. For non-closed trusses, the
stratified realization does not always produce the correct mesh topological
type; that difficulty arises essentially because the ordinary geometric real-
ization cannot tell the difference between the point poset of a trivial closed
1-truss (which ought to realize to a trivial closed 1-mesh, i.e. a point) and
the point poset of a trivial open 1-truss (which ought to realize to a trivial
open 1-mesh, i.e. an open interval). We will construct mesh realizations
for general trusses by taking the not-necessarily-closed truss, compactifying

29In fact, aside from the case of closed trusses, the mesh realization will be only semifunc-
torial; we elide the ‘semi’ as immaterial.
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it to a closed truss, forming the mesh realization, and then extracting the
appropriate submesh as a constructible substratification.

Synopsis. We define mesh realizations for closed trusses via the stratified
realization. We then construct the mesh realization for a general truss as a
constructible substratification of the realization of the cubical compactification
of the truss. We build the required cubical compactification by adjoining
singular endpoints fiberwise and inductively throughout the truss tower. We
then construct the realization of truss bundles using a compactified cellulation
of the base stratification. Finally, we formulate a distinct realization for truss
coarsenings, which is, unlike the usual mesh realization, a mesh coarsening.

4.2.5.1. Realizations of closed trusses. We construct mesh realizations
of closed trusses using the ordinary stratified geometric realization. We
first address the case of 1-truss bundles; the case of n-trusses will follow
immediately by iteration. Recall the stratified realizations of posets and poset
maps from Constructions 1.3.4 and 1.3.5.

Construction 4.2.45 (1-Mesh bundle realizations of closed 1-truss
bundles). Given a closed 1-truss bundle p : T → X, we will endow the
realized stratified map ∥p∥ : ∥T∥ → ∥X∥ with the structure of a closed 1-
mesh bundle; we refer to the result as the closed 1-mesh bundle realization
and denote it ∥p∥M : ∥T∥ → ∥X∥.

We construct a 1-framed realization γ : |T | ↪→ |X| × R for ∥p∥. Define
γ to map 0-simplices of |T | such that fibers of p land in the corresponding
fibers of |X| × R→ |X| in a frame-order-preserving manner (e.g., mapping
the 0-simplex i ∈ p−1(x) to (x, i) ∈ |X| × N ↪→ |X| × R). Then extend the
mapping linearly to the remaining simplices of the realization |T |.

To see that this defines the data of a 1-mesh bundle, one checks using an
induction on the scaffold order of simplices (see Section 2.2.2) that γ is an em-
bedding with continuous upper and lower realization bounds. Constructibility
of the family of meshes follows directly from the singular functionality of the
constituent truss bordisms of the given truss bundle.

Example 4.2.46 (1-Mesh bundle realizations of 1-truss bundles). In
Figure 4.21 we depict on the left a closed 1-truss bundle p : T → X (note
that we only depict generating arrows, see Construction 2.1.81), and on the
right its closed 1-mesh bundle realization ∥p∥M : ∥T∥ → ∥X∥, shown via the
1-framed realization γ : |T | ↪→ |X| × R.

Construction 4.2.47 (Mesh realizations of closed n-trusses). For a
closed n-truss T , consisting of 1-truss bundles pi : Ti → Ti−1, the closed
n-mesh realization ∥T∥M is the closed n-mesh defined by the tower of
1-mesh bundles

∥Tn∥
∥pn∥M−−−−→ ∥Tn−1∥

∥pn−1∥M−−−−−→ ...
∥p2∥M−−−−→ ∥T1∥

∥p1∥M−−−−→ ∥T0∥
where each ∥pi∥M is the 1-mesh bundle realization of the 1-truss bundle pi,
given by Construction 4.2.45.
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p ∥p∥M
X ∥X∥

∥T∥T

0

2

4
R

3

1

Figure 4.21. 1-Mesh bundle realization of a 1-truss bundle.

Construction 4.2.48 (Mesh map realizations of maps of closed
n-trusses). Given closed n-trusses T and S, and any n-truss map F : T → S,
consisting of the tower of poset maps Fi : Ti → Si, the closed n-mesh map
realization ∥F∥M is the map of closed n-meshes consisting of the tower of
stratified realizations ∥Fi∥ : ∥Ti∥ → ∥Si∥.

We typically denote the tower {∥Fi∥} of stratified realizations by simply
∥F∥; this is (for maps of closed n-trusses) the same tower as the mesh map
realization ∥F∥M, but considered merely as a sequence of stratified bundles
rather than a sequence of mesh bundles.

As in general the stratifications of the base space will warrant more careful
attention, we will return to the case of n-truss bundles in due course.

4.2.5.2. Realizations of general trusses and maps. We turn to the
construction of mesh realizations for general n-trusses, and also realizations
of maps thereof. This case requires more care because, as mentioned earlier,
the naive geometric realization of posets (taking their nerve and applying
the usual geometric realization of simplicial sets) inappropriately degenerates
trivial open 1-truss fibers. The construction of mesh realizations will proceed
by taking a general truss, compactifying it to a closed truss, realizing that to
a closed mesh, and finally taking a suitable submesh.

Fiberwise compactifications of 1-truss bundles are a combinatorial analog
of the fiberwise compactifications of 1-mesh bundles given in Construc-
tion 4.1.58. However, when applying fiberwise compactifications inductively
to a tower of bundles, there remains at each stage a choice of how to extend
a bundle to the compactification of its base. There are several reasonable
possibilities for such extensions; we make a particular choice, the ‘cubical
compactification’, which is suitably initial among retractible compactifica-
tions, and which will admit a useful explicit construction. We describe these
compactifications in the general context of truss bundles.

Definition 4.2.49 (Retractable compactifications). For an n-truss bundle
p, a retractable compactification is a closed n-truss bundle q, together
with a pair of base-preserving bundle maps

ι : p ↪!  q : ρ



4.2. ♦WEAK EQUIVALENCE OF MESHES AND TRUSSES 258

where the map ι is balanced, the composite ρ ◦ ι is the identity idp, and the
composite ι ◦ ρ admits a natural transformation to the identity idq.

Definition 4.2.50 (Cubical compactification, universal property). For
an n-truss bundle p over a poset X, the cubical compactification is the
unique retractable compactification

ci : p ↪!  p : cr ,

consisting of the ‘cubical inclusion’ ci and the ‘cubical retraction’ cr, such
that, for any other retractable compactification ι : p ↪!  q : ρ there exists a
unique n-truss bundle r over X × [1] subject to the following conditions:

(1) r|X×{0} = p and r|X×{1} = q;
(2) the restriction of the bundle r, to the union of the images of the

inclusions ci in p and ι in q, is the product bundle p × [1] over
X × [1].

Example 4.2.51 (Cubical compactification). In Figure 4.22, we depict
the inclusion ci : T ↪→ T of an open 2-truss T (in black) into its cubical
compactification T (extending T by the gray structure).

T2

T 2

T 1 T1

p2p2

p1 p1

Figure 4.22. Cubical compactification of an open 2-truss.

We defer the explicit construction of cubical compactifications, and first
complete the construction of mesh realizations for general n-trusses. Recall
that a constructible substratification (see Definition B.2.9) is determined by
its fundamental poset mapping.

Construction 4.2.52 (Mesh realizations of general n-trusses). For an
n-truss T , the n-mesh realization ∥T∥M is the constructible submesh

∥ci∥M : ∥T∥M ↪→ ∥T∥M
whose fundamental poset subtruss is

ΠT(∥ci∥M) = ci : T ↪→ T

That is, the mesh realization ∥T∥M is the submesh of the closed n-mesh ∥T∥M,
whose stages are the constructible substratifications (∥ci∥M)i : (∥T∥M)i ↪→
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(∥T∥M)i that have fundamental poset maps Π((∥ci∥M)i) being the i-th stages
cii : Ti ↪→ T i of the cubical compactification inclusion map ci.

The fact that the mesh realization ∥T∥M indeed forms an n-mesh follows
from the later explicit inductive construction of cubical compactifications.
Note that when the truss T is closed, the preceding construction of ∥T∥M
specializes to the earlier Construction 4.2.47.

Notation 4.2.53 (Abbreviation for mesh realization stages). For an
n-truss T , just to have a slightly more concise notation, we will denote the
i-th stage (∥T∥M)i of the mesh realization ∥T∥M by simply ∥Ti∥M. Though
the poset Ti does not by itself have a mesh realization ∥−∥M, one should
think of taking the mesh realization of that stage in the ambient context
of the whole truss. Similarly, we will denote the i-th stage (∥ci∥M)i of the
compactification inclusion by simplify ∥cii∥M.

Example 4.2.54 (Mesh realization). Recall the open 2-truss T from
Figure 4.22. In Figure 4.23, we depict the closed mesh realization ∥T∥M of the
cubical compactification T , together with the resulting open mesh realization
∥T∥M of the open truss T , as a tower of constructible substratifications.

∥p1∥M

∥p2∥M
∥T1∥M

∥T2∥M
∥∥∥T 2

∥∥∥

∥∥∥T 1

∥∥∥ ∥p2∥M

∥p1∥M

∥ci2∥M
↪−−−−→

∥ci1∥M
↪−−−−→

∥ci0∥M
↪−−−−→

Figure 4.23. The mesh realization of an open 2-truss.

Remark 4.2.55 (Stratified realizations versus mesh realizations). For a
non-closed n-truss T , the stratified realization ∥Tk∥ (of the k-stage poset) and
the mesh realization ∥Tk∥M ≡ (∥T∥M)k are, in general, distinct stratifications.
Nevertheless, the stratified realization includes into the mesh realization, and
the mesh realization retracts to the stratified realization, as follows.

To describe the inclusion and retraction between the stratified realization
∥Tk∥ and the mesh realization ∥Tk∥M, we must consider the realization of
the compactification

∥∥T k

∥∥ = ∥T k∥M; of course for the compactification,
the stratified and mesh realizations agree. The stratified-to-mesh inclusion
∥Tk∥ ↪→ ∥Tk∥M and mesh-to-stratified retraction ∥Tk∥M ∥Tk∥ are defined



4.2. ♦WEAK EQUIVALENCE OF MESHES AND TRUSSES 260

by the following squares:

∥Tk∥M ∥Tk∥M

∥Tk∥ ∥T k∥M ∥Tk∥ ∥T k∥M∥∥T k

∥∥ ∥∥T k

∥∥
∥cik∥M ∥cik∥M

∥cik∥ ∥crk∥

That is, the stratified-to-mesh inclusion ∥Tk∥ ↪→ ∥Tk∥M is the factorization
of the stratified inclusion ∥cik∥ through the constructible substratification
∥cik∥M; and the mesh-to-stratified retraction ∥Tk∥M ∥Tk∥ is the composite
of the constructible substractification ∥cik∥M with the stratified retraction
∥crk∥.

It remains to define mesh realizations for n-truss maps. The realization
of general n-trusses in Construction 4.2.52 was defined as a constructible
submesh of the mesh realization of the cubical compactification (which latter
realization was given by an ordinary stratified realization). One would
expect the realization of general n-truss maps to also be defined via cubical
compactifications; however, cubical compactification is not naively functorial
and so this approach requires some care, as follows.

Construction 4.2.56 (Cubical compactification for truss bundle maps).
Let p and q be n-truss bundles over the posets X and Y respectively, and
let F : p→ q be a truss bundle map. Set the cubical compactification of the
truss bundle map F to be the truss bundle map F defined as the composite

p
cr−→ p

F−→ q
ci−→ q

Remark 4.2.57 (Semifunctoriality of cubical compactification). Though
cubical compactification, as given for objects in Definition 4.2.50 and for
morphisms in Construction 4.2.56, does not preserve identities and so is not a
functor, per se, it does preserve composition of maps, and so is in that sense
a semifunctor.

Convention 4.2.58 (Semifunctors referred to as functors). In a rather
pointed abuse of terminiology, we will paper over the aforementioned fact
that compactification does not preserve identities, and will willfully use the
term ‘functor’ to refer to semifunctors, particularly for the mesh realization
functors constructed using compactification.

Construction 4.2.59 (Mesh map realizations of truss maps). For an
n-truss map F : T → S, the n-mesh map realization ∥F∥M : ∥T∥M →
∥S∥M is the lift of the closed n-mesh map realization ∥F∥M : ∥T∥M →
∥S∥M (see Construction 4.2.48) of the cubical compactification F : T → S
(see Construction 4.2.56), along the defining constructible substratifications
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∥T∥M ↪→ ∥T∥M and ∥S∥M ↪→ ∥S∥M, i.e. according to the following diagram:

∥T∥M ∥S∥M

∥T∥M ∥S∥M

∥F∥M

∥ci∥M ∥ci∥M
∥F∥M

.

Note that this construction is given just for realizations of truss maps, not
truss bundle maps. For bundles (and their maps), the stratified realization
of a base fundamental poset (or poset map) need not faithfully encode a
base stratification (or map thereof); we address the generalization to bundles
later.

Now observe that the association F 7→ ∥F∥M from a truss map to its
mesh map realization is (semi)functorial; note Convention 4.2.58.

Notation 4.2.60 (Mesh realization functor). Constructions 4.2.52
and 4.2.59 together yield the n-mesh realization functor

∥−∥M : Trsn →Meshn

from n-trusses to n-meshes.

Note that whenever a truss map is singular or regular, its mesh map realization
is singular or regular, respectively. Thus in particular the mesh realization
functor restricts to a functor from closed trusses with singular maps to closed
meshes with singular maps, and restricts to a functor from open trusses with
regular maps to open meshes with regular maps.

Observation 4.2.61 (Failure of topological enrichment for mesh real-
ization). The preceding construction of mesh realizations does not define
an enriched functor ∥−∥M : Trsn Meshn; the difficulty is already visi-
ble in the discontinuity of the stratified realization functor on posets (see
Remark B.2.22).

Observation 4.2.62 (Mesh realization is right inverse to the fundamental
truss). Note that, after restricting either to closed meshes and trusses and
their singular maps, or to open meshes and trusses and their regular maps,
the mesh realization of Notation 4.2.60 is right inverse to the fundamental
truss functor of Corollary 4.2.20, in the sense that there is unique natural
isomorphism ΠT ◦ ∥−∥M ∼= id.

Of course, forgetting the enrichment of the target of the functor in
Notation 4.2.60 provides a realization ∥−∥M : Trsn → Meshn, which is, without
restriction, right inverse to the fundamental truss functor ΠT : Meshn →
Trsn.

4.2.5.3. Constructing cubical compactifications. We now provide
the deferred construction of cubical compactifications, first for 1-trusses, then
for 1-truss bundles, and finally for n-truss bundles.
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Construction 4.2.63 (Cubical compactification of 1-trusses). For a 1-
truss T , its cubical compactification 1-truss T (in the sense of Definition 4.2.50,
and leaving the inclusion and retraction implicit) is obtained from the 1-truss
T by adjoining a new upper, and respectively lower, singular endpoint if the
upper, respectively lower, endpoint of the given 1-truss T is regular.

Construction 4.2.64 (Cubical compactification of 1-truss bundles).
For a 1-truss bundle p : T → X, its cubical compactification 1-truss bundle
p : T → X (in the sense of Definition 4.2.50) is obtained from the bundle p
by compactifying each fiber of the bundle according to Construction 4.2.63,
and extending the 1-truss bordisms to the compactified fibers in the unique
endpoint-preserving way.

Construction 4.2.65 (Cubical compactification of n-truss bundles).
Let p be an n-truss bundle over a poset X, consisting of 1-truss bundle
maps pi : Ti → Ti−1. Suppose by induction we have constructed the cubical
compactification ci : p<n ↪!  p<n : cr of the (n − 1)-truncated bundle p<n.
(The starting case is given by Construction 4.2.64.)

Pull back the top bundle pn : Tn → Tn−1 along the retraction crn−1 :
Tn−1 → Tn−1 to obtain the 1-truss bundle cr∗n−1pn over the truncated
compactification Tn−1. Pulling back again along cin−1 of course recovers the
original bundle pn, i.e. ci∗n−1cr

∗
n−1pn = pn. Thus we have a 1-truss subbundle

map Tot(cin−1) : pn ↪→ cr∗n−1pn and a 1-truss bundle map Tot(crn−1) :
cr∗n−1pn → pn; these maps form an inclusion-retraction pair of bundles pn ↪!  
cr∗n−1pn. Applying Construction 4.2.64 to the bundle cr∗n−1pn provides the
fiberwise compactification inclusion-retraction pair cr∗n−1pn ↪!  cr∗n−1pn. Now
set pn := cr∗n−1pn as the top bundle of the desired cubical compactification,
and compose the two given inclusion-retraction pairs to obtain the pair
cin : pn ↪!  pn : crn. Altogether, the cubical compactification p is the n-truss
bundle obtained by augmenting the truncation p<n with the bundle pn, along
with the resulting inclusion-retraction pair ci : p ↪!  p : cr, as required.

Remark 4.2.66 (Universal property of cubical compactifications). That
the previous construction satisfies the universal property indicated in Defini-
tion 4.2.50 can be seen inductively as follows. Let ci : p ↪!  p : cr be the cubical
compactification from Construction 4.2.65, and consider another retractable
compactification ι : p ↪!  q : ρ. Inductively assume we have constructed the
(n− 1)-truncation r<n of the desired ‘factorizing bundle’ r over X × [1].

As an inductive invariant, assume that whenever there is a relation
(0, x)→ (1, y) in the total poset of the (n− 1)-truss bundle r<n, then there is
a relation crn−1(x)→ ρn−1(y) in the total poset of p<n. From this, construct
the full n-truss bundle r by augmenting r<n with the 1-truss bundle rn,
defined by

rn|(0,x)→(1,y) := qn|ιn−1(ρn−1(y))→y ◦ pn|crn−1(x)→ρn−1(y)

To see that this construction again satisfies the inductive invariant assume by
contradiction that we have (0, x)→ (1, y) but no arrow crn(x)→ ρn(y). By
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definition of r, there must be some z in the same fiber of pn as ρn(y), such
that crn(x) → z and ι(z) → y. Since ι ◦ ρ → idq, z must be a neighbor of
ρn(y). If z is regular, there is a fiber arrow z → ρn(y). If z is singular, we
must have ρn(y) = z. Both contradict our assumption.

CLD did not check
that last remark.4.2.5.4. Realizations of truss bundles. We previously constructed

mesh realizations for n-trusses, but it remains to address the case of n-
truss bundles. Naively, at least for closed n-truss bundles, one could just
iteratively apply the Construction 4.2.45 of 1-mesh bundle structures on the
stratified realizations of closed 1-truss bundles, to obtain a putative n-mesh
bundle realization. However, two successive problems arise. (1) Our primary
interest in mesh realization is as a weak inverse to a (suitably enriched,
suitably restricted) fundamental truss functor Meshn(B, g)→ Trsn(Πg); and
typically, even for a quite well behaved stratification (B, g), the stratified
realization ∥Πg∥ of the entrance path poset Πg is not even remotely the
original stratification (B, g), so we would not have produced anything like a
candidate inverse. The natural way to address that problem is to assume the
stratification (B, g) is cellulable and to choose a cellular refinement (B, c);
at least for such a cellular stratification, the stratified realization ∥Πc∥ is
remotely like the original stratification (B, c). (2) However, in general that
stratified realization is still not exactly the original stratification, and so we
will need to construct a suitable stratified retraction (B, c) → ∥Πc∥ along
which we can pull back the naive mesh bundle realization. Finally then we
can coarsen that pulled-back mesh bundle according to the base coarsening
(B, c)→ (B, g) to obtain the desired mesh realization.

We implement that strategy as follows, begining with a choice of cellular
refinement along with a stratified regular cell closure that will be needed for
the subsequent retraction construction.

Terminology 4.2.67 (Compactified cellulation). Given a cellulable
stratification (B, g), a ‘compactified cellulation’ (g, c,X) is a refinement of
(B, g) by a cellular stratification (B, c), together with a dense constructible
substratification (B, c) ↪→ ∥X∥, where X is a combinatorial regular cell
complex. (Here dense refers to the unstratified inclusion of spaces, i.e.
B = |X|.)

We can proceed directly to building the required retraction (B, c) → ∥Πc∥
from the cellular stratification of the base to the stratified realization of its
fundamental poset.

Construction 4.2.68 (Cellular inclusion-retractions). Given a com-
pactified cellulation (g, c,X) for a stratification (B, g), abbreviate Y := Πc.
Note that Y ↪→ X is a dense subposet (i.e. X≥Y = X), and by assumption
B ⊂ |X| is a dense subspace. Observe that the image of the realization map
|Y ↪→ X| lands entirely in B ⊂ |X|; let

Ci : |Y | ↪→ B
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denote that inclusion. Construct a corresponding retraction

|Y | B : Cr

as follows. Consider the simplicial complex NX, i.e. the nerve of the poset
X, and decompose each simplex x as a simplicial join y ⋆ z, where y is the
subsimplex of x spanned by vertices in Y , and z is the subsimplex spanned
by vertices in X \ Y . Note that |x| \ |z| ∼= |y| × [0, 1); define the retraction on
each intersection |x| ∩B by the projection |y| × [0, 1)→ |y|. The resulting
inclusion-retraction pair (Ci,Cr) is cell-preserving, and so provides a stratified
inclusion and retraction, as required:

Ci : ∥Y ∥ ↪!  (B, c) : Cr

Equipped with this retraction from the base cellular stratification, we can
describe the mesh realization for closed bundles, and their maps, as follows.

Construction 4.2.69 (Realization of closed n-truss bundles). For a base
stratification (B, g), with a compactified cellulation (g, c,X) and the resulting
cellular inclusion-retraction pair Ci : ∥Πc∥ ↪!  (B, c) : Cr as in the previous
construction, consider a closed n-truss bundle p over the fundamental poset
Πg.

Pull the bundle back along the coarsening Πc → Πg; denote the result
pc := (Πc→ Πg)∗p. That pullback is a tower of closed 1-truss bundles

Sn
pcn−→ Sn−1

pcn−1−−−→ ...
pc1−→ S0 = Πc .

The stratified realization of this tower

∥Sn∥
∥pcn∥−−−→ ∥Sn−1∥

∥pcn−1∥−−−−−→ ...
∥pc1∥−−−→ ∥S0∥ = ∥Πc∥

obtains the structure of a closed n-mesh bundle by iterated application of
Construction 4.2.45.

Next pull back that n-mesh bundle along the retraction Cr : (B, c)→ ∥Πc∥,
and finally coarsen the mesh bundle along the base coarsening (B, c)→ (B, g)
(recall the original truss bundle was constant on strata of g). The result is
the closed n-mesh bundle realization ∥p∥M of the n-truss bundle p.

Construction 4.2.70 (Realization of maps of closed n-truss bundles).
Consider a stratification (B, g) with compactified cellulation (g, c,X) and
the associated cellular inclusion-retraction pair Ci : ∥Πc∥ ↪!  (B, c) : Cr. Let
F : p → q be a base-preserving map of closed n-truss bundles over the
fundamental poset Πg. We construct the closed n-mesh bundle map
realization ∥F∥M : ∥p∥M → ∥q∥M, a base-preserving n-mesh bundle map
over the stratification (B, g).

As before, let pc and qc denote the pullbacks of the truss bundles p and
q along the coarsening Πc → Πg; note that the resulting maps pc → p and
qc → q are truss bundle coarsenings. Similarly let F c : pc → qc denote the
truss bundle map lifting F : p → q along those coarsenings. The stratified
realization ∥F c∥ : ∥pc∥ → ∥qc∥ is a mesh bundle map over ∥Πc∥. Now lift
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that realization along the pullbacks Cr∗ ∥pc∥ → ∥pc∥ and Cr∗ ∥qc∥ → ∥qc∥,
and denote the resulting mesh bundle map Cr∗ ∥F c∥, as in the diagram:

Cr∗ ∥pc∥ Cr∗ ∥qc∥

∥pc∥ ∥qc∥

Cr∗∥F c∥

∥F c∥

Finally push forward the mesh bundle map Cr∗ ∥F c∥ along the coarsening
(B, c)→ (B, g) to obtain the desired mesh bundle realization ∥F∥M : ∥p∥M →
∥q∥M.

As in the non-bundle case, to define the mesh realization for general
(not closed) truss bundles, and their maps, we just need to compactify the
bundles, before realizing them and then restricting to a suitable constructible
substratification.

Construction 4.2.71 (Realization of general n-truss bundles). Let p
be an n-truss bundle over the fundamental poset Πg of a cellulable strati-
fication (B, g), with a compactified cellulation (g, c,X). Form the cubical
compactification p as in Definition 4.2.50. Construct the closed n-mesh
bundle ∥p∥M by the preceding construction. Finally, take the constructible
substratification ∥p∥M ↪→ ∥p∥M whose fundamental poset subtruss bundle
is the cubical compactification inclusion p ↪→ p; the result is the n-mesh
bundle realization ∥p∥M of the given n-truss bundle p.

We may finally consider the corresponding construction for maps, and
the resulting functor.

Construction 4.2.72 (Realization of general n-truss bundle maps).
Again consider a stratification (B, g) with compactified cellulation (g, c,X),
and let F : p → q be a base-preserving map of n-truss bundles over the
fundamental poset Πg. Form the cubical compactification F : p→ q as in (the
base-preserving case of) Construction 4.2.56. Construct the mesh bundle map
realization ∥F∥M : ∥p∥M → ∥q∥M according to Construction 4.2.70. Finally,
restrict in the source and target along the constructible substratifications
∥p∥M ↪→ ∥p∥M and ∥q∥M ↪→ ∥q∥M to obtain the desired n-mesh bundle
map realzation ∥F∥M : ∥p∥M → ∥q∥M.

The above realization of a truss bundle map is constructed in terms of
the realization of the cubical compactification of the map. Thus, the semi-
functoriality of the cubical compactification, as in Remark 4.2.57, propagates
to this realization; nevertheless, by Convention 4.2.58, we elide the semi-ness
of the resulting functoriality.

Construction 4.2.73 (Mesh bundle realization functor). Together, the
above constructions yield the n-mesh bundle realization functor

∥−∥M : Trsn(Πg)→Meshn(B, g)
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from the category of truss bundles over the poset Πg to the category of
n-mesh bundles over the stratification (B, g).

Observation 4.2.74 (Mesh bundle realization is right inverse). As in the
non-bundle case of Observation 4.2.62, after restricting either to closed mesh
and truss bundles and their singular maps, or to open mesh and truss bundles
and their regular maps, the mesh bundle realization of Construction 4.2.73 is
right inverse to the fundamental truss bundle functor of Corollary 4.2.19, in
the sense that there is a unique natural isomorphism ΠT ◦ ∥−∥M ∼= id.

Again as in the non-bundle case, forgetting the enrichment of the target of
the functor in Construction 4.2.73 provides a realization ∥−∥M : Trsn(Πg)→
Meshn(B, g), which is, without restriction, right inverse to the fundamental
truss bundle functor ΠT : Meshn(B, g)→ Trsn(Πg).

Note that we have restricted attention to realizations of base-preserving
maps of truss bundles. That restriction is partly for simplicity and brevity,
though also reflects the fact that, when allowing non-base-preserving maps,
the fundamental truss functor ΠT : MeshBunn → TrsBunn destroys even the
homotopy class of the base map and so cannot possibly have a weak inverse.

If desired, add
remark here on the
non-base-preserving
case. Need to
restrict or lift
to cellular base
stratifications.

Remark 4.2.75 (Higher homotopical structure of base stratifications).
To correctly capture the higher homotopical structure of base stratifications
and their maps in our construction of mesh bundle realization functors, we
briefly describe two possible avenues of generalization.

First, one may generalize combinatorial base structures from fundamental
posets to fundamental ∞-categories: truss and mesh bundles are naturally
replaced by their categorical analogs in this case, see Remark 4.2.3. However,
our definition of fundamental ∞-categories in terms of quasicategories does
not lend itself to a topologically faithful construction of realizations (rather,
realizations become ‘homotopically faithful’, recovering original spaces and
maps only up to stratified homotopy equivalence), making it less useful for
certain key construction in combinatorial topology.30

A second approach requires choices of combinatorial representations for
both stratifications and their maps at the outset: in essence, in addition
to choosing compactified cellulations, we also chose cellular maps between
those cellulations to represent our stratified maps. (This is akin to the classi-
cal combinatorial-topological situation where all maps are combinatorially
represented; the machinery of compactifications developed in this section
generalizes the classical setup to work not only with closed cellular structures
but also their ‘dual’ open counterparts.) Truss bundles and their maps carry
these choices of combinatorial representatives in the form of appropriate coars-
enings, which then allows us to realize bundles and maps in a functorial way,
using a straight-forward generalization of the preceding constructions.

30An alternative definition of fundamental ∞-categories, based on ‘posets with weak
equivalences’, is described in Section B.3.3 and remedies this shortcoming.
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4.2.5.5. Realizations of truss coarsenings. The mesh realization
∥−∥M : Trsn → Meshn constructed in the preceding sections provides a
right inverse to the fundamental truss ΠT : Meshn → Trsn. However, the
mesh realization of a truss coarsening is not necessarily a mesh coarsening;
thus the mesh realization does not restrict to a functor from the category
Trscrsn of n-trusses and their coarsenings to the category Meshcrsn of n-meshes
and their coarsenings. We remedy this situation by constructing a distinct
mesh coarsening realization functor ∥−∥crsM : Trscrsn → Meshcrsn , with the feature
that for any n-truss coarsening F : T → S, the mesh coarsening realization
∥F∥crsM : ∥T∥M → ∥S∥M is homotopic, as a map of n-meshes, to the ordinary
mesh realization ∥F∥M.

Construction 4.2.76 (Mesh coarsening realizations of closed truss
coarsenings). Given closed n-trusses T = (pn, ..., p1) and S = (qn, ..., q1), and
a coarsening F : T → S, we construct an n-mesh coarsening ∥F∥crsM : ∥T∥M →
∥S∥M, with the following properties:

››››› the fundamental truss ΠT∥F∥crsM is the given coarsening F ;
››››› the components ∥Fi∥crsM := (∥F∥crsM )i : ∥Ti∥M → ∥Si∥M are linear on each

simplex of the realization ∥Ti∥M = ∥Ti∥.
Assume inductively that we have constructed the mesh coarsening realization
∥F<n∥crsM : ∥T<n∥M → ∥S<n∥M, with the indicated properties. Define the
top component ∥Fn∥crsM : ∥Tn∥M → ∥Sn∥M on the vertices x ∈ Tn ⊂ ∥Tn∥ =
∥Tn∥M as follows. For each element y ∈ Tn−1, for all the elements x ∈ Tn in
the fiber of the 1-truss bundle pn over y, pick image points ∥Fn∥crsM (x) in the
fiber of the 1-mesh bundle ∥qn∥M over ∥Fn−1∥crsM (y), subject to the following
conditions:

››››› there is a strict inequality ∥Fn∥crsM (x) < ∥Fn∥crsM (x′) (in the framed
realization order of the 1-mesh fiber) whenever x ≺ x′ (in the frame
order of the 1-truss fiber).

››››› the image point ∥Fn∥crsM (x) lies in the stratum of ∥Sn∥M = ∥Sn∥ corre-
sponding to the poset element Fn(x) ∈ Sn.

Next extend the map ∥Fn∥crsM linearly to all simplices of the realization
∥Tn∥M = ∥Tn∥. The resulting map ∥Fn∥crsM is a coarsening, and thus the
realization ∥F∥crsM is an n-mesh coarsening as desired.

Recall from Construction 4.2.59 that the mesh map realization of a truss
map was constructed as a substratification of the mesh map realization of
the cubical compactification of Construction 4.2.56. For coarsenings, the
approach is similar, except that we will utilize a distinct compactification
map, as follows.

Observation 4.2.77 (Cubically compactified coarsening). Let F : T → S

be a coarsening map of n-trusses. There is a unique coarsening map F
crs

:
T → S between the cubical compactifications, such that the following two
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squares commute:

T S

T S

F
crs

cr cr

F

ci ci

.

We refer to this map F crs
: T → S as the ‘cubically compactified coarsening’,

and note well that this map is not the cubical compactification, in the sense of
Construction 4.2.56, of the coarsening F . (The dangerously close terminology
is defensible since the cubical compactification of a coarsening is typically
not itself a coarsening.)

We omit the explicit construction of cubically compactified coarsenings,
which proceeds inductively in a similar spirit to the construction of the
ordinary cubical compactifications. (Key in this inductive construction is that,
every coarsening of 1-truss bundles factors as a base-preserving coarsening
followed by a pullback; as the latter is preserved by cubical compactification
of 1-truss bundles in the sense or Construction 4.2.65, this reduces our claim
to the case of 1-mesh bundles over a fixed base.)

Note that unlike the semifunctoriality of cubical compactification, from
Remark 4.2.57, the cubically compactified coarsening construction preserves
identities and so is properly functorial.

CXD to check the
above observation.
CLD has not. Need
to think through
bordisms with
different endpoint
types, and inductive
extensions and such.

Construction 4.2.78 (Mesh coarsening realizations of truss coarsenings).
Given n-trusses T and S and a coarsening F : T → S, we construct the mesh
coarsening realization ∥F∥crsM : ∥T∥M → ∥S∥M, with similar properties to
the closed case:

››››› the fundamental truss ΠT∥F∥crsM is the given coarsening F ;
››››› the components ∥Fi∥crsM := (∥F∥crsM )i : ∥Ti∥M → ∥Si∥M are linear on each

open simplex of the realization ∥Ti∥M ↪→ ∥T i∥M.
Apply Observation 4.2.77 to obtain the cubically compactified coarsening F crs

:
T → S, and then apply Construction 4.2.76 to obtain the mesh coarsening
∥F crs∥crsM : ∥T∥M → ∥S∥M. Lift that coarsening along the constructible
substratifications ∥ci∥M : ∥T∥M ↪→ ∥T∥M and ∥ci∥M : ∥S∥M ↪→ ∥S∥M to yield
the desired coarsening ∥F∥crsM : ∥T∥M → ∥S∥M.

Because by construction ∥F∥crsM and ∥F∥M have the same fundamental truss
map, i.e. ΠT∥F∥crsM = F = ΠT∥F∥M, it follows from Proposition 4.2.40 and
Remark 4.2.41 that the mesh coarsening realization ∥F∥crsM and the mesh
map realization ∥F∥M are homotopic mesh maps; in that sense the mesh
coarsening realization is a suitable homotopical replacement for the mesh
map realization.

Observation 4.2.79 (Mesh realizations of degeneracies of trusses). Note
that the mesh realization exhibits an asymmetry between coarsenings and
degeneracies. Though coarsenings require the above special treatment to
ensure their realization are again coarsenings, degeneracies require no such
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care. Indeed, given a degeneracy map F : T → S of trusses, the mesh
map realization ∥F∥M : ∥T∥M → ∥T∥M is a degeneracy of meshes, and
so the mesh realization restricts to a functor ∥−∥M : Trsdegn → Meshdegn ,
providing the expected right inverse to the restricted fundamental truss
functor ΠT : Meshdegn → Trsdegn .

4.2.6. ♦Proofs of the equivalences and their applications. We finally
assemble the proof of Theorem 4.2.1 and Theorem 4.2.2, that the fundamental
truss functor and the mesh realization functor provide weak equivalences
between (certain) ∞-categories of meshes and 1-categories of trusses, and
similarly for mesh bundles and truss bundles.

Proof of Theorem 4.2.1 and Theorem 4.2.2. It suffices to show
that the fundamental truss functors ΠT : M̄eshn(B, g) → T̄rsn(Πg) and
ΠT : M̊eshn(B, g) → T̊rsn(Πg) are weak equivalences of ∞-categories. We
argue in the first (closed-singular) case; the second (open-regular) case is
analogous. We need to check the following (see [Lur09a, Def. 1.1.3.6]):

(1) for each closed n-truss bundle q, there exists a closed n-mesh bundle
p whose fundamental truss bundle ΠT(p) is equivalent to the given
truss bundle q;

(2) for each pair of mesh bundles p and p′, the fundamental truss functor
hom space map ΠT : M̄eshn(B, g)(p, p

′)→ T̄rsn(Πg)(ΠT(p),ΠT(p
′))

is a weak equivalence of topological spaces.
The first statement is immediate from Construction 4.2.69 of the mesh
bundle realization ∥q∥M with fundamental truss bundle ΠT∥q∥M = q; see
also Construction 4.2.73 and Observation 4.2.74. The second statement
follows from the weak faithfulness of the fundamental truss functor, as in
Proposition 4.2.40, together with the observation that the fibers of the
fundamental truss hom space map are never empty. That non-emptiness is
ensured by the mesh bundle map realization, as in Construction 4.2.70, with
again reference to Construction 4.2.73 and Observation 4.2.74. □

In particular, we thus note that the∞-category M̄eshn (and similarly M̊eshn)
is 1-truncated, and thus can be thought of as an ordinary 1-category (cf.
[Lur09a, Prop. 2.3.4.18]).

Proof of Theorem 4.2.5. The induced functor ΠT : MBordn →
NTBordn sends a [k]-simplex of MBordn, which by definition is an n-
mesh bundle p over the stratified k-simplex ∥[k]∥, to the classifying functor
χΠTp

: [k]→ TBordn (see Construction 2.3.44) of the fundamental truss ΠTp.
To show that this functor ΠT is a trivial fibration (see [Lur09a, Ex.

2.0.0.2]) we need to show that it has the right lifting property with respect
to the boundary inclusion ∂∆[k] ↪→ ∆[k] (where ∆[k] is the simplicial set
represented by the poset [k]).

Suppose we have maps α : ∂∆[k]→MBordn and β : ∆[k]→ NTBordn

such that ΠT ◦ α = β|∂∆[k]. First, reinterpret β : ∆[k] → NTBordn as a
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functor [k]→ TBordn; that functor classifies an n-truss bundle q over [k]. By
Construction 4.2.73, we have an n-mesh bundle realization ∥q∥M over the
stratified simplex ∥[k]∥. Second, restricting the map α to each facet of ∂∆[k]
defines a mesh bundle on that facet; glue those mesh bundles together to
obtain an n-mesh bundle p over the boundary ∂ ∥[k]∥. (That this gluing is
indeed a posetal mesh bundle relies on the existence of the filling map β.)
By construction, the restricted mesh bundle ∥q∥M|∂∥[k]∥ and the glued mesh
bundle p have the same fundamental truss bundles. Apply Proposition 4.2.22
to provide a bundle isomorphism κ : p ∼= ∥q∥M|∂∥[k]∥.

Identify the stratified simplex with the stratified simplex with an ad-
ditional boundary collar: ∥[k]∥ ∼= ∥[k]∥ ∪∂∥[k]∥∼=∂∥[k]∥×{1} (∂ ∥[k]∥ × [0, 1]).
Finally construct the required filler α : ∥[k]∥ → MBordn as follows: define
the filler on the collar ∂ ∥[k]∥× [0, 1] to be the mapping cylinder of the bundle
isomorphism κ, then extend over the remaining simplex ∥[k]∥ by the bundle
∥q∥M.

Any trivial fibration induces an equivalence of quasicategories as claimed;
see [Rez22, §23.10]. □

Synopsis. Having completed the proofs of the equivalences between
meshes and trusses, we proceed to two applications. First, we introduce mesh
blocks and the notion of framed subdivision of framed cells, and then provide
a classification of such subdivisions in terms of combinatorial subdivisions
of truss blocks. Second, we introduce mesh braces and observe the duality
between mesh blocks and braces and more generally the duality equivalence
of closed and open meshes.

4.2.6.1. Mesh blocks and subdivisions of framed regular cells. Con-
catenating the equivalence of meshes and trusses, with the previous equiv-
alence of trusses and collapsible framed cell complexes, provides of course
a relationship between meshes and collapsible framed cell complexes, which
will in turn allow us to define a notion of framed subdivision of framed cells,
and then to classify such subdivisions in terms of combinatorial subdivisions
of truss blocks.

From Theorem 4.2.1, we have the equivalence of closed meshes and closed
trusses, witnessed by the fundamental truss ΠT and mesh realization ∥−∥M.
From the earlier Theorem 3.1.2, we have the equivalence of closed trusses
and collapsible framed cell complexes, witnessed by the cell gradient ∇C and
truss integration ∫T. As in Terminology 4.2.7, we compose these functors to
define the mesh-to-cell gradient functor ∇MC := ∇C ◦ΠT and the cell-to-mesh
realization functor ∥−∥CM := ∥−∥M ◦ ∫T, witnessing the following equivalence.

Corollary 4.2.80 (Equivalence of closed meshes and collapsible framed
cell complexes). The mesh-to-cell gradient functor ∇MC and the cell-to-mesh
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realization functor ∥−∥CM provide a weak equivalence

M̄eshn CollFrCellCplxn

∇MC

∥−∥CM

between the ∞-category of closed n-meshes and the 1-category of collapsible
n-framed regular cell complexes.

Recall that the equivalence between trusses and collapsible framed cell
complexes restricted to an equivalence between truss blocks and framed cells.
We can transport that restriction across the mesh-to-truss equivalence as
follows.

Definition 4.2.81 (Mesh blocks). An n-mesh block is a closed n-mesh
whose total space is the closure of a single stratum. It is more specifically an
n-mesh m-block if that dense stratum is of dimension m.

Remark 4.2.82 (Mesh blocks and truss blocks). Mesh blocks are exactly
those closed meshes whose fundamental truss is a truss block.

Example 4.2.83 (Mesh blocks). Back in Figure I.6, the first closed mesh
is a 3-mesh 3-block. The fundamental truss of that mesh was depicted (on the
right) in Figure 3.1, along with (on the left) the corresponding framed regular
cell; that cell bears an unmistakable resemblance to the total stratification of
the mesh block.

By contrast, in Figure I.6, the second closed mesh is not a mesh block,
but has two submeshes, each of which is a mesh block. The front one of those
two mesh blocks has fundamental truss block depicted (on the right) in the
middle example of Figure C.6, along with (on the left) the corresponding
framed regular cell.

The mesh realization of any truss block is of course a mesh block; so the
mesh realizations of the truss blocks of Figures 2.51 and 2.52 provide two
further examples.

Corollary 4.2.84 (Equivalence of mesh blocks and framed cells). The
mesh-to-cell functor ∇MC and the cell-to-mesh functor ∥−∥CM provide a weak
equivalence between the ∞-category of n-mesh blocks (as a full subcategory of
M̄eshn) and the 1-category of n-framed regular cells.

Observation 4.2.85 (Stratified realizations and cell-to-mesh realizations).
Since mesh realizations of closed trusses are constructed using ordinary
stratified realizations, it follows that for any collapsible framed regular cell
complex (X,F), there is a canonical stratified homeomorphism ∥(X,F)∥CM ∼=
∥X∥ of the total stratification of cell-to-mesh realization and the stratified
realization of the combinatorial regular cell complex X (as seen above in
Example 4.2.83).

The translation of framed regular cells into mesh blocks provides a framed
topological realization of framed regular cells, namely via the n-framed
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realization of the mesh block, as in Construction 4.1.70.31 We can leverage
this framed topological realization to define a notion of framed subdivisions
of framed regular cells.

For context, first recall the notion of (unframed) subdivision of a combi-
natorial regular cell.

Terminology 4.2.86 (Subdivisions of regular cells). Let X be a com-
binatorial regular cell. A ‘subdivision’ of X is a combinatorial regular cell
complex Y , together with a stratified coarsening F : ∥Y ∥ → ∥X∥ of stratified
realizations.

A subdivision F : ∥Y ∥ → ∥X∥ typically restricts, on a closed cell
∥∥Y ≥y

∥∥ ↪→
∥Y ∥, y ∈ Y , to a non-cellular map F |Y ≥y :

∥∥Y ≥y
∥∥ ↪→ ∥X∥ (see Defini-

tion 1.3.16). In this sense, the notion of subdivision of cells is not immedi-
ately combinatorializable. In fact, no computable combinatorial description
whatsoever exists, in the sense that subdivisions of cells cannot be recognized
or enumerated by any algorithmic method.

The framed analog of subdivisions of combinatorial regular cells is given
as follows.

Definition 4.2.87 (Framed subdivisions of framed regular cells). Let
(X,F) be an n-framed regular cell. A framed subdivision of (X,F) is an
n-framed regular cell complex (Y,G), together with a stratified coarsening
F : ∥Y ∥ → ∥X∥ of stratified realizations, such that, for each closed cell Y ≥y,
y ∈ Y , the restriction F |Y ≥y : ∥(Y ≥y,G|Y ≥y)∥CM ↪→ ∥(X,F)∥CM is a mesh
map.

That these are called ‘framed’ subdivisions is appropriate because maps of
meshes are intrinsically framed; consider Observation 4.1.88, which notes that
the top component of a mesh map provides an n-framed map of euclidean
subspaces in the sense of Definition 4.1.86. (Note that in this definition
of a framed subdivision, the subdividing complex (Y,G) is not assumed to
be collapsible; but it will be a consequence of the classification of framed
subdivisions that any subdividing complex is in fact collapsible.)

Example 4.2.88 (Framed subdivisions). In Figure 4.24, we illustrate
various subdivisions of the central square framed cell. The top row shows four
framed regular cell complexes and indicates implicit corresponding coarsening
maps, providing framed subdivisions of the framed cell. The bottom row
shows four framed regular cell complexes, obtained from the top row by
small changes to the cell structure or framings; each of these complexes does
coarsen to the square cell, and so provides a non-framed subdivision, but those
coarsenings are not (and cannot be chosen to be) framed subdivisions.

31Note that the n-framed realization of the cell-to-mesh realization of a framed cell need
not be a framed realization of the framed cell in the sense of Terminology 1.3.36 because
it is not necessarily linear on each simplex of the underlying framed simplicial complex
of the cell. That discrepancy is not serious, though, since the cell-to-mesh realization of
a framed cell is always homotopic to a realization that is in fact linear on each simplex.
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Figure 4.24. Framed subdivisions and non-framed subdivi-
sions of the 2-framed square cell.

Terminology 4.2.89 (Combinatorial subdivisions of truss blocks). Let
B be an n-truss block. A ‘combinatorial subdivision’ of the block B is a
closed n-truss T , together with a truss coarsening T → B. (Given such a
combinatorial subdivision, we will also say that the truss combinatorially
subdivides the framed cell corresponding to the truss block.)

By contrast with ordinary subdivisions, framed subdivisions admit a
combinatorial and indeed computable classification; specifically, according
to Theorem 4.2.8, framed subdivisions of framed cells (in the sense of Defi-
nition 4.2.87) correspond to combinatorial subdivisions of truss blocks (in
the sense of Terminology 4.2.89), which are themselves algorithmically rec-
ognizable and enumerable. We may now give the proof, which proceeds
by induction on the cell dimension, using the notions of spacer and section
simplices developed in Section 3.3.1.

CXD could review
the next proof

Proof of Theorem 4.2.8. Suppose we have a framed regular cell
(X,F) and a framed regular cell complex (Y,G), together with a truss block B
whose cell gradient ∇CB is the framed cell X and a closed truss T whose cell
gradient ∇C T is the framed cell complex Y ; suppose moreover that the truss
T combinatorially subdivides the block B via the truss coarsening F : T → B.
We need to produce a corresponding framed subdivision of the cell X by
the complex Y ; that is, by definition, a stratified coarsening ∥Y ∥ → ∥X∥ of
stratified realizations, which is a mesh map on each closed cell.

Consider the mesh coarsening realization ∥F∥crsM : ∥T∥M → ∥B∥M, from
Construction 4.2.76, and more specifically its total stratified map (∥F∥crsM )n :
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(∥T∥M)n → (∥B∥M)n. Recall that the total stratification of the mesh realiza-
tion is the stratified realization of the total truss poset, which is the stratified
realization of the cell gradient (by Construction 3.3.17), which by assumption
is the framed cell complex: (∥T∥M)n = ∥Tn∥ = ∥∇C T∥ = ∥(Y,G)∥. Similarly
(∥B∥M)n = ∥(X,F)∥. Thus the total stratified map of the mesh coarsening
realization provides the required stratified coarsening ∥Y ∥ → ∥X∥, and by
construction it is a mesh map on cells as required.

Conversely, suppose we have an n-framed regular cell (X,F) and an
n-framed regular cell complex (Y,G), together with a framed subdivision, i.e.
a stratified coarsening F : ∥Y ∥ → ∥X∥, which is a mesh map on closed cells.
We need to produce a truss T and truss block B, whose cell gradients are
the complex Y and the cell X respectively, together with a truss coarsening
T → B.

Assume by induction that we have the desired implication for (n − 1)-
framed cells and cell complexes. Now, consider the case when the n-framed
cell (X,F) is a section cell. Necessarily, in this case, all the cells of the
complex (Y,G) are also section cells. Recall from Construction 3.3.12 that
we may form the integral proframed cell of the n-framed cell (X,F), and
since it is a section cell, the first map in that proframe tower has the form
(X,F) → (X,Fn−1); in particular that map induces an isomorphism of
stratified realizations. Similarly, the first map of the integral proframe of each
closed cell of the subdivision has the form (Y ≥y,G|Y ≥y)→ (Y ≥y, (G|Y ≥y)n−1).
Let (Y,Gn−1) denote the complex of the projected cells (Y ≥y, (G|Y ≥y)n−1), and
note that the map of complexes (Y,G)→ (Y,Gn−1) induces an isomorphism of
stratified realizations. Of course the subdivision F of (X,F) by (Y,G) induces
a subdivision Fn−1 of (X,Fn−1) by (Y,Gn−1). By induction, the framed
complex (Y,Gn−1) is collapsible and the subdivision Fn−1 has a corresponding
combinatorial subdivision, i.e. an (n − 1)-truss coarsening Tn−1 → Bn−1;
that coarsening may be considered (by adding identities at the top) as an
n-truss coarsening Tn → Bn, providing the desired combinatorial subdivision
for the framed subdivision F .

Next, consider the case when the n-framed cell (X,F) is a spacer cell.
Let ∂−X denote the lower section cell of the spacer (X,F), and let ∂−Y
denote the framed complex determined by the preimage of the section ∂−X
under the subdivision F . Observe that the framed subdivision F restricts
to a framed subdivision F− : ∥∂−Y ∥ → ∥∂−X∥. The top 1-mesh bundle pn
of the n-mesh ∥(X,F)∥CM induces a map qn : ∥Y ∥ → ∥∂−Y ∥ such that the
following diagram commutes:

∥Y ∥ ∥X∥

∥∂−Y ∥ ∥∂−X∥

F

qn pn

F−
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The map qn is in fact a 1-mesh bundle (and F is a map of 1-mesh bundles);
that follows by separate consideration of each cell in the base ∥∂−Y ∥, using
induction up the section-and-spacer tower of cells over each given cell of the
base. By induction, the base ∥∂−Y ∥ is the total stratification of an (n− 1)-
mesh (and F− is a map of (n−1)-meshes), and so the map qn provides the top
1-mesh bundle of an n-mesh; let M denote that n-mesh and abuse notation by
referring to the resulting mesh coarsening also simply as F . By construction,
the mesh-to-cell gradient ∇MCM is the cell complex (Y,G). Thus the complex
(Y,G) is collapsible, with the fundamental truss ΠTM having cell gradient
∇C ΠTM ∼= (Y,G), and the required combinatorial subdivision is given by the
fundamental truss map of the mesh map F . □

Example 4.2.90 (Combinatorial subdivisions). Figure 4.24 depicted
four framed subdivisions of the square framed 2-cell. Such subdivisions
are classified, according to Theorem 4.2.8, by truss coarsenings of the 2-
truss integrating that framed 2-cell. In Figure 4.25, we illustrate the mesh
realizations (via their framed embeddings in R2) of the four trusses that
classify the given four framed subdivisions.

2

1

R2

Figure 4.25. Mesh realizations of combinatorial subdivisions
of the 2-framed square cell.

Observation 4.2.91 (Space of framed subdivisions). Given a framed
cell (X,F) and a fixed collapsible framed cell complex (Y,G), the
space SubDiv((Y,G); (X,F)) of framed subdivisions of that cell by
that complex (i.e. the space of stratified coarsenings that are cell-
wise mesh maps) can be identified with the space of mesh coarsen-
ings Meshcrs

n (∥(Y,G)∥CM, ∥(X,F)∥CM). The fundamental truss map ΠT :
SubDiv((Y,G); (X,F)) → Trscrsn (∫T(Y,G), ∫T(X,F)), from such subdivisions
to truss coarsenings, is a weak homotopy equivalence.

Remark 4.2.92 (Framed subdivisions can be made piecewise linear).
Of course a priori a framed subdivision may be a highly nonlinear strati-
fied map from the cell complex (Y,G) to the cell (X,F). But recall, from
Construction 4.2.78, that we constructed piecewise linear mesh coarsening
realizations of truss coarsenings, and recall, from the comments following that
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construction, that mesh coarsening realization is right inverse to the funda-
mental truss. It follows then from the preceding observation that any framed
subdivision is homotopic to a piecewise linear framed subdivision.

Remark 4.2.93 (Concrete computability of framed versus simplicial sub-
division). Since framed subdivisions are classified in terms of truss coarsenings,
and truss coarsenings are a finitely determined combinatorial structure which
may be enumerated at worst by brute exhaustion, framed subdivisions are, as
advertised, decidably enumerable. This feature is in contrast to for instance
unframed simplicial subdivisions (or the theory of subdivision for various
other combinatorial shapes), which are not specified or classified by the
morphisms in any finitary combinatorial category. Indeed, the most effective
combinatorial specification of a simplicial subdivision of a simplex is as a
path, of a priori unbounded length, of Pachner moves (see [Pac91]).

4.2.6.2. Dualization of meshes. As a immediate collorary of the dualiza-
tion of trusses and the equivalence of meshes and trusses, we now construct
the dualization functors between the category of closed meshes with singular
maps and the category of open meshes with regular maps.

Proof of Corollary 4.2.9. The ‘mesh dualization’ functors

† : M̄eshn ≃ M̊eshn : †
are defined as the following composites:

M̄eshn T̄rsn T̊rsn M̊eshn

ΠT †

∥−∥M †

∥−∥M

ΠT

The central arrows (labeled by ‘†’) are the dualization functors of trusses, as
described in Remark 2.3.59. Since each component functor in the composites
is an equivalence, so are the mesh dualization functors. □

Recall from Section 2.3.3.4 that the duals of truss blocks are truss braces;
similarly, the duals of mesh blocks are mesh braces, as follows.

Definition 4.2.94 (Mesh braces). An n-mesh brace is an open n-mesh
whose total space has a single stratum that is in the closure of every other
stratum. It is more specifically an n-mesh m-brace if that single ‘codense’
stratum is of dimension m.

Example 4.2.95 (Mesh blocks and their dual mesh braces). In Figure 4.26,
we depict a 2-mesh 2-block and its dual 2-mesh 0-brace. In the introductory
Figure I.6(a), we depicted a 3-mesh 3-block and its dual 3-mesh 0-brace.
That 3-mesh block corresponds to a 3-truss block and in turn to a 3-framed
regular cell; that truss block and that regular cell are depicted at the top of
the appendix Figure C.6.

Example 4.2.96 (Closed meshes and their dual open meshes). In Fig-
ure 4.27, we depict a closed 2-mesh and its dual open 2-mesh. Similarly, in
the introductory Figure I.6(b), we depicted a closed 3-mesh and its dual open
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3-mesh. That closed 3-mesh contains two 3-mesh blocks, which correspond to
two 3-mesh braces in the dual open 3-mesh. Each of those two 3-mesh blocks
corresponds to a 3-framed regular cell; one of them is depicted in the middle
of appendix Figure C.6, along with its corresponding 3-truss and its dual
3-mesh brace (and the inclusion of that brace in the larger dual 3-mesh).

Altogether then in Figure I.6 there are three mesh blocks, or equivalently
three regular cells; combining those and a fourth cell, which is a vertical
reflection of the first cell, gives a regular cell complex illustrated previously
in Figure 1.56.

Figure 4.26. A mesh block and its dual mesh brace.

Figure 4.27. A closed mesh and its dual open mesh.

Remark 4.2.97 (Dual cell complexes via compactification). We cannot
naively transport the self-duality of meshes to a self-duality of regular cell
complexes; given a collapsible regular cell complex, there is a correspond-
ing closed mesh, which dualizes to an open mesh, which does not a priori
correspond back to a cell complex. However, we may nevertheless provide
a duality of framed complexes ‘up to compactification’ as follows. Given a
collapsible framed regular cell complex (X,F), define its ‘dual complex’ to
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be the collapsible framed regular cell complex ∇C (∫T(X,F))†, that is the cell
gradient of the compactification (see Definition 4.2.50) of the dual of the
integral truss of the given complex.



CHAPTER 5

Tame stratifications and their combinatorializability

1
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In this final chapter, we begin our study of framed combinatorial strati-
fied topology, or more precisely, of its trivially framed model stratifications
which we will refer to as tame stratifications. Tame stratifications provide
a general class of stratifications defined by the property of being meshable,
i.e., admitting a framed refinement by some n-mesh. Their trivial n-framing
is induced by a framed embedding into standard n-framed Rn. Importantly,
tame stratifications admit a canonical decomposition into local combinatorial
building blocks, called tame cells and tame singularities, which derive from
the earlier notions of mesh blocks and braces. This decomposition relies on
fundamental results concerning the combinatorial classification of framed
stratified homeomorphism classes of tame stratifications, that we will establish
in this chapter.

Tame stratifications may themselves be regarded as the building blocks,
or ‘universal probing objects’, of more general global framed stratified spaces,
much as disks and spheres are the building blocks of topological spaces. While
we will not develop the resulting global theory here, the machinery of tame
stratifications presented in this chapter provides the necessary foundation
for such applications. The chapter concludes with an overview of these and
other forthcoming directions.
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organization is good
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5.1. ♦Tame stratifications and tame embeddings

Recall that we have been working toward a definition of a class of stratifica-
tions that is sufficiently general as to encode all reasonable finitary topological
phenomena, while still admitting a combinatorial classification and, crucially,
for which the problem of equivalence is algorithmically decidable. Recall that
meshes provide, via their realizations, stratified cellulations of subspaces of
euclidean space, which are exceptionally well behaved, in the sense that they
descend along the standard projections, constructibly and inductively, to
mesh cellulations of all lower-dimensional euclidean spaces. Equipped with
this foundational class of mesh stratifications, we may consider all stratifica-
tions of euclidean subspaces that admit a mesh refinement. Implicitly and
terminologically asserting that such stratifications satisfy the desiderata (of
finitary phenomenological generality, combinatorializability, and decidability),
we call these tame stratifications. An example of a tame stratification is
illustrated on the right in Figure 5.1; this is a stratification of an open ball in
R3 with one bulk stratum, two surface strata, four line strata, and four point
strata. (The thin vertical guidelines are not strata but merely convey the
arrangement of the ball in the ambient euclidean space.) Because coarsening
preserves tameness, another tame stratification is obtained by merging all
the surface, line, and point strata into a single 2-spherical stratum.

Of course, we care about stratifications outside of euclidean space, for
instance about stratifications of abstract compact manifolds. We may ex-
pand our attention to that wider context, simply by considering stratified
spaces with an embedding into euclidean space, whose stratified image is a
constructible substratification of a tame stratification of an open euclidean
subspace. We call these tame embeddings, and will find that they inherit the
combinatorializability and decidability properties of tame stratifications. An
example of a tame stratification is illustrated by the whole of Figure 5.1; on
the left is a stratification of the 2-sphere, with two surface strata, four line
strata, and four point strata, and the indicated stratified embedding onto a
constructible substratification of the right tame stratification. (Again, the
thin guidelines are not strata but encode the embedding by mapping to the
target guidelines.) Another example is obtained by merging all the strata of
the source (and as before the non-bulk strata of the target); that provides a
tame embedding of the unstratified 2-sphere. As it happens this embedding
is the first of nontrivial stage of the Morin eversion of the sphere.

2
3

1

Figure 5.1. A tame stratification and a tame embedding.
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Outline. In Section 5.1.1, we define tame stratifications as stratifica-
tions admitting a mesh refinement, and tame embeddings as embeddings
whose stratified image is a constructible substratification of an open tame
stratification. In Section 5.1.2, we provide an overview of the combinatorial
classification of tame stratifications by normalized stratified trusses. Finally in
Section 5.1.3, we preview applications of the classification to polyhedrality and
computability: we highlight the fact that framed stratified homeomorphisms
of tame stratifications are homotopic to piecewise-linear homeomorphisms,
and the fact that framed stratified homeomorphism of tame stratifications is
algorithmically decidable.

5.1.1. ♦The definitions. Recall that a coarsening is a stratified map that
is a homeomorphism of underlying spaces. Also recall that the source of
a coasening is called a refinement of the target. Given a coarsening, each
stratum of the target is decomposed into a disjoint union of the images of
strata of the source.

Given a class of stratifications, we may consider its ‘coarsening closure’,
which contains all those stratifications obtained by coarsening a stratification
in the given class. Applying that coarsening closure to the class of mesh
stratifications provides the notion of tame stratifications, as follows. Recall
that an n-mesh M comes equipped with an n-realization γ :Mn ↪→ Rn, and
we refer to the image γ(Mn) ⊂ Rn as the support of the mesh.

Definition 5.1.1 (Tame stratifications). An n-tame stratification is
a stratification (Z, f) of a space Z ⊂ Rn, that admits a refinement by an
n-mesh. (That is, there is an n-mesh M with support γ(M) = Z, whose
realization γ : (Mn, fn)→ (Z, f) is a coarsening.)

Terminology 5.1.2 (Support of a tame stratification). Given a tame
stratification (Z, f), we refer to the space Z ⊂ Rn as its ‘support’.

Note that the support of a tame stratification is a bounded subset of euclidean
space, by our standing assumption that realizations of meshes are bounded
(see the comments after Convention 4.1.13). Abusing notation, we may write
M → f as shorthand for the mesh refinement (Mn, fn)→ (Z, f) of a tame
stratification.

It is often convenient to consider, more generally, stratifications that,
though they don’t per se admit a mesh refinement, have a stratified open
neighborhood that admits a mesh refinement. That generalization allows us to
focus attention on the most geometrically relevant aspects of the stratification,
and provides the notion of ambiently tame stratifications, as follows.

Definition 5.1.3 (Ambiently tame stratifications). An ambiently n-
tame stratification is a stratification (Y, e) of a space Y ⊂ Rn, that is a
constructible substratification of a tame stratification (Z, f), with Z ⊂ Rn

an open subspace.
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Though we have thusfar overwhelmingly focused on the nature of stratified
structures within euclidean space, we care of course about general spaces
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and stratified spaces, in particular for instance about all manifolds. We may
finally make the leap into that wider context, by considering embeddings of
general stratified spaces into euclidean space, with ambiently tame image, as
follows.

Definition 5.1.4 (Tame embeddings). An n-tame embedding of a
stratified space (W, g) is an embedding ι :W ↪→ Rn, whose stratified image
ι(W, g) is an ambiently tame stratification.

We think of an n-tame embedding of a stratified space (W, g) as being a choice
of expressive and informative structure, analogous to a choice of n-framing on
a simplicial or regular cell complex, or more classically to a choice of Morse
function on a manifold.

Terminology 5.1.5 (Tame open neighborhoods). Given a tame em-
bedding ι of the stratified space (W, g), a ‘tame open neighborhood’ of the
tame embedding is a choice of open neighborhood Z of the image ι(W ),
for which there exists a tame stratification (Z, f) containing the stratified
image ι(W, g) as a constructible substratification. (When context forestalls
ambiguity, we may refer to a tame open neighborhood simply as an ‘open
neighborhood’.)

Example 5.1.6 (2-Tame stratifications). In Figure 5.2, we depict three
2-tame stratifications. In each case the underlying space Z is the union of
the colored strata (where each connected colored region represents a single
stratum). The first example is a polytope Z, regarded as a subspace with
trivial stratification. The second example has the same subspace Z but with
a non-trivial stratification. In the third example, the subspace is neither
compact nor open (dashed lines indicate open boundaries).32

Z1

2

(Z, f) (Z, f)1

2

1

2

Figure 5.2. 2-Tame stratifications.

Example 5.1.7 (2-Tame embeddings). In Figure 5.3, we depict three
examples of 2-tame embeddings. The first example is a 2-tame embedding of
the (trivially stratified) circle. The tame open neighborhood can be chosen
to be the open dashed square Z = I2; there is a tame stratification of

32Note that an example of a tame stratification that is not a tame embedding may be
obtained from this example by adding to the left 2-dimensional bulk stratum the lower
left corner point.
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that neighborhood having strata the circle and the two components of its
complement. Note that we have only drawn the image of the tame embedding,
and so this may also be considered simply as an example of an ambiently
tame stratification. We almost always let the source of the tame embedding
be implicit in our illustrations; however one should keep the source in mind
as the abstract space or stratification that is being framed by the specific
embedding. The second example is a 2-tame embedding of a stratification (by
manifolds) of the wedge of two circles. The third example is a tame embedding
of a different stratification of the same space, namely the stratification with
a single non-manifold stratum.

W

1

2

(W, g)

1

2

W

1

2

Figure 5.3. 2-Tame embeddings.

Example 5.1.8 (3-Tame stratifications). In Figure 5.4, we depict three
3-tame stratifications. The first example is a 3-polytope (the associahedron
as it happens), regarded as a subspace with trivial stratification. The second
example is a cylinder with closed sides and open ends, stratified by a winding
line stratum and its complement. The third example is a partially-closed,
partially-open prism, stratified by a cuspidal surface stratum, a snaked line
stratum, a point stratum, and two bulk strata of the remaining complement.

1
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(Z, f)(Z, f)
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Figure 5.4. 3-Tame stratifications.

Example 5.1.9 (3-Tame embeddings). In Figure 5.5, we depict three
examples of 3-tame embeddings. As before we depict only the image of
the embedding. The first example represents a braid structure as a tame
embedding of two intervals. The second example is a 3-tame embedding of a
circle, with target an unknot with nontrivial writhe. The third example is a
tame embedding of a Möbius band, stratified by its interior and its boundary.
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(In all three cases, the tame open neighborhood can be taken to be the open
dashed 3-cube.)
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(W, g) W (W, g)

Figure 5.5. 3-Tame embeddings.

Example 5.1.10 (4-Tame stratifications and embeddings). In Figure I.7,
we depicted two 4-tame stratifications. In both cases, the subspace Z ⊂ R4

is the open 4-cube. The first stratification has three 2-dimensional substrata
and a single open bulk stratum; this tame stratification encodes the classical
third Reidemeister move. The second stratification has a single 3-dimensional
substratum and two open bulk complement strata; this tame stratification
encodes the swallowtail singularity. Discarding the bulk strata, both cases
may instead be considered as ambiently tame stratifications, and indeed the
given coloration more directly suggests that interpretation. Furthermore,
conceiving of these stratifications as depicting the images of embeddings, the
first example may be considered as a 4-tame embedding of the disjoint union
of three open 2-cubes, and the second example may be considered as a 4-tame
embedding of an open 3-cube.

Example 5.1.11 (Untame embedding behavior). To clarify the nature of
the tameness condition, in Figure 5.6 we depict a less-straightforwardly tame
embedding along with an embedding that fails to be tame. The first example
on the left has an infinite oscillation but nevertheless is a tame embedding of
the stratified closed interval. The second example on the right also has an
infinite oscillation but is not a tame embedding: the 1-dimensional stratum
has infinitely many critical points with respect to the ambient standard
projection R2 → R1, and so no neighborhood could be refined by a mesh (as
meshes have finitely many strata).

Embeddings can be untame without any overt infinitary behavior. For
instance, consider the surface depicted on the left in Figure 4.11, as an
embedding of the closed square into R3, with the third coordinate axis aligned
with the right vertical closed interval. That is an apparently reasonable
embedding of a manifold with boundary, but it is not tame: the ambient
standard projection R3 → R2, when restricted to the image of the embedding,
exhibits an intrinstically unconstructible entrance path convergence structure,
which no amount of refinement can eliminate.

Another subtle failure of tameness can occur when two embeddings, each
of which is itself tame, exhibit a non-local interaction that is globally untame.



5.1. ♦TAME STRATIFICATIONS AND TAME EMBEDDINGS 285
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Figure 5.6. Tame and untame oscillations.

In Figure 5.7, we depict such an embedding of two disconnected stratified
intervals. Each of the two intervals is tamely embedded, a bit like the left
case in Figure 5.6; however, the projection of the joint embedding to R2 has
infinitely many intersection points, and so cannot be refined by a mesh. Note
that it is possible to slightly perturb the embedding to one that is in generic
position with respect to the projection, and is then in fact tame.

1
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2
1

2

π3

Figure 5.7. Nonlocal untameness.

Remark 5.1.12 (Tameness and triangulability). Because meshes are in
particular cellular stratifications, any tame embedding of a compact manifold
has triangulable image (and so in particular the manifold is triangulable).
Thus an untriangulable compact manifold (for instance the E8 4-manifold
[Fre82]) admits no tame embedding into euclidean space whatsoever.

Remark 5.1.13 (Tame submersions). Morse functions are a class of
especially well-behaved maps from manifolds to 1-dimensional euclidean
space; these maps are typically of negative codimension. ‘Higher Morse
functions’ ought to be a class of suitably and especially well-behaved maps
from manifolds to n-dimensional euclidean space. Tame embeddings provide a
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precisely defined such class of maps in the case of zero or positive codimension
maps. However, we can just as well handle the case of negative codimension
maps, as follows. An n-tame submersion of a stratified space (W, g) is
a map κ : W → Rn, that lifts along the projection Rn × Rk → Rn to an
(n+ k)-tame embedding ι :W ↪→ Rn+k. The notion of tame submersion is a
robust higher analog of Morse functions for both unstratified and stratified
manifolds.

Remark 5.1.14 (Tame immersions). Of course, classically, immersions are
a natural and rewarding generalization of embeddings. One may informally
consider the notion of immersion as obtained from the notion of embedding
by allowing discrete (rather than singleton or empty) fibers; more formally,
one may characterize an immersion as a local submersion onto its image,
again with discrete fibers. In the tame context, a suitable definition is
obtained as follows. An n-tame immersion of a stratified space (W, g) is
an n-tame submersion κ : W → Rn with discrete fibers. For instance, a
2-tame immersion of the circle is obtained by composing the middle 3-tame
embedding from Figure 5.5 with the projection π3 : R3 → R2; the image is
the subspace depicted on the right in Figure 5.3.

In considering the above notions and terminology of tame submersion and
tame immersion, one should keep in mind that the adjectives framed and
stratified are implicit throughout; in particular, tame submersions are actually
stratified topological submersions, after a suitable refinement whose existence
is ensured by tameness.

Recall from Definition 4.1.86 that, for subspaces Z ⊂ Rn and Z ′ ⊂ Rn,
a map F : Z → Z ′ is framed if it descends along the projections π>i =
πi+1 ◦ . . . πn−1 ◦ πn : Rn → Ri to maps Fi : π>i(Z)→ π>i(Z

′). That notion
provides a notion of framed maps of tame stratifications and tame embeddings,
as follows.

Terminology 5.1.15 (Framed maps of tame stratifications). Given
n-tame stratifications (Z, f) and (Z ′, f ′), a framed map of tame strati-
fications (also simply a ‘framed stratified map’) F : (Z, f) → (Z ′, f ′) is a
stratified map, whose underlying map of spaces Z → Z ′ is framed.

Terminology 5.1.16 (Framed maps of tame embeddings). Given n-tame
embeddings ι : (W, g) ↪→ Rn and ι′ : (W ′, g′) ↪→ Rn, a framed map of tame
embeddings (also called again a ‘framed stratified map’) F : ι → ι′ is a
framed map Z → Z ′ of tame open neighborhoods Z ⊃ ι(W ) and Z ′ ⊃ ι′(W ′),
which restricts to a stratified map ι(W, g)→ ι′(W ′, g′).

Terminology 5.1.17 (Framed stratified homeomorphisms). A ‘framed
stratified homeomorphism of tame stratifications’ is a framed stratified map
that is also a stratified homeomorphism. Similarly a ‘framed stratified
homeomorphism of tame embeddings’ is a framed stratified map ι→ ι′ whose
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map of tame open neighborhoods is a homeomorphism Z ∼= Z ′ and whose
restriction is a stratified homeomorphism ι(W, g) ∼= ι′(W ′, g′).

Example 5.1.18 (Framed stratified homeomorphism). In Figure 5.8, we
depict a framed stratified homeomorphism F between two 2-tame embed-
dings of the circle. The framed map is between the indicated tame open
neighborhoods Z and Z ′, and factors through the projections π1 : R2 → R1

by a map F1, as required. (Of course the map of tame open neighbor-
hoods is itself an example of a framed stratified homeomorphism of 2-tame
stratifications.)

1

2

1

2
1 1

π2

Z
Z′

π2

F1−−→

F−→

Figure 5.8. Framed stratified homeomorphism.

Example 5.1.19 (Non-framed stratified homeomorphism). In Figure 5.9,
by contrast, we depict a stratified homeomorphism of two 2-tame embeddings
of the circle, which though is not a framed map.

1

2

1

2

F−→

Figure 5.9. Non-framed stratified homeomorphism.

Example 5.1.20 (Framed stratified map). In Figure 5.10, we depict
a framed map of 3-tame embeddings, from an embedding of the 2-disc to
an embedding of the thrice-punctured 2-sphere. This framed map is not a
stratified homeomorphism, but it is a framed stratified homeomorphism onto
its image, and so is in that sense a ‘framed substratification’.
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π2

π3
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F2−−→

F3−−→

F1−−→

Figure 5.10. A framed substratification.

5.1.2. ♦Overview of the classification. Tame stratifications (and simi-
larly tame embeddings) are defined as purely stratified topological structures,
satisfying the condition of admitting a mesh refinement. We know that
meshes are combinatorially classifiable (by trusses), but a tame stratification
does not come equipped with any preferred refining mesh; it is therefore
quite unexpected that, as we will prove, tame stratifications nevertheless also
permit a combinatorial classification. At root such a classification is possible
because there will turn out to be a unique coarsest mesh refining a given
tame stratification.33 An intricate discussion of joins of mesh stratifications,
and the consequent exhibition of coarsest refining meshes, will occupy all of
Section 5.2; the resulting classification of tame stratifications will be detailed
and established in Section 5.3.1.

For a given tame stratification, there is a collection of refining meshes,
each of which has its combinatorial truss counterpart; to identify the trusses
corresponding to these refining meshes, we will need to encode the given
stratification as a combinatorial structure on the fundamental trusses of those
meshes. That encoding is achieved by the notion of stratified trusses, as
follows. Recall from Definition 2.3.6 that a labeled n-truss has a functor
from the total poset Tn to a labeling category. Regarding that poset as
a topological space via its specialization topology (see Convention B.1.1),
the labeling functor may itself be the characteristic map of a topological
stratification (see Definition B.1.19 and Remark B.1.27).

33Contrast, for instance, the situation of triangulable manifolds, which also have, by
assumption, combinatorializable refinements; but there is certainly no unique coarsest
triangulation of a manifold, and triangulable manifolds are altogether hopelessly not
combinatorially classifiable.
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Definition 5.1.21 (Stratified n-trusses). A stratified n-truss is a la-
beled n-truss T , whose labeling lblT is the characteristic map of a stratification
of the total poset Tn of the truss.

The correspondence between n-meshes and n-trusses extends to a cor-
respondence between n-meshes refining tame stratifications and n-trusses
equipped with stratifications. Specifically, given an n-mesh M with a coarsen-
ing γ :M → f to a tame stratification f , the corresponding stratified n-truss
is the fundamental n-truss ΠTM together with the labeling Πγ : ΠMn → Πf
by the fundamental poset map of the coarsening.

Any stratified n-truss so obtained from a refining n-mesh is a combi-
natorial encoding of a tame stratification. However, to obtain a unique
combinatorial representative, we concentrate on those stratified trusses that
do not admit any further truss coarsening that is compatible with the given
stratification; such stratified trusses will correspond to the aforementioned
coarsest refining meshes. These uncoarsenable stratified trusses are called
‘normalized’ and are defined as follows.

Definition 5.1.22 (Normalized stratified n-trusses). A stratified n-truss
T is normalized when any label-preserving truss coarsening T → S is the
identity.

The main result of this chapter is the combinatorial classification of tame
stratifications by their correspondence with normalized stratified trusses.

Theorem 5.1.23 (Classification of tame stratifications). Framed stratified
homeomorphism classes of n-tame stratifications correspond bijectively with
isomorphism classes of normalized stratified n-trusses.

The stated correspondence takes a tame stratification to the fundamental
stratified truss of its coarsest refining mesh. The proof of this result therefore
hinges on the existence of such a coarsest mesh. That existence will follow in
turn from the following crucial property of meshes: given any two meshes
with the same support, there is a finest mutual coarsening mesh, which we
call the mesh join.34 As a tower of stratified bundles, the mesh join is simply
the stage-wise join (in the lattice of stratifications and their coarsenings) of
the two stratifications; technical attention is required merely to verify that
the join is indeed again a mesh.

Remark 5.1.24 (The case of tame embeddings). There is an analogous
classification for tame embeddings: framed stratified homeomorphism classes
of n-tame embeddings correspond to isomorphism classes of normalized,
ambient stratified open n-trusses. This result is also developed in Section 5.3.1
and established as Theorem 5.3.33.35

34Again we may contrast the situation of triangulations: two triangulations almost never
have a mutual coarsening triangulation, even less so a distinguished finest such.

35In an under-appreciated thread of influence, C. D. Ridenhour was reading Freedman’s
landmark 1982 paper on the topology of four-dimensional manifolds, when, stunned by
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5.1.3. ♦Preview of applications. The classification of tame stratifications
has several noteworthy consequences, which we group into those concern-
ing polyhedrality and those concerning computability. The polyhedrality
applications will be elaborated and established in Section 5.3.2, and the
computability applications will be detailed and derived in Section 5.3.3.

A polyhedron is the image in euclidean space of a linear realization of
a finite simplicial complex; it has a ‘simplicial stratification’ by the open
simplices of the realized complex. A polyhedral stratification is a constructible
substratification of a coarsening of a simplicial stratification of a polyhedron.
Most immediately, the classification of tame stratifications implies that any
closed or open tame stratification is framed stratified homeomorphic to a
canonical polyhedral stratification (namely a stratified mesh realization of
the corresponding normalized stratified truss).

Corollary 5.1.25 (Tame stratifications are polyhedral). Any closed or
open tame stratification is framed stratified homeomorphic to a polyhedral
stratification.

Since an ambiently tame stratification is a constructible substratification
of an open tame stratification, it is also framed stratified homeomorphic to
a polyhedral stratification (in fact, again a canonical one); thus any tame
embedding is framed stratified homeomorphic to one with polyhedral stratified
image. Conversely, polyhedral stratifications are always tame, as follows.

Proposition 5.1.26 (Polyhedral stratifications are tame). Any polyhe-
dral stratification in Rn is the stratified homeomorphic image of an n-tame
embedding.

9 : There is a discrep-
ancy between the ter-
minology in the intro
and here, polyhedral
vs piecewise linear

10 : Also need to re-
member to flip Thm
12 and Thm 13 in
the intro, and fix
their headers. Moral
progression is tame
in euclidean space,
then toward more
general complexes ie
n-graphs.

Not only are (closed or open) tame stratifications framed stratified home-
omorphic to polyhedral stratifications, but in this context, the notions of
‘framed stratified homeomorphism’ and of ‘framed stratified piecewise-linear
homeomorphism’ coincide. That result is another headline consequence of
the classification of tame stratifications, as follows.

Theorem 5.1.27 (Framed Hauptvermutung). Any framed stratified home-
omorphism between polyhedral stratifications is (framed stratified) homotopic
to a framed stratified piecewise-linear homeomorphism.

That homotopy to a PL homeomorphism is in fact unique up to contractible
choice. Of course this framed Hauptvermutung is startling because the
classical, unframed analog fails: there are bounded polyhedral stratifications
that are topologically stratified homeomorphic but not piecewise-linearly
stratified homeomorphic.

the realization that the E8 manifold was untriangulable (cf. Remark 5.1.12), he dashed
off the lyrics to the song that later became the lead single of Apocalypse 91, presciently
titled, “Can’t Truss It".
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Remark 5.1.28 (Framed vs. framed PL vs. PL). We may summarize,
as follows, the relationships established between framed, framed piecewise-
linear, and purely piecewise-linear phenomena. The functor from (say, closed)
tame polyhedral stratifications (i.e. polyhedral stratifications considered with
framed stratified piecewise-linear maps) to (closed) tame stratifications is
surjective on equivalence classes, by Corollary 5.1.25; furthermore, that
functor is injective on equivalence classes by Theorem 5.1.27.

The functor from tame polyhedral stratifications to polyhedral stratifi-
cations is surjective on equivalence classes, by Proposition 5.1.26. However,
that functor is far from being injective on equivalence classes, because framed
stratified piecewise-linear homeomorphism is a much finer equivalence relation
than (unframed) stratified piecewise-linear homeomorphism.

Having considered the polyhedrality of tame stratifications, we turn to
the computability of tame stratifications.

Recall that any tame stratification has an associated unique coarsest
refining mesh, and of course its combinatorial counterpart, a normalized
stratified truss. It is by no means clear that there is any systematic way of
identifying that coarsest mesh, or equivalently its normalized truss. But in
fact we will prove that stratified truss coarsening is confluent, in the sense that
any maximal chain of coarsenings of a stratified truss ends in its normalized
truss. Consequently, at worst, any brute or greedy coarsening algorithm
will yield the normalized truss, and therefore the corresponding coarsest
mesh. (In the following statement, and henceforth whenever discussing
algorithmic properties of tame stratifications, we take as given some refining
mesh witnessing the tameness of the tame stratification; in particular no
claim is made about the algorithmicity of determining tameness itself.)

Corollary 5.1.29 (Canonical coarsest mesh refinements are computable).
Given a tame stratification, one can algorithmically determine its coarsest
refining mesh.

In fact we will sketch an efficient algorithm for stratified n-truss normalization
(and thus stratified mesh coarsening), that proceeds by normalizing the 1-
truss fibers over the projected (n− 1)-truss, iteratively in decreasing depth
within the (n−1)-stage truss poset, and then inductively proceeding down the
truss tower using stratifications induced by increasingly expressive classifying
functors.

Having established that we can compute the coarsest refining meshes of
tame stratifications, and observing that the existence of a stratified isomor-
phism of corresponding normalized stratified trusses is certainly algorithmi-
cally determinable, we will find that equivalence of tame stratifications is
decidable, as follows.
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Theorem 5.1.30 (Framed stratified homeomorphism of tame stratifica-
tions is decidable). Given two tame stratifications, one can algorithmically
decide whether they are framed stratified homeomorphic.

Of course, the classical, unframed analog of this result, whether stratified or
unstratified, fails wildly: homeomorphism of (even combinatorially presented)
topological spaces is algorithmically undecidable.

The computable classification of tame stratifications enables the funda-
mental construction of a dual stratification of any tame stratification: from a
tame stratification, determine its coarsest refining mesh, take the associated
normalized stratified truss, form the dual stratified truss (consisting of the
dual truss and the stratification given by the opposite labeling functor), and
finally build the stratified mesh realization. The confluence of stratified
truss coarsenings dualizes to the confluence of stratified truss degeneracies;
consequently any tame stratification has a computable, unique maximally
degenerated quotient stratification.

The preceeding computability results concern n-tame stratifications, so
in particular stratifications of subspaces of n-dimensional euclidean space.
We may drastically extend the scope of these results by considering n-framed
regular cell complexes, that need not embed in Rn but that merely admit
a framed realization to Rn. (As in Terminology 1.3.36, a map is a framed
realization when it is linear on each simplex, respects the frame vectors, and
is an embedding on each cell.) Recall from Definition 1.3.64 that that we
refer to such complexes as n-directed acyclic graphs.

The join stratification techniques that enabled us to construct a coarsest
mesh refining a given tame stratification, generalize to establish the existence
and computability of a unique coarsest cell structure of any given n-directed
acyclic graph. (Yet again, note the sharp contrast to the classical case:
a regular cell complex typically has numerous distinct and incompatible
coarsest cell structures.) As the computability of the coarsest refining mesh
of a tame stratification ensured the decidability of equivalence of tame
stratifications, similarly the computability of the coarsest cell structure leads
to a corresponding decidability result for n-directed acylic graphs, as follows.

Theorem 5.1.31 (Framed homeomorphism of n-DAGs is decidable).
Given two n-directed acyclic graphs, one can algorithmically decide whether
they are framed homeomorphic.

The coarsest cell structure, and the decidability of framed homemorphism, is
useful even for complexes that do embed in euclidean space. In particular,
tame embeddings inherit framed cell structures from the coarsest refining
meshes of their tame neighborhoods, and those cell structures admit a further,
often substantial, coarsening simplicifcation to their coarsest cell structures
as framed complexes.
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5.2. ♦Coarsest meshes

We have promoted tame stratifications as a tractable class of strati-
fications, which is both general enough to capture all finitary topological
structures and which admits a decidable, combinatorial classification. Leaving
the generality for now as a mix of analytic stipulation and informed faith,
we proceed with considering the combinatorial classifiability. Recall that by
definition a tame stratification admits a mesh refinement; and of course that
refining mesh is combinatorially classified by its fundamental truss. The issue,
a priori, is that a given tame stratification certainly has multiple distinct
and seemingly incompatible refining meshes. Indeed, given two such meshes,
some strata from the first will be in the second, some will not; some strata
from the second will be in the first, some will not; and distinct strata of the
two can intersect and interact in rather uncontrolled ways. It is therefore
a striking and crucial structural property of meshes that any two have a
canonical common coarsening called the mesh join. That join is obtained,
at each mesh stage, by merging strata of the two meshes whenever they
intersect; the difficulty will be seeing that the resulting tower of maps is
suitably stratified, continuous, and constructible as to be itself a mesh.

Fix again a tame stratification, and consider the collection of all its refining
meshes. Since meshes are finite stratifications, from any given refining mesh,
there is at most a finite length chain of coarsenings in the collection. The
end of that chain has the feature that it is coarser than any refining mesh
whatsoever: otherwise the mesh join with a non-finer mesh would produce a
further coarsening, extending the chain. That procedure therefore produces a
canonical coarsest refining mesh of the tame stratification. The fundamental
truss of the coarsest refining mesh provides a combinatorial substrate, upon
which the later classification of tame stratifications will rely. An example of a
tame stratification and its coarsest refining mesh is illustrated in Figure 5.11.
The stratification, on the right, is of a triangular prism, with two bulk strata
and a single smooth surface stratum that has a cusp singularity for the top
projection. The coarsest refining mesh, on the left, isolates the cusp as a
point stratum, and the two folds as line strata, along with other line and
surface strata minimally encoding the geometry of the singularity and all its
projections.
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1
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2

1

Figure 5.11. A tame stratification and its coarsest refining
mesh.
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Outline. In Section 5.2.1, we introduce joins of stratifications as the
finest mutual coarsening, define mesh joins as stage-wise stratification joins,
and prove that the mesh join is indeed a mesh. In Section 5.2.2, we define the
coarsest refining mesh of a tame stratification as a refining mesh that coarsens
all others, and the minimal coarsest refining mesh of a tame embedding as
one that cannot be coarsened or constructibly shrunk; we establish that
both coarsest and minimal coarsest meshes exist and are unique. Finally,
in Section 5.2.3, we provide a variety of examples of coarsest and minimal
coarsest meshes of tame stratifications and tame embeddings, respectively.

5.2.1. ♦Mesh joins.

Synopsis. We define the join of two stratifications as their finest mutual
coarsening, and introduce joins of meshes and joins of mesh bundles as towers
of join stratifications. We then prove the key lemma that mesh joins are
themselves meshes, inductively from the join stability of 1-mesh bundles,
which itself follows using auxiliary results concerning the projections and
bounds of joined strata.

5.2.1.1. The definition of mesh joins. The join of two stratifications
of the same space is their finest mutual coarsening. That coarsening may
be, however, only a prestratification; recall that prestratifications, unlike
stratifications, allow cycles in their formal entrance path relation (see Termi-
nology B.1.8).

Definition 5.2.1 (Joins of stratifications). Given stratifications f and g
of a space X, the join f ∨ g is the prestratification of X, that coarsens both
f and g, and such that, for any other prestratification h coarsening both f
and g, there is a coarsening from f ∨ g to h.

Construction 5.2.2 (Joins of stratifications). Given a space X and
stratifications (X, f) and (X, g), let ∼ denote the transitive closure of the
relation, on the union of the set of strata of f and the set of strata of g, given
by

s ∼ t ⇐⇒ (s ∩ t ̸= ∅) .

The join f ∨ g is the prestratification of X whose strata are the nonempty
connected subspaces

⋃
s∈s s, where s ranges over the equivalence classes of

the relation ∼.

Remark 5.2.3 (Joins as pushouts). The joins of (pre)stratifications (X, f)
and (X, g) may also be characterized as the following pushout in the category
of prestratifications:

discr(X) (X, f)

(X, g) (X, f ∨ g)

⌟
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Here discr(X) is the discrete stratification (see Terminology B.1.17).
Note that this pushout is preserved when taking fundamental preorders.

Thus in particular, the pushout of a span of posets (in the category of
preorders) need not be a poset (but merely a preorder).

Example 5.2.4 (Joins of stratifications). In Figure 5.12, we depict two
examples of a join of stratifications; the first case joins two stratifications of the
closed pentagon, while the second case joins two stratifications of the closed
rectangle. Note that in the second case, the join is only a prestratification,
and its fundamental poset merely a preorder.

∨ =

∨ =

Figure 5.12. Joins of stratifications.

Notation 5.2.5 (Equivalence classes and strata in joins). Given stratifi-
cations (X, f) and (X, g), we will abuse notation and denote the strata of
their join f ∨ g by, for instance, s :=

⋃
s∈s s; that is, we denote by s both

an equivalence class of strata of f and g, and a stratum of the join f ∨ g.
Thus we may write r ∈ s, where r is a stratum, to mean a member of the
equivalence class s. And we may write x ∈ s, where x is a point, to mean a
point in the stratum s.

Further, we will denote by sf the subset of the equivalence class s consisting
of strata of f , and by sg the subset of the equivalence class consisting of
strata of g.

In constructing the joins of meshes and of mesh bundles, we will want and
need to restrict attention to sufficiently nice base stratifications; we codify
that presumption as follows.

Terminology 5.2.6 (Sufficiently nice stratifications). A stratification is
‘sufficiently nice’ when it is finite, frontier-constructible, and cellulable.

Proposition 5.2.7 (Joins of sufficiently nice stratifications). Given
sufficiently nice stratifications (X, f) and (X, f ′), their join (X, f ∨ f ′) is
itself a sufficiently nice stratification.

Proof. Finiteness and cellulability are both preserved under coarsening,
so those properties immediately propagate to the join. To see that the join is
also frontier-constructible, argue as follows. Suppose the closure of a stratum
s intersects the stratum r, but does not contain it. Then there is a stratum
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r ∈ r which itself intersects the closure of s but is not contained in it. Assume
r ∈ rf ; then since s is the union of the strata in sf , there is an s ∈ sf
whose closure intersects r but does not contain it, contradicting the frontier
constructibility of f . □

Observation 5.2.8 (Joins of stratified maps). Given stratified maps
F : (X, f)→ (X ′, f ′) and G : (X, g)→ (X ′, g′) that are identical as maps of
underlying spaces X → X ′, there is another stratified map

F ∨G : (X, f ∨ g)→ (X ′, f ′ ∨ g′)

with the same underlying map of spaces. We call it the join of the maps F
and G.

We will be primarily interested in the joins of meshes and their bundles.
In the construction of those joins, it will be convenient to consider meshes as
subspaces of euclidean space, rather than as abstract spaces equipped with
an n-realization into euclidean space.

Convention 5.2.9 (Keep n-realizations implicit). Given an n-mesh M
with n-realization γ (as described in Construction 4.1.70), we will usually
identify the i-th stage space Mi with its image under the map γi :Mi ↪→ Ri,
and so elide the maps γi entirely. Similarly given an n-mesh bundle p over a
base (B, g), we identify the space Mi with its image in B × Ri and suppress
the realization maps γi :Mi ↪→ B × Ri (from Construction 4.1.77).

Definition 5.2.10 (Mesh joins). Consider two n-meshes M and M ′

consisting, respectively, of the 1-mesh bundles pi : (Mi, fi) → (Mi−1, fi−1)
and p′i : (M

′
i , f

′
i)→ (M ′

i−1, f
′
i−1); assume these meshes have identical support

Mn = M ′
n ⊂ Rn, and so identical projected support Mi = M ′

i ⊂ Ri. The
mesh join M ∨M ′ is the tower of stratified maps pi ∨ p′i : (Mi, fi ∨ f ′i)→
(Mi−1, fi−1 ∨ f ′i−1).

Definition 5.2.11 (Join of mesh bundles). Similarly, consider two n-mesh
bundles p and p′, consisting of the 1-mesh bundles pi : (Mi, fi)→ (Mi−1, fi−1)
and p′i : (M ′

i , f
′
i) → (M ′

i−1, f
′
i−1); assume these have the same base and

identical support. The join of mesh bundles p ∨ p′ is again the tower
pi ∨ p′i.

When the join of mesh bundles is in fact a mesh bundle, we refer to it also as
the ‘mesh bundle join’.

Example 5.2.12 (Mesh joins). In Figure 5.13, we depict the mesh join
of two open 2-meshes (represented via their realizations in R2). Note that
the mesh join is again a 2-mesh.

5.2.1.2. The mesh join lemma. The crucial claim, as noted in the
preceding example, is that joins of meshes are themselves meshes; the proof
of that claim will occupy this section.
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Figure 5.13. The join of two open meshes.

Key Lemma 5.2.13 (Join stability of meshes). Given n-meshes M and
M ′ with identical support, their mesh join M ∨M ′ is itself an n-mesh.

Proof. By induction in n, we may assume the mesh join M<n ∨M ′
<n

of the (n − 1)-truncations M<n and M ′
<n is an (n − 1)-mesh. For the

inductive step, we need to show that the stratified map pn ∨ p′n : fn ∨ f ′n →
fn−1∨f ′n−1 is a 1-mesh bundle. The next Lemma 5.2.14 establishes this is the
case, provided that fn−1 and f ′n−1 are sufficiently nice stratifications, in the
sense of Terminology 5.2.6, and that fn−1 ∨ f ′n−1 is a cellular stratification.
That sufficient niceness is ensured inductively using Observation 4.1.66,
Observation 4.1.67, and Proposition 4.1.63. The cellularity of fn−1 ∨ f ′n−1 is
given by Observation 4.1.75, since the join M<n ∨M ′

<n is an (n− 1)-mesh
by induction. □

Lemma 5.2.14 (Join stability of 1-mesh bundles). Let (B, g) and (B, g′) be
sufficiently nice stratifications. Consider 1-mesh bundles p : (M,f)→ (B, g)
and p′ : (M,f ′)→ (B, g′) with the same underlying map of spaces, and their
join p ∨ p′ : (M,f ∨ f ′)→ (B, g ∨ g′).

(1) The join p ∨ p′ is a categorical 1-mesh bundle.
(2) When g ∨ g′ is cellular, the join p ∨ p′ is a 1-mesh bundle.

Example 5.2.15 (A categorical bundle join). As described in the previous
lemma, the join of 1-mesh bundles need only be a categorical 1-mesh bundle,
if the base stratification join is not cellular. In Figure 5.14, we illustrate this
situation, of a categorical mesh bundle join over a non-cellular base.

∨ =

Figure 5.14. A categorical 1-mesh bundle as a join.

Working toward the proof of this lemma, we first establish the following two
auxiliary results. (Note again that the stratified maps p and p′ and p ∨ p′
all have the same underlying map of spaces; for brevity, we typically and
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abusively refer to that map of spaces simply as p, no matter the stratification
under consideration.)

››››› In Lemma 5.2.16, we show that for any stratum s in f ∨ f ′, the image
p(s) is exactly a stratum r in g ∨ g′.

››››› In Lemma 5.2.18, we show that for each stratum s in f ∨ f ′, there are
continuous sections γ̂±s : p(s) → p(s) × R that fiberwise bound s from
above and below.

Lemma 5.2.16 (Joined strata project onto joined strata). For 1-mesh
bundles p : (M,f)→ (B, g) and p′ : (M,f ′)→ (B, g′) with identical underly-
ing maps of spaces, the image under p∨ p′ of any stratum s of the join f ∨ f ′
is exactly a stratum in the join g ∨ g′.

Proof. Since the join p∨p′ is a stratified map, the image p(s) is certainly
contained in some stratum r of g ∨ g′. Since p is a 1-mesh bundle, the images
of strata of f are exactly strata of g. Recall from Observation 5.2.8 the class
rg of strata of g inside the stratum r of g ∨ g′. Consider the subclass rsp of rg
consisting of the images of strata in sf . The union of strata in rsp is exactly
p(s), and of course the union of strata in rg is exactly r. It suffices then to
show that rsp = rg.

Suppose, for contradiction, that rsp ⊊ rg. Then we can find a stratum
r′ in the class rg′ that intersects both rsp and rg \ rsp. Pick a stratum r in rsp
that intersects r′. By the definition of rsp, there is a stratum s in the class
sf projecting to r. Since r intersects r′, there is at least one stratum s′ in
f ′ that projects to r′ and intersects s. But r′ intersects rg \ rsp and so some
point of s′ projects into a stratum of rg \ rsp; the stratum of sf containing that
point projects onto that stratum of rg \ rsp, a contradiction. □

Recall from Notation 4.1.15, Notation 4.1.25, and Definition 4.1.28 that
1-mesh bundles must have continuous upper and lower realization bounds.
In the process of showing that joins of 1-mesh bundles are 1-mesh bundles,
we will need to know that every stratum similarly has continuous upper and
lower bounds, in the following sense.

Notation 5.2.17 (Lower and upper fiber bounds). For a subspace s ⊂
B×R and a point x ∈ B in the image of s under the projection π : B×R→ B,
the ‘lower and upper fiber bounds’ γ̂−s (x) and γ̂+s (x) are the lower and upper
bounds of the fiber sx := s ∩ π−1(x) ⊂ R.

By Lemma 5.2.16, the image of a stratum s of the join f ∨ f ′ is a stratum
of the base join g ∨ g′. Therefore the fiber bounds are well defined over that
whole base stratum, and in fact they are continuous, as follows.

Lemma 5.2.18 (Joined strata are bounded by continuous sections). Con-
sider 1-mesh bundles p : (M,f) → (B, g) and p′ : (M,f ′) → (B, g′) over
sufficiently nice base stratifications. For any stratum s of the join f ∨ f ′, the
functions γ̂±s : p(s) → p(s)× R, mapping the base point x to the lower and
upper fiber bounds γ̂±s (x), are continuous.
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Proof. Abbreviate r = p(s). We begin with the following two observa-
tions.

(1) For each base point x ∈ r, the fiber bound γ̂±s (x) ∈ r×R is either the
realization bound γ±(x) of the bundle p (or equivalently of p′) at x, or it is a
point in singular strata of both f and f ′. Indeed, it cannot be a point in a
regular stratum of either f or f ′, since regular strata intersect fibers of the
projection B × R→ B in open intervals.

(2) For each stratum v in the equivalence class r, the map γ̂±s restricts to
a continuous map on v. Indeed, assume v ∈ rg (or similarly v ∈ rg′). Then
the intersection s ∩ p−1(v) is exactly a union of strata in f , namely those
strata sv ⊂ s that lie over v. By the previous observation, the image γ̂±s (v)
of the fiber bound γ̂±s : v → v × R is therefore either equal to the realization
bound γ±(v) or to some singular stratum in f lying over the stratum v. In
either case, the function γ̂±s is continuous on that stratum v.

If a stratum u ∈ r contains a point x at which γ̂±s is not continuous (that
is, γ̂±s is not continuous in any neighborhood of x inside the stratum r), we
will say that u is ‘bad’; otherwise, we say that u is ‘good’. Note that by the
second observation above, discontinuities cannot occur within a stratum, and
so bad strata cannot be minimal elements in rg (or rg′), where rg (or rg′) is
considered as a full subposet of Π(g) (or Π(g′)). In particular, there exist at
least some good strata, namely the minimal elements in rg and rg′ .

We now show that, given a bad stratum u, the map γ̂±s is, in fact,
discontinuous at all points of u. Assume u ∈ rg is bad with a discontinuity
at x ∈ u (the argument is the same when u ∈ rg′). By the finiteness of the
base stratification g, we can pick a stratum ũ adjacent to u, such that γ̂±s is
discontinuous at x when restricted to the union u ∪ ũ. As mentioned above,
the subspace γ̂±s (ũ) is either a singular stratum in f or is the realization
bound γ±(ũ). It follows, by constructibility of the 1-mesh bundle p : f → g
and by continuity of the bundle bounds γ±, that either the closure of the
image γ̂±s (ũ) contains all or else none of the image γ̂±s (u). The latter case
must hold, since the former would imply continuity at x (within u ∪ ũ). By
frontier-constructibility of g, the stratum ũ contains all of u in its closure,
and thus γ̂±s is discontinuous at all points in u, as claimed.

To see finally that γ̂±s is continuous on all of the base stratum r, we argue
by contradiction as follows. Assume a bad stratum u exists, and suppose
u ∈ rg (again the argument is the same when u ∈ rg′). Denote by rug′,1 the
subclass of rg′ consisting of strata that intersect u. Note all strata in rug′,1 are
bad, since they each intersect u in at least one point. Moreover, the union of
strata in rug′,1 strictly includes u and, since good strata exist, does not cover r.
(The inclusion is strict since u is not already all of r, and the stratum r of the
join g ∨ g′ is by definition the transitive closure of the stratum intersection
relation.) Denote by rug,1 the subclass of rg consisting of strata that intersect
rug′,1. Again, all strata in rug,1 are bad and their union strictly includes the
union of strata in rug′,1, but does not cover r. Denote by rug′,2 the subclass of
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rg′ intersecting rug,1. Repeating the argument in this way, we obtain a strictly
increasing infinite sequence rug′,1 ⊂ rug′,2 ⊂ rug′,3 ⊂ · · · ⊂ rg′ ; the existence of
such a sequence contradicts the finiteness of the stratification g′. □

We can now prove that the join of 1-mesh bundles is again a 1-mesh
bundle.

Proof of Lemma 5.2.14. We first verify that the join p∨ p′ : f ∨ f ′ →
g ∨ g′ is a stratified bundle whose fibers are 1-meshes. Consider a stratum s
of f ∨ f ′ lying over a stratum r = p(s) of g ∨ g′. In the preceding proof, we
observed that for each stratum v ∈ rg (or v ∈ rg′), either γ̂±s (v) = γ±(v) or
else γ̂±s (v) is a singular stratum of f (or f ′ respectively). Because that image
γ̂±s (v) being the realization bound (or being a singular stratum) propagates
across strata intersections in the base, in fact either γ̂±s (r) = γ±(r) or else
γ̂±s (r) is both a union of singular strata of f and a union of singular strata of
f ′; in the latter case, γ̂±s (r) is a stratum of f ∨ f ′.

It follows that either (1) γ̂−s (r) and γ̂+s (r) are disjoint, or (2) γ̂−s (r) = γ̂+s (r).
If (1) holds, then the stratum s is isomorphic to a product of the base stratum
r and an open interval. If (2) holds, then the stratum s is a section of the
bundle p over the stratum r. It follows, using the fiber bound continuity
established in Lemma 5.2.18, that p ∨ p′ : f ∨ f ′ → g ∨ g′ is stratified-locally
trivial, and has 1-mesh fibers, as required.

The bundle certainly inherits its continuous realization bounds γ± from p.
It remains only to verify that the join p∨p′ : f∨f ′ → g∨g′ is constructible. We
first verifty path-dependent constructibility, in the sense of Remark 4.1.41,
or more precisely in the sense mentioned immediately after that remark.
Consider an entrance path α : r→ u and a singular stratum s with p(s) = r.
Define the lift entrance path β : s → v as follows: take β|[0,1) to lift α|[0,1)
along the homeomorphism p : s→ r, and set β(1) to be the limit limt→1 β(t).
That this limit, and thus entrance path, exists, and that the target stratum
v is singular, follows from the constructibility of f and f ′. (Though the
entrance path α need not be an entrance path in either g or g′, there is a
sequence {ti ∈ [0, 1)} converging to 1, and an entrance path α̃ : s̃ → r̃ of
either g or g′ with α̃(ti) = α(ti); the lift of α̃ exists, ensuring the lift of α
exists.) That entrance path is uniquely determined by the bare topology of
the fibers. Altogether then p ∨ p′ is a categorical 1-mesh bundle.

Finally, consider the case when the base stratification join g∨g′ is cellular,
i.e. by definition a constructible substratification of a locally finite regular
cell complex. Recall from Proposition 1.3.13 that regular cell complexes are
stratified realizations of cellular posets. Thus Proposition 4.1.43 ensures that
the join p ∨ p′ is, in fact, a 1-mesh bundle. □

That establishes the join stability of 1-mesh bundles; the join stability of
n-meshes, as in Key Lemma 5.2.13, follows as previously discussed.

We briefly mention two further forms of join stability.
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Lemma 5.2.19 (Join stability for mesh bundles). Let p and p′ be n-mesh
bundles over the same cellular base (B, g) and with the same support in
B × Rn. The join p ∨ p′ is itself an n-mesh bundle.

The proof of Key Lemma 5.2.13 applies here, verbatim after replacing ‘meshes’
by ‘mesh bundles’.

It will be useful to consider joins in the situation where two meshes do
not have identical support, but merely one support is contained in the other.

Lemma 5.2.20 (Stability for relative mesh joins). Let M and M ′ be n-
meshes, such that the support Z of M is a subspace of the support of M ′.
Denote by M ′|Z the tower of stratified maps obtained by restricting the tower
M ′ to Z. The stage-wise join M ∨ (M ′|Z) is itself an n-mesh.

We omit a detailed verification; the proof follows the same structure and
ideas as that of Key Lemma 5.2.13, but requires additional care regarding
strata of M ′ that only partially intersect the support Z of M .

5.2.2. ♦The coarsest mesh constructions.

Synopsis. We define the coarsest refining mesh of a tame stratification, as
a mesh refinement that coarsens all other mesh refinements; using mesh joins,
we prove that coarsest refining meshes always exist. We then define minimal
coarsest refining meshes of tame embeddings, as refining meshes that cannot
be coarsened and also cannot be shrunk to a constructible substratification;
we show that minimal coarsest refining meshes also exist and are unique.

5.2.2.1. Coarsest refining meshes of tame stratifications. Equipped
with mesh joins, we may barrel directly into a discussion of coarsest refining
meshes.

Terminology 5.2.21 (Meshes refining meshes). Given meshes M and
N with the same support, we say that ‘N refines M ’ or equivalently ‘M
coarsens N ’ if the identity map of the underlying support spaces is a mesh
coarsening N →M .

Definition 5.2.22 (Coarsest refining meshes). A coarsest refining
mesh of an n-tame stratification (Z, f) is an n-mesh M refining (Z, f), such
that for any other n-mesh N refining (Z, f), the mesh N also refines the
mesh M .

Of course, if a tame stratification has a coarsest refining mesh, it has a unique
coarsest refining mesh. The fact that coarsest refining meshes always exist is
a fundamental and indispensable feature of the theory of tame stratifications.

Theorem 5.2.23 (Canonical meshes of tame stratifications). Every n-
tame stratification has a coarsest refining n-mesh.

Proof. Given any two n-meshes M and N , both refining the n-tame
stratification (Z, f), the mesh join M ∨N (provided by Key Lemma 5.2.13)
is another n-mesh refining (Z, f), and M ∨N coarsens both M and N . Since
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meshes are finite stratifications, any chain of mesh coarsenings must terminate.
That termination is necessarily a coarsening of every mesh refining the tame
stratification, providing a (unique) coarsest refining mesh, as required. □

Illustrative examples of such coarsest refining meshes of tame stratifications
will be given later in Figure 5.16, Figure 5.18, and Figure 5.20.

As one may expect, coarsest refining meshes are compatible with framed
stratified homeomorphisms of tame stratifications, in the following sense.
Recall from Observation 4.1.88 that mesh isomorphisms F :M ∼= N determine
and are determined by framed stratified homeomorphisms Fn : (Mn, fn) ∼=
(Nn, gn).

Observation 5.2.24 (Transporting meshes along homeomorphisms).
Given a mesh M with support Z, and a framed homeomorphism F : Z →W ,
there is a ‘pushforward mesh’ F∗M with support W , such that there is an
n-mesh isomorphism M ∼= F∗M with top compontent having support map
F : Z →W .

Conversely, given a mesh N with support W , there is a ‘pullback mesh’
F ∗N with support Z, such that there is an n-mesh isomorphism F ∗N ∼= N
with top component again having support map F : Z →W .

Proposition 5.2.25 (Framed stratified homeomorphisms preserve coars-
est refining meshes). Let (Z, f) and (W, g) be n-tame stratifications with
coarsest refining meshes M and N , respectively. Any framed stratified home-
omorphism F : f ∼= g induces an n-mesh isomorphism F :M → N between
the coarsest refining meshes.

Proof. Since F is a framed stratified homeomorphism from the stratifi-
cation f to the stratification g, the pushforward mesh F∗M refines g. Thus
the mesh F∗M refines the coarsest refining mesh N . If F∗M were strictly finer
than N (i.e. the identity is a nontrivial coarsening F∗M → N), then pulling
back along F would yield a nontrivial coarsening M = F ∗(F∗M) → F ∗N .
But M is already the coarsest refining mesh. Thus F∗M = N and so F is a
mesh isomorphism M ∼= N , as required. □

5.2.2.2. Minimal coarsest refining meshes of tame embeddings.
The notion of coarsest refining meshes of tame stratifications has an analog
for tame embeddings. However, defining that analog requires a bit more
care, as tame embeddings do not come with a predetermined choice of mesh
support.

Once we fix a tame open neighborhood of a tame embedding, there is
certainly a canonical coarse mesh, as follows.

Remark 5.2.26 (Canonical meshes of tame embeddings with neighbor-
hoods). Given an n-tame embedding ι : (W, g) ↪→ Rn, with a chosen tame
open neighborhood Z, there is a canonical refining open n-mesh with support
Z. Specifically, let (Z, g+) denote the stratification consisting of the strata of
ι(W, g) and the connected components of the complement Z \ ι(W ). Note
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that (Z, g+) is tame; the desired refining mesh is the coarsest refining mesh
of the stratification (Z, g+).

The preceding construction depends on a choice of tame neighborhood.
We can avoid that dependency by considering meshes that both cannot be
coarsened and also are minimal, in the following sense.

Terminology 5.2.27 (Refining embeddings by meshes). Given an n-
tame embedding ι : (W, g) ↪→ Rn, we say an open n-mesh M ‘refines the
embedding’ ι if each stratum in ι(W, g) is a union of strata of (Mn, fn). We
will write and draw this refinment as M → ι or M → ι(W, g), as an analog
of the coarsening of stratifications.

Definition 5.2.28 (Minimal coarsest refining meshes). For a tame em-
bedding ι, a minimal coarsest refining mesh is an open mesh M refining
the embedding ι, such that

(1) the mesh M cannot be strictly coarsened to another mesh refining
the embedding, and

(2) the mesh M contains no proper constructible substratification, which
is itself an open mesh refining the embedding.

Example 5.2.29 (Minimal coarsest refining mesh). In Figure 5.15, we
depict a tame embedding and a number of meshes refining stratified neigh-
borhoods of that embedding. The embedding is of an X crossing, with closed
upper endpoints and open lower endpoints, into R2, with a single stratum.
Mesh (a) refines a stratified neighborhood of the embedding, but is not an
open mesh and therefore not a refinement of the embedding per se. Mesh
(b) can be coarsened to another refining mesh, though it contains no proper
constructible substratification that is an open mesh refining the embedding.
Mesh (c) cannot be coarsened to another refining mesh, but it does contain
a proper constructible substratification that is an open mesh refining the
embedding. Mesh (d) is finally a minimal coarsest refining mesh.
Further examples of minimal coarsest refining meshes are given later, on the
left of Figure 5.17, in Figure 5.19, and in Figure 5.21.

Notice that coarsest refining meshes and minimal coarsest refining meshes
are defined rather differently: the former via the universal property of being
the coarsest, the latter via the property of being both uncoarsenable and
unshrinkable. As a result, the proof of the existence of these structures,
though based on similar ideas, has a superficially different structure.

Theorem 5.2.30 (Canonical meshes of tame embeddings). Every n-
tame embedding has a unique (up to n-mesh isomorphism) minimal coarsest
refining n-mesh.

Proof recipe. Existence is straightforward: given any refining mesh,
repeatedly either strictly coarsen it to another refining mesh or take a proper
constructible substratification that is an open refining mesh; as the stratifica-
tions are finite, this process must terminate in a minimal coarsest refining
mesh. It remains to show the minimal coarsest refining mesh is unique.
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Figure 5.15. Refining meshes and a minimal coarsest refin-
ing mesh.

First, given the tame embedding ι : (W, g) ↪→ Rn, construct a ‘projected’
(n − 1)-tame embedding ιn−1 : (Wn−1, gn−1) ↪→ Rn−1, with Wn−1 := πn ◦
ι(W ) ⊂ Rn−1, as follows. Pick any tame open neighborhood Z of ι(W ),
and consider the canonical refining mesh M . (In fact, any other refining
mesh would also suffice.) Define a filtration X0 ⊂ X1 ⊂ · · · ⊂ Xn−2 ⊂
Xn−1 =Wn−1, with X◦

i := Xi \Xi−1 being an open subset of the i-skeleton
of (Mn−1, fn−1) (seen as a cell complex): inductively in decreasing i, set X◦

i
to be the maxmal open subset of Xi on which πn : ι(W, g)→Wn−1 restricts
to a stratified bundle, when stratifying X◦

i by its connected components.
Then let gn−1 be the stratification of Wn−1 induced by this filtration (as in
Remark B.1.48). (The resulting stratification gn−1 depends neither on the
choice of tame open neighborhood, nor the choice of refining mesh.)

Now pick two minimal coarsest refining meshes M and M ′ of the
tame embedding ι. Observe that the (n− 1)-truncations (Mn−1, fn−1) and
(M ′

n−1, f
′
n−1) are minimal coarsest refining meshes of ιn−1. By induction,

there is an (n− 1)-mesh isomorphism Fn−1 : (Mn−1, fn−1) ∼= (M ′
n−1, f

′
n−1),

thus in particular an isomorphism of the corresponding fundamental trusses.
Further inductively claim and assume that identified strata coincide pointwise,
except when one stratum has points outside the support of the mesh contain-
ing the other stratum. For the inductive step: note that neither (Mn, fn) nor
(M ′

n, f
′
n) can have singular strata with points outside the support of the other

mesh (since removing all such singular strata would yield a coarser refining
mesh); and singular strata in the joint support Mn ∩M ′

n must be identical
in the two meshes (otherwise construct a coarser refining mesh by taking
a mesh bundle join). That much implies the inductive claim about strata
coinciding, and shows that M and M ′ have identical fundamental trusses,
therefore are isomorphic as meshes, as required. □
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Note that, in fact, the framed stratified homeomorphism constructed in
the preceding proof, between two minimal coarsest refining meshes, can
(inductively) be chosen to completely fix all strata that pointwise coincide in
the two meshes.

Observation 5.2.31 (Minimal coarsest mesh inductive construction).
There is a more systematic construction of a minimal coarsest mesh, of a
tame embedding ι : (W, g) ↪→ Rn, as follows. First, by induction, construct a
minimal coarsest refining (n− 1)-mesh (Mn−1, fn−1) of the projected tame
embedding ιn−1 (obtained as in the preceding proof recipe). Next, refine g
(only as much as necessary) to obtain a stratified bundle g̃ → fn−1. Finally,
construct a minimal coarsest refining 1-mesh bundle g̃̃ → fn−1, that refines
the stratified bundle g̃; this extends the (n − 1)-mesh to an n-mesh and
provides the required minimal coarsest refining n-mesh of ι.

Lemma 5.2.32 (Framed stratified homeomorphisms preserve minimal
coarsest refining meshes). Let ι : (W, g) ↪→ Rn and ι′ : (W ′, g′) ↪→ Rn be n-
tame embeddings with minimal coarsest refining meshes M and N , respectively.
If there is a framed stratified homeomorphism ι ∼= ι′, then there exists an
n-mesh isomorphism M ∼= N between the minimal coarsest refining meshes.

Proof. Observe that given a tame embedding, for any tame open neigh-
borhood Z, there is a minimal coarsest refining mesh contained in Z. (By
an inductive argument, any minimal coarsest refining mesh can have its
support shrunk sufficiently, while fixing all strata entirely contained in Z.)
By definition, the framed stratified homeomorphism of tame embeddings is a
homeomorphism of tame open neighborhoods (that restricts to a stratified
homeomorphism of the embedding images); a minimal coarsest refining mesh
may be transported across that homeomorphism. The result follows from the
uniqueness assurance of Theorem 5.2.30. □

5.2.3. ♦Examples of coarsest meshes. We illustrate a range of examples
of coarsest refining meshes of tame stratifications and minimal coarsest refining
meshes of tame embeddings, in dimensions 2, 3, and 4. We see in practice how
these coarsest meshes record changes in the stratified homeomorphism type of
the fibers of the standard tower of projections, wholistically encoding all the
singularities of all strata under those projections along with the interactions
local and nonlocal of those singularities and strata.

Example 5.2.33 (Coarsest and non-coarsest refining meshes). In Fig-
ure 5.16, we depict a tame stratification, in the middle, along with two
refinements on the left and right. The right refinement coarsens to the left
refinement and is therefore not itself coarsest; the left refinment is in fact the
coarsest refining mesh.

In Figure 5.17, we similarly depict a tame embedding, in the middle,
along with two refinments on the left and right. Again the right refinment
coarsens to the left, and is therefore not minimal coarsest; the left refinment
is the minimal coarsest refining mesh.
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Figure 5.16. Refining meshes of a tame stratification.
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Figure 5.17. Refining meshes of a tame embedding.

Example 5.2.34 (Coarsest and minimal coarsest meshes in dimension
2). In Figure 5.18, we depict two 2-tame stratifications, namely a stratified
polytope (on the left) and an unstratified polytope (on the right), along with
their shared coarsest refining mesh.

In Figure 5.19, we depict two 2-tame embeddings, namely the figure eight
with a basepoint stratum (on the left) and the figure eight as a single stratum
(on the right), along with their shared minimal coarsest refining mesh.
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Figure 5.18. The coarsest refining mesh of two 2-tame strat-
ifications.

Example 5.2.35 (Coarsest meshes in dimension 3). In Figure 5.20, we
depict the coarsest refining meshes of two 3-tame stratifications. The lower
left stratification is a cylinder with a single 3-dimensional bulk stratum and
a single 1-dimensional line stratum. Notice that the line stratum has no
singularities with respect to either the projection to R2 or to R1. Nevertheless
in the coarsest refining mesh it is split into three segments, because the left
and right edges of the cylinder are singular for the projection to R2, and the
line stratum intersects those singular loci at two points.
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Figure 5.19. The minimal coarsest refining mesh of two
2-tame embeddings.

The lower right stratification is a half-closed half-open prism with two
3-dimensional bulk strata and a single 2-dimensional surface stratum. The
surface stratum has a smooth arc of singlularities of the projection to R2, and
that arc itself has a cuspidal point singularity for that projection and also at
the same point an ordinary Morse singularity for the projection to R1. The
coarsest mesh isolates the singular arc and splits it at the cusp point.
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Figure 5.20. Coarsest meshes of 3-tame stratifications.

Example 5.2.36 (Minimal coarsest meshes in dimension 3). In Fig-
ure 5.21, we depict the minimal coarsest refining meshes of two 3-tame
embeddings (both trivially stratified). The lower left embedding is a pair of
pants surface. Its minimal coarsest mesh records the seams of those pants
(singular for projection to R2) and the split of the inner seam at its central
point (singular for projection from the seam to R1).

On the lower right is the Hopf embedding of the circle, that is, an
embedding ι such that the projection π3 ◦ ι : S1 → R2 is an immersion with a
single double point. The minimal coarsest mesh records the preimages of that
double point, along with the two Morse points of the projection to R1. This
open mesh is dual to a closed mesh, which in turn corresponds to a regular
cell complex; in this sense, that regular cell complex is dual to the Hopf circle,
as illustrated and informally observed all the way back in Figure 1.56.
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Figure 5.21. Minimal coarsest meshes of 3-tame embed-
dings.

Example 5.2.37 (Coarsest meshes in dimension 4). Recall from Ex-
ample 5.1.10 the description of the two 4-tame stratifications illustrated
in Figure I.7, encoding respectively the third Reidemeister move and the
swallowtail singularity. In Figure I.8 and Figure I.9, we depicted the coarsest
refining meshes of these two stratifications. In the Reidemeister case, the
second stage of the mesh provides a concise portrait of the geometry of the
braid crossings. Similarly in the swallowtail case, the second stage of the
mesh displays the interaction of the two cusp points with the self braiding of
the fold locus.
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5.3. ♦Tractability of tame stratifications

By assumption, a tame stratification admits a refining mesh, and by
hard work, it admits a coarsest refining mesh. That mesh, together with
the amalgamation of its strata according to the tame stratification, is called
a stratified mesh. The fundamental truss of that mesh, together with the
corresponding amalgamation of its elements into posetal strata, is called
a stratified truss. Furthermore, because the refining mesh could not be
further coarsened, the resulting truss is normalized in the sense that it also
cannot be coarsened while respecting the decomposition structure of the tame
stratification. Altogether then, as long anticipated, tame stratifications are
classified by normalized stratified trusses, and tame embeddings are similarly
classified by normalized stratified trusses that are ‘ambient’ in allowing some
surrounding unstratified regions. An example of a tame embedding and its
classifying normalized ambient stratified truss is illustrated in Figure 5.22.
The embedding, on the left, is of a single-stratum open triangular surface,
arranged so that the top projection has a cuspidal singularity. The stratified
truss, on the right, encodes this cusp behavior combinatorially, with nine
singular elements of the top 2-truss slice converging, in the upper 2-truss
bordism, to the central singular element of the 3-truss.

In that depiction of the cusp embedding and its classifying truss, the
embedding has a smooth character while the truss appears rather polyhedral
(in being a piecewise-linear assemblage of linearly embedded simplices); the
claimed correspondence suggests that the smooth version is in some sense
equivalent to the piecewise-linear version. That sense is the eventual fact that
every tame embedding is framed stratified homeomorphic to an embedding
with polyhedral image, and conversely every polyhedral stratification is
the image of a tame embedding. The classification of tame embeddings
provides not only this piecewise-linearization of tame objects, but more deeply
controls tame maps between them. The headline instance of that control is
the framed Hauptvermutung : every framed stratified homemomorphism of
polyhedral stratifications is homotopic to a framed stratified piecewise-linear
homeomorphism.

Whenever a geometric structure has a finitary combinatorial classification,
one may hope that classification provides an algorithmic handle on relevant
geometric questions; and whenever one has that hope, one must cautiously
remember that many seemingly finite combinatorial problems are not algo-
rithmically decidable. Nevertheless, of course, the intrinstic constructibility
of trusses, and their stratified variations, provides the necessary leverage.
From a stratified truss, one may deterministically compute its normalization,
i.e. maximal coarsening; thus from a stratified mesh, one may compute its
coarsest coarsening; and thus finally, equivalence (that is, framed stratified
homeomorphism) of tame stratifications is computable. That computable
decidability extends beyond structures embedded in euclidean space. Recall
that n-directed acyclic graphs are framed complexes that may not embed
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in euclidean space but merely map to it, in a way that locally controls the
directed structure. In an oblique and closing counterpart to the embedded
case, equivalence (that is, framed homeomorphism) of n-directed acyclic
graphs will also prove to be decidable.

1
3

2

Figure 5.22. The cusp embedding and its normalized ambi-
ent stratified truss.

Outline. In Section 5.3.1, after recalling and introducing stratified
trusses and stratified meshes, respectively, we observe that normalized trusses
and coarsest meshes correspond via the fundamental stratified truss and
stratified mesh realization, and prove the headline classifications of tame
stratifications and of tame embeddings. In Section 5.3.2, we introduce polyhe-
dral stratifications, and show both that tame embeddings are polyhedral and
polyhedral stratifications are tame; we then discuss the failure of classical ver-
sions of the Hauptvermutung concerning homeomorphisms of polyhedra, and
prove the framed Hauptvermutung, that framed stratified homeomorphisms of
polyhedral stratifications are homotopic to framed stratified piecewise-linear
homeomorphisms. Finally, in Section 5.3.3, we prove that framed stratified
homeomorphism of tame stratifications is decidable, and in a similar vein
that framed homeomorphism of n-directed acyclic graphs is decidable.

5.3.1. ♦Combinatorializability.

Synopsis. We recall the notion of stratified trusses, as labeled trusses
whose labeling is the characteristic map of a stratification, and the notion
of normalized stratified trusses as those admitting no label-preserving truss
coarsening. We then define stratified meshes, as tame stratifications equipped
with a choice of mesh refinement. We provide a correspondence between
stratified trusses and stratified meshes, via a fundamental stratified truss
construction and a stratified mesh realization construction. We observe that
a stratified mesh has no mesh coarsening exactly when the corresponding
stratified truss is normalized, and thereby complete the proof of the classi-
fication of tame stratifications by normalized stratified trusses. Finally, we
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discuss bundles of tame stratifications and their classification by normalized
stratified truss bundles.

5.3.1.1. ♦Stratified trusses. Recall from Definition 5.1.21 that a stratified
n-truss is a poset-labeled n-truss T whose labeling lblT is the characteristic
map of a stratification on the total poset Tn.

Notation 5.3.1 (Fundamental posets and strata of stratified trusses).
To highlight that a labeled truss T = (T , lblT ) is a stratified truss, we will
usually denote the poset of labels by Π(T ), and refer to it as the ‘fundamental
poset’ of the stratified truss. The ‘strata’ of the stratified truss T are, by
definition, the connected subposets of Tn given by the preimages lbl−1

T (x),
for x ∈ Π(T ).

Example 5.3.2 (Stratified trusses). In Figure 5.23, we depict a stratified
2-truss with four strata. We indicate the labeling map lblT by coloring
preimages in the same color as their target object in the labeling poset. In
later examples, we often leave the labeling map implicit, and simply provide
the coloring of the total poset of the stratified truss.

p2 p1lblT

Π(T ) T2 T1 T0

Figure 5.23. A stratified 2-truss.

The condition on a stratified truss, that the labeling map is a characteristic
map, can be rephrased combinatorially as follows.

Terminology 5.3.3 (Quotient and connected-quotient maps). A ‘quo-
tient map’ of posets is a surjective poset map for which a subposet of the
codomain is open if and only if its preimage is open in the domain. (Recall a
subposet is open when it is downward closed.) A ‘connected-quotient map’
of posets is a quotient map of posets whose preimages are connected.

Observation 5.3.4 (Characteristic maps are connected-quotient maps).
A labeling lblT : Tn → P of a truss T in a poset P is the characteristic map
of a stratification if and only if it is a connected-quotient map. This is show
(in a slightly more general form) in Lemma B.1.39.

Remark 5.3.5 (Stratification from subposet decomposition). Given an
n-truss T , any decomposition of Tn into connected subposets determines a
stratified n-truss, with underlying truss T and with strata being the given
subposets.
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As a consequence of the preceding remark, we can construct stratified trusses
from arbitrary poset-labelings, as follows.

Construction 5.3.6 (Stratifications from poset labelings). Given any
poset-labeled truss T = (T , lblT ), there is an associated stratified truss T̃ ,
with strata being the connected components of the non-empty preimages of
the labeling lblT . (This is an example of the ‘connected component splitting’
construction, formalized in Construction B.1.44 in the broader context of
general stratifications.)

Example 5.3.7 (Truss stratifications via poset-labelings). The preceding
construction is convenient when illustrating stratified trusses: we may replace
a given characteristic map with a labeling in a smaller poset, whose connected
component splitting recovers the characteristic map; this reduces the number
of labeling colors, without any sacrifice in clarity. For instance, Figure 5.24
depicts a poset labeling of a truss, whose associated stratification is the one
previously given in Figure 5.23.

p2 p1lblT

P

0

1

2

T2 T1 T0

Figure 5.24. A stratified truss represented by a poset label-
ing.

Terminology 5.3.8 (Ambient stratified trusses). An ‘ambient stratified
n-truss’ is a stratified truss T with a chosen subset of strata A ⊂ Π(T ) called
‘ambient strata’. In illustrations of ambient stratified trusses, we typically
leave the ambient strata uncolored and indicate the corresponding poset
element by a white circle.

Note that in practice, we will be concerned exclusively with the case when
each ambient stratum is open (and the terminology is meant to suggest this),
but we do not insist on this condition.

Example 5.3.9 (An ambient stratified truss). In Figure 5.25, we depict an
ambient stratified 2-truss, utilizing both our convention for uncolored ambient
strata and for poset-labeled stratifications. There is a single ‘0-dimensional’
stratum, colored pastel purple, two ‘1-dimensional’ strata, colored pastel red,
and three ‘2-dimensional’ strata, uncolored.

The notion of maps of stratified trusses is directly inherited from the
notion of maps of labeled trusses, see Terminology 2.3.34, as follows.
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p2 p1lblT

P
T2 T1 T0

Figure 5.25. An ambient stratified 2-truss.

Definition 5.3.10 (Maps of stratified trusses). A map of stratified
n-trusses F : T → S is simply a map of labeled n-trusses; i.e. there
is an underlying map of n-trusses F : T → S and a map of labelings
lblF : Π(T )→ Π(S) such that lblF ◦ lblT = lblS ◦ Fn.

Note that a map of stratified trusses provides an actual map of stratifications
of the total posets (see Definition B.2.1).

Recall that a map of labeled n-trusses was called a coarsening (see
Terminology 2.3.65) when every constituent 1-truss bundle map is a surjective
regular map preserving endpoint types. In the specific case of stratified trusses,
we restrict the use of that term, and also distinguish two special cases, as
follows.

Terminology 5.3.11 (Coarsenings of stratified trusses). Let F : T → S
be a map of stratified n-trusses.

››››› The map F is a label coarsening if the underlying truss map F is
the identity, and the label map lblF is a connected-quotient map (see
Terminology 5.3.3).

››››› The map F is a truss coarsening if the underlying truss map F is a
coarsening of n-trusses, and the label map lblF is the identity.

››››› The map F is a coarsening if the underlying truss map F is a coarsening
of n-trusses, and the label map lblF is a connected-quotient map.

With this terminology at hand, recall from Definition 5.1.22 that a stratified
truss is normalized when it has no non-identity (label-preserving) truss
coarsening.

Remark 5.3.12 (Label coarsenings are stratified coarsenings). Note
that, when the stratified truss map (F , lblF ) : (T , lblT ) → (S, lblS) is a
label coarsening, the top component Fn = idTn of the identity truss map
F = idT induces a coarsening of stratified spaces (Tn, lblT )→ (Tn, lblS) (see
Lemma B.2.12).

Example 5.3.13 (A truss coarsening). In Figure 5.26, we depict a truss
coarsening F of stratified 2-trusses. By Terminology 5.3.11, the label map is
the identity, and is not drawn. Note that the target of this coarsening is still
not normalized.
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p2 p1

p2 p1

F2 F1 F0

Figure 5.26. A truss coarsening of stratified trusses.

Note that every coarsening can be written both as a unique composite of a
truss coarsening followed by a label coarsening, and as a unique composite of
a label coarsening followed by a truss coarsening.

Recall that truss blocks and truss braces (see Definition 2.3.73 and
Definition 2.3.100) are the local building components of closed trusses and of
open trusses, respectively. Anticipating our development of tame cells and
tame singularities as local components of tame stratifications, we introduce
the following combinatorial components of stratified trusses.

Definition 5.3.14 (Truss cells and truss singularities). An n-truss m-
cell T is a stratified n-truss m-block whose initial element ⊥ ∈ Tn is label
isolated, in the sense that lbl−1

T (lblT (⊥)) = {⊥}.
Dually, an n-truss m-singularity T is a stratified n-truss m-brace whose

terminal element ⊤ ∈ Tn is label isolated.

Example 5.3.15 (Truss singularities). In Figure 5.27, we depict a few
truss singularities. For each n-truss m-singularity, the terminal element will
later correspond to a stratum of a tame singularity of dimension m.

Dual truss cells, of each truss singularity, can be obtained by stagewise
dualizing the given posets. For each resulting n-truss (n − m)-cell, the
initial element will later correspond to a stratum of a tame cell of dimension
n−m.

5.3.1.2. ♦Stratified meshes. As a stratified truss is a truss together with
groupings of its elements into strata, a stratified mesh is a mesh together
with groupings of its cells into strata; in fact we have already encountered
that structure (viewed from the opposite perspective) as a tame stratification
together with a mesh refinement.
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2-truss 0-brace

3-truss 1-brace 3-truss 2-brace

2-truss 0-brace 2-truss 1-brace

Figure 5.27. Truss singularities.

Definition 5.3.16 (Stratified meshes). A stratified n-mesh is an n-
tame stratification (Z, f) together with a choice of refining meshM → f .

Recall that the notation M → f , for a refining mesh of a tame stratification,
is shorthand for a refinement (Mn, fn)→ (Z, f) by the top stage of the mesh.
We will typically denote a stratified mesh by the pair (M,f), leaving the
refinement implicit; this notation also suggests the interpretation that the
stratification f is a stratification ‘of the mesh M ’ in the sense that it encodes
a merging of the mesh cells into larger strata.

Definition 5.3.17 (Maps of stratified meshes). A map of stratified
n-meshes F : (M,f) → (N, g) is an n-mesh map F : M → N whose
top component Fn : (Mn, fn) → (Nn, gn) induces a map of stratifications
f → g.

Recall that a map of n-meshes was called a coarsening (see Terminol-
ogy 4.1.91) when every constituent 1-mesh bundle map is a coarsening on
every fiber. In the specific case of stratified meshes, we restrict the use of
that term, and distinguish two special cases.

Terminology 5.3.18 (Coarsenings of stratified meshes). Let F :
(M,f)→ (N, g) be a map of stratified n-meshes.

››››› The map F is a stratification coarsening if M = N , and Fn : f → g
is a coarsening of stratifications.

››››› The map F is a mesh coarsening if F : M → N is a coarsening of
n-meshes, and f = g.

››››› The map F is a coarsening if F :M → N is a coarsening of n-meshes
and Fn : f → g is a coarsening of stratifications.

Example 5.3.19 (A mesh coarsening). In Figure 5.28, we depict a mesh
coarsening of stratified 2-meshes.

Recall from Definition 5.3.14 that a truss cell is a stratified truss block
whose initial element is label isolated, and similarly a truss singularity is a
stratified truss brace whose terminal element is label isolated. The precisely
corresponding notions for stratified meshes are as follows.



5.3. ♦TRACTABILITY OF TAME STRATIFICATIONS 316

(Z, f)1

2
(N2, g2)1

2

q2 q1

(M2, f2)1

2

p2 p1

F0F1F2

Figure 5.28. A mesh coarsening of stratified meshes.

Definition 5.3.20 (Mesh cells and singularities). An n-mesh m-cell
(M,f) is a stratified n-mesh m-block, for which the refinement M → f maps
the (dense) m-dimensional stratum of Mn onto a stratum of f .

Dually, an n-mesh m-singularity (M,f) is a stratified n-mesh m-brace,
for which the refinement M → f maps the (codense) m-dimensional stratum
of Mn onto a stratum of f .

Example 5.3.21 (Mesh cells and singularities). In Figure 5.29, we depict
three stratified 2-mesh singularities (M,f). In each case, the refining mesh is
shown on top, and the tame stratification is shown on the bottom. The first
two are 2-mesh 0-singularities, while the third is a 2-mesh 1-singularity. For
each truss m-singularity, the codense stratum is of dimension m.

In Figure 5.30 we depict the dual stratified 2-mesh cells. The first two
are 2-mesh 2-cells, and the third is a 2-mesh 1-cell. Naturally, the dense cell
of each mesh m-cell is of dimension m.

5.3.1.3. ♦Correspondence of stratified trusses and stratified meshes.
Based of course on the equivalence between bare trusses and meshes, we now
describe the correspondence between stratified trusses and stratified meshes.

In one direction, to pass from stratified meshes to stratified trusses, we
may take the fundamental stratified truss, as follows.

Definition 5.3.22 (Fundamental stratified trusses). Given a stratified
n-mesh (M,f), the fundamental stratified truss ΠT(M,f) is the stratified
n-truss (ΠTM,Πlbl(M,f)), whose underlying truss is the fundamental truss
ΠTM of the mesh M , and whose labeling Πlbl(M,f) is the fundamental poset
map Π(fn → f) of the coarsening of stratifications fn → f .

Example 5.3.23 (A stratified mesh and its fundamental stratified truss).
Recall the stratified mesh in the top row of Figure 5.28. The fundamental
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Figure 5.29. Mesh singularities.
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Figure 5.30. Mesh cells.

stratified truss of that stratified mesh is the stratified truss in the top row of
Figure 5.26.

Definition 5.3.24 (Fundamental stratified truss maps). Given a map of
stratified meshes F : (M,f)→ (N, g), the fundamental stratified truss
map ΠTF : ΠT(M,f) → ΠT(N, g) is the map of stratified trusses whose
underlying map of trusses is the fundamental truss map ΠT(F : M → N),
and whose labeling map is the fundamental poset map Π(Fn : f → g).

Example 5.3.25 (A mesh coarsening and its fundamental stratified truss
coarsening). The fundamental stratified truss map of the mesh coarsening in
Figure 5.28 is the truss coarsening in Figure 5.26.

In the other direction, to pass from stratified trusses to stratified meshes,
we may take the stratified mesh realization, as follows. We will make use of
the fact that stratified coarsenings of a given stratification are determined by
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connected-quotient maps of the fundamental poset of the stratification (see
Lemma B.2.12).

Definition 5.3.26 (Stratified mesh realizations). Given a stratified n-
truss T = (T , lblT ), the stratified mesh realization ∥T∥M is the stratified
n-mesh (∥T∥M, ∥T∥str), whose underlying mesh is the mesh realization ∥T∥M
of the truss T , and whose stratification ∥T∥str is determined by coarsening
the stratification (∥T∥M)n according to the fundamental poset map Π(lblT )
of the labeling of the stratified truss.

Definition 5.3.27 (Stratified mesh map realizations). Given a map
F = (F , lblF ) : T → S of stratified trusses T = (T , lblT ) and S = (S, lblS),
the stratified mesh map realization ∥F∥M : ∥T∥M → ∥S∥M is the map
of stratified meshes given by the mesh map realization ∥F∥M : ∥T∥M →
∥S∥M.

Note that the top component of the stratified mesh map realization indeed
induces a stratified map (∥F∥M)n : ∥T∥str → ∥S∥str, as required.

The equivalence of meshes and trusses (see Section 4.2) implies that
the fundamental stratified truss and stratified mesh realization provide an
equivalence in the stratified case, in the following sense.

Proposition 5.3.28 (Correspondence of stratified meshes and trusses).
Let T be a stratified truss, and let (M,f) be a stratified mesh.

(1) There is a unique isomorphism of stratified trusses T ∼= ΠT(∥T∥M).
(2) There is an isomorphism of stratified meshes (M,f) ∼= ∥ΠT(M,f)∥M,

which is unique up to contractible choice of homotopy.

Proof. The first claim follows since there is a unique isomorphism of
trusses T ∼= ΠT∥T∥M, and since (suppressing that isomorphism) an equality
of labelings Πlbl(∥T∥str) = lblT . The second claim follows since there is
a mesh isomorphism M ∼= ∥ΠTM∥M, unique up to contractible choice of
homotopy by the balanced case of weak faithfulness of the fundamental truss
(see Proposition 4.2.40 and Remark 4.2.41), and that isomorphism induces a
stratified homeomorphism f ∼= ∥ΠT(M,f)∥str. □

Remark 5.3.29 (Correspondence of stratified mesh and truss maps). The
fundamental stratified truss and stratified mesh realization also provide a
mutual inverse correspondence in the case of maps of stratified meshes and
stratified trusses (up to contractible choice of homotopy on the stratified
mesh map side).

Recall that the mesh realization of a truss coarsening need not be a
coarsening, and that necessitated Construction 4.2.78 of a special mesh
coarsening realization for truss coarsenings. The realization of stratified truss
coarsenings requires corresponding care, as follows.

Definition 5.3.30 (Stratified mesh coarsening realization). Given a
coarsening of stratified trusses F : T → S, the stratified mesh coarsening
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realization ∥F∥crsM : ∥T∥M → ∥S∥M is the map of stratified meshes given by
the mesh coarsening realization ∥F∥crsM : ∥T∥M → ∥S∥M.

Note that the top component of the stratified mesh coarsening realization
does induce a stratified map (∥F∥crsM )n : ∥T∥str → ∥S∥str, as required.

Observation 5.3.31 (Correspondence of coarsening notions). Given a
coarsening, or a mesh coarsening, or a stratification coarsening F : (M,f)→
(N, g) of stratified meshes, then the fundamental stratified truss map ΠT(F ) :
ΠT(M,f)→ ΠT(N, g) is, respectively, a coarsening, or a truss coarsening, or
a label coarsening of stratified trusses.

Conversely, given a coarsening, or a truss coarsening, or a label coarsening
F : T → S of stratified trusses, then the stratified mesh coarsening realization
∥F∥crsM : ∥T∥M → ∥S∥M is, respectively, a coarsening, or a mesh coarsening,
or a stratification coarsening of stratified meshes.

5.3.1.4. ♦Normalization and coarsest refinements. Recall that by
Definition 5.2.22, a coarsest refining mesh of a tame stratification is one
that is coarser than any other refining mesh, and of course in practice any
refining mesh that cannot be coarsened is a coarsest refining mesh. We
can rephrase this notion in terms of stratified meshes as follows: a coarsest
refining mesh M of a tame stratification f is a stratified mesh (M,f) that
admits no non-identity (stratification-preserving) mesh coarsening. That
rephrasing has an immediate combinatorial correlate, already presented in
Definition 5.1.22: a normalized stratified truss is a stratified truss (T , lblT )
that admits no non-identity (label-preserving) truss coarsening.

The correspondence of stratified meshes and trusses thus specializes as
follows.

Lemma 5.3.32 (Relating coarsest refinements and normalization). Con-
sider a stratifed mesh (M,f) and a stratified truss T , such that T is the
stratified fundamental truss of (M,f), or equivalently (M,f) is the stratified
mesh realization of T . The mesh M is the coarsest refining mesh of the
stratification f if and only if the stratified truss T is normalized.

Proof. By Observation 5.3.31, any mesh coarsening provides (on the
fundamental stratified truss) a truss coarsening, and any truss coarsening
provides (on the stratified mesh realization) a mesh coarsening; thus the
stratified mesh cannot be mesh coarsened exactly when the stratified truss
cannot be truss coarsened. □

This lemma provides the last ingredient for the proof of the classification
of tame stratifications by normalized stratified trusses.

Proof of Theorem 5.1.23. Given a tame stratification (Z, f), we may
take its coarsest refining mesh M (by Theorem 5.2.23). Changing the tame
stratification by a framed stratified homeomorphism only changes the coars-
est refining mesh by a mesh isomorphism (by Proposition 5.2.25). Next
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form the fundamental stratified truss ΠT(M,f); that truss is normalized, by
Lemma 5.3.32.

Conversely, given a normalized stratified truss T , we take its stratified
mesh realization ∥T∥M = (∥T∥M, ∥T∥str), and so have in particular the
corresponding tame stratification ∥T∥str. Changing the stratified truss by
a balanced isomorphism only changes the tame stratification by a framed
stratified homeomorphism. Note that the mesh ∥T∥M is a coarsest refining
mesh of ∥T∥str, again by Lemma 5.3.32.

These two associations are mutually inverse, as required, by Proposi-
tion 5.3.28. □

We may now state and prove the analogous classification for tame em-
beddings.

Theorem 5.3.33 (Classification of tame embeddings). Framed stratified
homeomorphism classes of n-tame embeddings are in correspondence with
isomorphism classes of normalized ambient stratified open n-trusses.

Proof. The proof is anlogous to that of Theorem 5.1.23, but uses the
minimal coarsest refining mesh instead of the coarsest refining mesh; the strata
of the mesh that are not in the image of the embedding are considered ambient,
and become the ambient strata of the fundamental stratified truss. □

Example 5.3.34 (Classifying 2-tame stratifications and embeddings).
In Figure 5.31, we illustrate the classification of tame stratifications and
embeddings in dimension 2. The first case depicts a 2-tame stratification
and its corresponding normalized stratified truss. The second and third
cases depict 2-tame embeddings and their corresponding normalized ambient
stratified open trusses.

Example 5.3.35 (Classifying 3-tame stratifications). In Figure 5.32, we
depict a 3-tame stratification and its classifying normalized stratified 3-truss.
The 3-mesh corresponding to the underlying unstratified 3-truss was shown
in Figure 4.1.

Example 5.3.36 (Classifying 3-tame embeddings). In Figure 5.33, we
depict a 3-tame embedding (namely the braid isotopy) and its classifying nor-
malized ambient stratified truss. The 3-mesh corresponding to the underlying
unstratified 3-truss was shown on the left in Figure 4.16.

Earlier, in Figure 5.22, we depicted another 3-tame embedding (namely
the cusp singularity) and its classifying normalized ambient stratified 3-truss.
The 3-mesh corresponding to the underlying unstratified 3-truss was shown
earlier in Figure 4.15.

5.3.1.5. ♦Tame stratified bundles. We next discuss the combinatorial
classification of bundles of tame stratifications.
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Figure 5.31. Normalized stratified trusses classifying 2-tame
stratifications and embeddings.

Recall that a stratified bundle is a stratified map that is a locally trivial
bundle within each base stratum. We will need the following fiberwise framed
version of that notion.

Terminology 5.3.37 (Framed stratified bundles). Consider a stratified
map q : (Z, f)→ (B, g) with a realization (i.e. a base-preserving embedding)
into the trivial bundle B × Rn → B. The map q is a ‘framed stratified
bundle’ if for each stratum s of the base g and for each point x ∈ s there
is an open neighborhood x ∈ U ⊂ s, and a stratification (F ⊂ Rn, h), such
that the restriction (q−1(U), f) → U is framed bundle isomorphic (i.e. the
bundle isomorphism is a fiberwise framed map) to the trivial bundle with
fiber (F, h).

Of course any framed stratified bundle is, in particular, a stratified bundle. It
will be convenient, and without conceptual consequence, to restrict attention
to the case where the realizing map is a subspace inclusion, i.e. to assume
Z ⊂ B × Rn.

Definition 5.3.38 (Tame stratified bundles). Let (B, g) be a stratifica-
tion, together with a cellulation (B, c). An n-tame stratified bundle over
the base cellulation c→ g is a framed stratified bundle q : (Z, f)→ (B, g),



5.3. ♦TRACTABILITY OF TAME STRATIFICATIONS 322

(Z, f)
1

3

2

p3

p3

Figure 5.32. The normalized stratified truss of a 3-tame
stratification.
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Figure 5.33. The normalized ambient stratified truss of the
braid.

for which there exists an n-mesh bundle over the cellulated base (B, c), which
refines the total stratification of the bundle. (That is, there is an n-mesh
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bundle M with support γ(M) = Z, whose realization γ : (Mn, fn)→ (Z, f)
is a coarsening.)

Assuming the base (B, g) is sufficiently nice (so in particular cellulable), the
proofs of Theorem 5.2.23 and Proposition 5.2.25 concerning coarsest meshes
carry over (using Lemma 5.2.19 in place of Key Lemma 5.2.13) to the case of
coarsest mesh bundles. That generalization yields the following result.

Theorem 5.3.39 (Coarsest refining mesh bundles). For a sufficiently nice
base stratification (B, g) with a fixed cellulation (B, c), every tame stratified
bundle (Z, f) over the cellulation c→ g has a unique coarsest refining mesh
bundle over the cellulated base (B, c). Moreover, every stratified bundle
homeomorphism of tame stratified bundles preserves this coarsest refining
mesh bundle. □

We now consider the combinatorial counterpart of tame stratified bundles
with their coarsest refining mesh bundles. Recall that we defined a stratified
truss to be simply a labeled truss, and a normalized stratified truss to be
one that admits no label-preserving truss coarsening. In the bundle case, we
must adopt a different formulation, to account for the combinatorial analog
of the base cellulation, as follows.

Definition 5.3.40 (Normalized labeled truss bundles). A labeled n-truss
bundle p is normalized if any label-preserving and base-preserving truss
bundle coarsening (of p) is the identity.

Definition 5.3.41 (Stratified n-truss bundles). Let P be a poset, together
with a connected quotient map of posets ϕ : Q→ P . A stratified n-truss
bundle over the poset quotient Q → P is a labeled n-truss bundle p over
the poset Q, whose labeling lblp is a connected-quotient map, such that for
each preimage U := ϕ−1(x ∈ P ) ⊂ Q, the restricted bundle p|U normalizes
to a constant labeled truss bundle.

For a sufficiently nice base stratification (B, g), together with a cellulation
(B, c), we can thus consider stratified truss bundles over the fundamental
poset quotient Πc→ Πg.

The classification of tame bundles can now proceed as follows.

Theorem 5.3.42 (Classification of tame stratified bundles). Let (B, g)
be a sufficiently nice stratification, together with a cellulation (B, c). Framed
stratified bundle homeomorphism classes of n-tame stratified bundles over the
cellulation c → g are in correspondence with base-preserving isomorphism
classes of normalized stratified n-truss bundles over the fundamental poset
quotient Πc→ Πg.

Proof. The proof is analogous to that of Theorem 5.1.23, using now
the fundamental truss bundle construction and the mesh bundle realization
construction: from a tame stratified bundle, take the coarsest refining mesh
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bundle, and form its fundamental truss bundle together with the evident
stratification; from a normalized stratified truss bundle, take its mesh bundle
realization together with again the evident stratification. □

Remark 5.3.43 (Tame bundle embeddings). As we have generalized tame
stratifications to the bundle case, we may generalize tame embeddings to the
bundle case, as follows. A ‘tame bundle embedding’ of a stratified bundle
q : (W,h)→ (B, g) is an embedding ι :W ↪→ B ×Rn, whose stratified image
extends (constructibly) to an open neighborhood stratification that is a tame
stratified bundle.

The classification of tame embeddings generalizes accordingly: minimal
coarsest refining mesh bundles always exist, and as a consequence tame bundle
embeddings (over cellulated bases) are classified (up to framed stratified
bundle isomorphism) by normalized ambient stratified truss bundles (over the
corresponding fundamental poset quotient) (up to bundle isomorphism).

Example 5.3.44 (Classification of tame stratified bundles and tame
bundle embeddings). In Figure 5.34, on the left we depict a 1-tame stratified
bundle (Z, f) over a stratified circle (B, g) with cellulation (B, c), and a
1-tame bundle embedding ι of a stratified bundle (W,h)→ (B, g). On the
right, we depict the corresponding normalized stratified 1-truss bundle and
normalized ambient stratified 1-truss bundle, respectively.

(Z, f)

B × R

(M1, f1)

(B, g)(B, c) (B, g) Π(g)Π(c)

ι(W,h)

Π(g)Π(c)

Figure 5.34. Tame stratified bundles and tame bundle em-
beddings with their corresponding normalized stratified truss
bundles.

5.3.2. ♦Polyhedrality.

Synopsis. We introduce polyhedral stratifications as the constructible
substratifications of coarsenings of simplicial stratifications of polyhedra; we
then prove that any closed or open tame stratification is framed stratified
homeomorphic to a polyhedral stratification, that any tame embedding is
framed stratified homeomorphic to a tame embedding whose image is a poly-
hedral stratification, and that any polyhedral stratification is the image of
a tame embedding. We recall the failure of the classical Hauptvermutung,
that any homeomorphism is homotopic to a piecewise-linear homeomorphism,
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and similarly of the ambient Hauptvermutung, and then prove by contrast
the framed stratified Hauptvermutung, that any framed stratified homeo-
morphism of polyhedral stratifications is homotopic to a piecewise-linear
homeomorphism.

5.3.2.1. ♦Tameness and polyhedral stratifications. As a first appli-
cation of the combinatorializability of tame stratifications, we will now see
that (closed or open) tame stratifications are polyhedral, in the sense of
being constructible substratifications of coarsenings of linear realizations
of simplicial complexes, and conversely polyhedral stratifications are tame
embeddings.

Terminology 5.3.45 (Linear realizations and polyhedra). A ‘linear
realization’ of a finite simplicial complex K is an embedding ι : |K| ↪→ Rn

that is linear on each simplex. The image ι(|K|) ⊂ Rn of a linear realization
is called a ‘polyhedron’ (see [RS72, Defn. 1.1]).

Henceforth we assume all simplicial complexes are finite, without comment.
For convenience, we often suppress the embedding ι of a linear realization,
and informally consider the complex as being a subspace of euclidean space.

Note that given a linear realization of a complex, its image has a stratifi-
cation by the open simplices of the complex; we refer to that as a ‘simplicial
stratification’ of the polyhedron. By a ‘compact polyhedral stratification’ we
will mean any coarsening of a simplicial stratification of a polyhedron. More
generally, we may take constructible substratifications of compact polyhedral
stratifications, as follows.

Definition 5.3.46 (Polyhedral stratifications). A polyhedral strati-
fication is a stratification (Z, f) of a euclidean subspace Z ⊂ Rn, that is a
constructible substratification of a coarsening of a simplicial stratification of
a polyhedron.

Note that, though a polyhedron is always compact, the support Z of a
polyhedral stratification may certainly be non-compact.

As a corollary of the combinatorializability of tame stratifications, we
may now prove that both closed and open tame stratifications are framed
stratified homeomorphic to polyhedral stratifications.

Proof of Corollary 5.1.25. Given a closed tame stratification
(Z, f), consider its coarsest refining mesh M . By the proof of Theorem 5.1.23,
this tame stratification is framed stratified homemorphic to the stratified
mesh realization ∥ΠT(M,f)∥str of the stratified fundamental truss ΠT(M,f).
That realization is a compact polyhedral stratification by construction (see
Construction 4.2.47 and Definition 5.3.26).

Given instead an open tame stratification (Z, f), consider again the
coarsest refining mesh M and stratified fundamental truss ΠT(M,f) =
(ΠTM,Πlbl(M,f)). Extend the stratification Πlbl(M,f) : Π(fn) → Πf to
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a stratification (Πlbl(M,f))+ : (ΠTM)n → (Πf)+ on the cubical compactifi-
cation ΠTM , which restricts to the given stratification on Π(fn) and merges
the complement (ΠTM)n\Π(fn) into a single new stratum. The original
tame stratification is framed stratified homeomorphic to the realization
∥ΠT(M,f)∥str, which is a constructible substratification of the compact poly-
hedral stratification ∥(ΠTM, (Πlbl(M,f))+)∥str, as required (see Construc-
tion 4.2.52 and again Definition 5.3.26). □

Having addressed the polyhedrality of closed and open tame stratifications,
we may consider more generally the polyhedrality of tame embeddings. Recall
that the tameness of a tame embedding is controled by the existence of a
tame open neighborhood, i.e. an open tame stratification having the stratified
embedding as a constructible substratification. In particular, the natural
equivalence relation on tame embeddings is framed stratified homeomorphism,
which by definition (see Terminology 5.1.16 and Terminology 5.1.17) is a
framed map of tame open neighborhoods that is a homeomorphism and
restricts to a stratified homeomorphism of the embeddings. With that notion
in mind, we may formulate the desired polyhedrality statement.

Proposition 5.3.47 (Tame embeddings are polyhedral). Any tame em-
bedding is framed stratified homeomorphic to a tame embedding whose stratified
image is a polyhedral stratification.

Proof. Given a tame embedding ι of the stratified space (W, g), pick
a tame open neighborhood Z of the embedding and a tame stratification
(Z, f) of that neighborhood (which by definition has the image ι(W, g) as
a constructible substratification). By Corollary 5.1.25, there is a framed
stratified homeomorphism F : (Z, f) ∼= (Z ′, f ′) to a polyhedral stratifica-
tion; the composite F ◦ ι is the desired tame embedding, framed stratified
homeomorphic to the embedding ι and having polyhedral image. □

We now show conversely that every polyhedral stratification is the image
of a tame embedding. We will use the following observation and construction.

Observation 5.3.48 (Image refinements). Let K be a finite simplicial
complex, and F : |K| → Rn a (not-necessarily injective) simplex-wise linear
map. There exists a simplicial complex L (considered as a subspace of Rn)
such that im(F ) = |L|, and, for each simplex x ∈ K, the image F (|x|) is
a union of simplices |y|, with y ∈ L (see [RS72, Thm. 2.15]). We call the
simplicial complex L an ‘image refinement’ of the map F .

Construction 5.3.49 (Refining meshes of linearly realized complexes).
Let K be a simplicial complex with a linear realization ι : |K| ↪→ Rn. We
will construct an open n-mesh M that refines the realization in the sense
of Terminology 5.2.27. For brevity, we will let the realization embedding ι
be implicit, consider the complex as a subspace of euclidean space, suppress
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the geometric realization from our notation, and refer to the mesh simply as
‘refining the complex’ K.

Using Observation 5.3.48, take an image refinement L for the projection
πn : K → Rn−1. By induction, construct an (n− 1)-mesh M<n that refines
L. Next, refine the complex K to a stratification K̃ such that πn : K̃ →
(Mn−1, fn−1) is a stratified bundle. (Specifically, take K̃ to be the refinement
of K whose strata are the connected components of the spaces π−1

n (s)∩ r, for
s and r being the strata of fn−1 and K respectively.) Extend the stratification
K̃ to an open 1-mesh bundle pn : (Mn, fn)→ (Mn−1, fn−1) such that K̃ ↪→
(Mn, fn) is a constructible substratification. Augmenting M<n with the
bundle pn provides the required mesh M refining the complex K.

Example 5.3.50 (Mesh refinements of linear complexes). In Figure 5.35,
we depict the inductive procedure, given in the previous construction, for
producing a mesh refinement of a linearly realized simplicial complex. Specif-
ically, on the top left is a realized simplicial complex K, which projects to a
complex π3K refined by the complex L in the lower left. That complex in
turn has the mesh refinement shown in the lower right. In the upper right,
we do not draw the whole stratification (M3, f3) but just the fibers of the
1-mesh bundle (M3, f3) → (M2, f2) over the point strata of f2, along with
the constructible substratification K̃.

1

1

3
2

1

3
2

2

π3 p3

K̃

1

2

L

K

(M2, f2)

fibers in
(M3, f3)

Figure 5.35. Inductive construction of mesh refinements for
polyhedral stratifications.

We can now record the proof that every polyhedral stratification is the
image of a tame embedding.

Proof of Proposition 5.1.26. Let (Z, f) be a compact polyhedral
stratification. Let K be a linearly realized simplicial complex whose simplicial
stratification coarsens to the stratification (Z, f). By Construction 5.3.49,
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there is a stratification K̃ refining the simplicial stratification K, and an
open n-mesh M = {(Mi, fi)} having K̃ as a constructible substratification.
(That is just another way to say that the mesh refines the complex, in
the sense that every stratum of the complex is a union of mesh strata.)
Consider the composite coarsening K̃ → K → f and the closed constructible
substratification K̃ ↪→ fn. The pushout of f ← K̃ ↪→ fn is a stratification g
with a coarsening fn → g and a constructible substratification f ↪→ g. By
construction, the stratification g is tame, and so f is a tame embedding,
as desired. Finally, when (Z, f) is a non-necessarily compact polyhedral
stratification, then by definition it is a constructible substratification of a
compact polyhedral stratification, and is therefore also a tame embedding. □

The above relationship between tame and polyhedral stratifications makes,
of course, crucial use of the linear structure of mesh realizations of trusses.
For later use we record the following terminology and observation concerning
that linear structure.

Terminology 5.3.51 (Linear meshes). A meshM is called ‘linear’ if there
is a mesh isomorphism ∥ΠTM∥M ∼=M that is linear on each open simplex of
the mesh realization ∥ΠTM∥M of the fundamental truss ΠTM .

Observation 5.3.52 (Linear refining meshes of linearly realized com-
plexes). Every linearly realized simplicial complex (and thus every polyhedral
stratification) has a linear refining n-mesh (again in the sense of Terminol-
ogy 5.2.27). This follows by the method of Construction 5.3.49, by inductively
choosing the (n− 1)-mesh M<n to be linear, and then choosing the 1-mesh
bundle pn such that the augmented n-mesh M is again linear.

5.3.2.2. ♦The framed Hauptvermutung. As a second application of
the combinatorializability of tame stratifications, we will now prove that
every framed stratified homeomorphism is homotopic to a piecewise-linear
framed stratified homeomorphism, which is to say we prove a framed stratified
Hauptvermutung.

We begin with a recollection of the classical Hauptvermutung (see, for
example, [RCS+96]).

Disproven Conjecture 5.3.53 (Hauptvermutung). Any homeomor-
phism between polyhedra is homotopic to a piecewise-linear homeomorphism.

A concise counterexample is the following: the double suspension of the
Poincaré homology sphere is homeomorphic to the 5-sphere but not piecewise-
linearly homeomorphic to it.

This polyhedral Hauptvermutung was the most quixotic and famous effort
to exert some combinatorial control over general topological phenomena. Its
failure was ensured by the intrinsic ‘wildness’ of some topological homeo-
morphisms and of some topological spaces themselves: not only are there
homeomorphisms of polyhedra not homotopic to PL homeomorphisms, but
there are homeomorphic polyhedra that are not PL homeomorphic at all.
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Restricting to manifolds could not salvage matters; the manifold Hauptver-
mutung fails similarly: there are homeomorphisms of PL manifolds that
are not homotopic to PL homeomorphisms, and even homeomorphic PL
manifolds that are not PL homeomorphic at all. Yet worse, the combina-
torial triangulation conjecture fails: there are closed topological manifolds
that admit no PL structure whatsoever, i.e. are not homeomorphic to any
PL manifold. And in the terminal collapse of even the weakest fantasy of
topological combinatorializability, the simplicial triangulation conjecture also
fails: there are closed topological manifolds that admit no triangulation, i.e.
are not homeomorphic to any simplicial complex.

What one does with this succession of dashed dreams is a matter of
penchant and perspective. One can dismiss the wildness, retreating to
consideration of smooth or piecewise-linear manifolds; one can embrace
the wildness, classifying topological manifolds as such; or, in contrarian
fashion, one can excise the wild phenomena and hope the remaining topologie
modérée is sufficiently general, sufficiently computable, and, ideally, entirely
combinatorial. Of course we take this third, tame path; and of course we
take tameness to be of the sort provided by a (tame) framed stratification.

We will presently be giving the proof of the framed stratified Hauptver-
mutung, i.e. that any framed stratified homeomorphism between polyhedral
stratifications is homotopic to a framed stratified piecewise-linear homeo-
morphism. Recall that a polyhedral stratification is in particular a tame
embedding, and a framed stratified homeomorphism of a tame embedding is,
by definition, a framed stratified homeomorphism of a tame open neighbor-
hood. In that sense, the framed stratified Hauptvermutung is implicitly a
statement about ambient homeomorphisms, i.e. homeomorphisms of open
neighborhoods in euclidean space. One might worry that the failure of the
classical Hauptvermutung and success of the framed Hauptvermutung is
actually due, not to the framing, but to the ambient nature of the latter
claim. That is not the case; we record the classical ambient Hauptvermutung
as follows.

Disproven Conjecture 5.3.54 (Ambient Hauptvermutung). Any am-
bient homeomorphism between polyhedra is ambient homotopic to a piecewise-
linear ambient homemorphism.

A counterexample here is more involved, and may be obtained as follows.36
Take two PL 5-manifolds that are homeomorphic to the 5-torus but not
PL homeomorphic to one another; embed them locally flatly in R10, and
then include into R12; those embeddings are (compactly supported) ambient
isotopic and in particular ambient homeomorphic; but of course they are not
even PL homeomorphic much less PL ambient homeomorphic.

Of course, that statement is a special case of the corresponding stratified
statement, whose failure follows immediately.

36We are grateful to Mark Powell for outlining this example for us.



5.3. ♦TRACTABILITY OF TAME STRATIFICATIONS 330

Disproven Conjecture 5.3.55 (Ambient stratified Hauptvermutung).
Any ambient stratified homeomorphism between polyhedral stratifications is
ambient stratified homotopic to an ambient stratified piecewise-linear homeo-
morphism.

We record this stratified version explicitly for comparison: the framed
Hauptvermutung is obtained by adding ‘framed’ before ‘stratified’ and re-
moving ‘ambient’ simply as implicit. Having perambulated sufficiently, we
now established the framed result.

Proof of Theorem 5.1.27. Let (Z, f) and (W, g) be polyhedral strat-
ifications, and let F : (Z, f) ∼= (W, g) be a framed stratified homeomorphism
(of tame embeddings) between them. By definition, the framed stratified
homoemorphism F is given, for some tame open neighborhoods Ũ ⊃ Z and
Ṽ ⊃ W , by a framed map Ũ ∼= Ṽ that is a homeomorphism and restricts
to a stratified homemorphism f ∼= g. Shrink the tame open neighborhood
Ũ to U ⊂ Ũ , so that there is a minimal coarsest refining mesh Qf of the
tame embedding (Z, f) with support U . Note that the image Qg := FQf

is a minimal coarsest refining mesh of the embedding (W, g) with support
V := FU ⊂ Ṽ .

By Observation 5.3.52 and the method of Construction 5.3.49, we may
construct a linear open n-mesh M that refines the polyhedral stratification
(Z, f) and has support U , and similarly linear mesh N refining (W, g) with
support V . Consider the fundamental trusses T := ΠTM and S := ΠTN ,
and pick mesh isomorphisms ∥T∥M ∼=M and ∥S∥M ∼= N that are linear on
each simplex. Let Rf := ΠTQf and Rg := ΠTQg be the fundamental trusses
of the minimal coarsest meshes. Since Qf cannot be coarsened, there is a
coarsening M → Qf and therefore a truss coarsening T → Rf ; similarly
there is a truss coarsening S → Rg. Using Construction 4.2.78, realize
those truss coarsenings to mesh coarsenings that are linear on each simplex.
Finally take a piecewise-linear mesh realization of the truss isomorphism
ΠTF : ΠTQf → ΠTQg. Altogether we have the series of piecewise-linear
homeomorphisms in the top row of the following diagram:

(Mn, fn) ∥Tn∥M ∥(Rf )n∥M ∥(Rg)n∥M ∥Sn∥M (Nn, gn)

(U, f+) (V, g+)
G

Recall from Remark 5.2.26 the canonical tame stratifications (U, f+) and
(V, g+) associated to the tame embeddings (Z, f) and (W, g) respectively.
The vertical maps are mesh refinements of those stratifications. Define
the piecewise-linear homeomorphism G : U → V as the indicated zig-zag
composite. Observe that the map G is in fact a framed stratified map
G : (U, f+) → (V, g+) of tame stratifications, and therefore by definition a
framed stratified map G : (Z, f)→ (W, g) of tame embeddings.
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It remains only to check that F and G are framed stratified homotopic (as
framed stratified maps of tame embeddings); that means that there is a family
of framed maps from a tame neighborhood U to a tame neighborhood V , which
is at every moment a stratified map from (Z, f) to (W, g). In fact, we will
have a family that is moreover constant on fundamental posets. Observe that
the maps F : U → V and G : U → V induce n-mesh maps FM : Qf → Qg

and GM : Qf → Qg of the minimal coarsest meshes of the embeddings, and
the resulting fundamental truss maps are equal: ΠTFM = ΠTGM : Rf → Rg.
By the weak faithfulness of the fundamental truss functor, it follows that
there is a homotopy of mesh maps FM ∼ GM (in fact up to contractible
choice, a unique such homotopy); that homotopy of mesh maps provides
a homotopy of framed stratified maps F ∼ G : (U, f+) → (V, g+), which
suffices. □

Remark 5.3.56 (All triangulations are equivalent). Consider a fixed
polyhedral stratification (Z, f) and two different triangulations of it, i.e. two
(linearly realized) simplicial complexes K and L for which the stratification
(Z, f) is a constructible substratification of a coarsening of the simplicial
stratifications of the complexes K and L. (If the polyhedral stratification is
just an ordinary polyhedron, this is just the ordinary naive notion of triangu-
lation.) Consider the preceding proof, in the case where the stratifications are
identical, (Z, f) = (W, g), and the homeomorphism is the identity, F = id,
and pick the meshes M and N to refine the complexes K and L, respectively;
the conclusion is that the identity is homotopic to a piecewise-linear home-
omorphism between the triangulations, and so perforce the triangulations
are piecewise-linearly equivalent. This does not contravene the invalidity
of the classical Hauptvermutung, but articulates it: the problem is not
the existence of exotic combinatorial subdivisions, but of wild, infinitary
homeomorphisms.

Remark 5.3.57 (Contractibility of framed structure groups). In an in-
formal sense, we may distill the differential veracity of the unframed and
framed Hauptvermutung to the following discrepancy. The classical au-
tomorphism groups AutTOP(Rn) and AutPL(Rn) have different homotopy
types, but the framed automorphism groups AutfrTOP(Rn) and AutfrPL(Rn)
(see Definition 4.1.86) are both contractible and in particular homotopy
equivalent.

⋄ There’s a com-
mented out comment
about the relation
of classical top fram-
ings and classical PL
framings. Could try
to make this more
clear for re-inclusion,
or leave out.

Remark 5.3.58 (Framed combinatorial topology and o-minimal geom-
etry). Recall that the most well-established approach to Grothendieck’s
vision for tame topology is via model theory, specifically o-minimality
[VdD98, Cos00]. Roughly, a class of subsets of euclidean spaces forms
an o-minimal structure if (1) it is closed under finite union, finite intersection,
and complement, (2) it is closed under product and standard projection,
and (3) the subsets of 1-dimensional euclidean space are the finite unions of
open intervals and points. Basic examples of classes include semilinear sets
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(i.e. polyhedra) and semialgebraic sets. More geometrically serious examples
include those classes definable with analytic functions, exponential functions,
or both [vdD86, Wil96, vdDMM94].

Framed combinatorial topology and o-minimal geometry share the goal
of providing a tame class of euclidean structures, and they share the insight
that a tame class should be controled by its finitary simplicity in dimension 1
and by being well behaved under standard projection. However, beyond that,
these approaches are conceptually, technically, and practically orthogonal.
Conceptually orthogonal in the sense that o-minimal geometry axiomatizes a
suitable class of tame subsets, while framed combinatorial topology constructs
a suitable class of tame subsets. Technically orthogonal in the sense that o-
minimal classes are constrained by the insistence on closure under finite union
and intersection, while framed combinatorial classes are constrained by the
insistence on constructibility of their projections. Practically orthogonal in the
sense that any nontrivial o-minimal class contains subsets that are not framed
constructible (for instance the surface in Figure 4.11 is semialgebraic), while
there are framed constructible subsets not contained in any o-minimal class
(for instance the tame embedding in Figure 5.6 is o-minimally verboten).

5.3.3. ♦Computability.

Synopsis. We prove that stratified truss coarsening is confluent in the
sense that all chains of such coarsenings end in the same normalized truss,
and as a consequence establish that coarsest mesh refinements are computable
and framed stratified homeomorphism of tame stratifications is decidable. We
introduce the dual notions of tame cells and tame singularities as elementary
closed and open components of tame stratifications, and observe that the
confluence of stratified truss coarsenings dualizes to a confluence of stratified
truss degeneracies. Extending attention beyond tame and embedded stratifi-
cations, we show that n-directed acyclic graphs have canonical coarsest cell
structures, and observe therefore that framed homeomorphism of such graphs
is decidable.

5.3.3.1. ♦Normal forms and framed stratified homeomorphism. Our
next applications concern the computability properties of tame stratifications.
Specifically, we will show that from a refining mesh of a tame stratification,
one can algorithmically determine a coarsest refining mesh; from there we
will deduce that, given refining meshes of two tame stratifications, one can
algorithmically determine whether the stratifications are framed stratified
homeomorphic. Of course, both decision procedures will operate, roughly, by
translating the problem (via a fundamental truss functor) to a corresponding
truss problem, applying a combinatorial algorithm there, and then translating
(by a mesh realization functor) back to a geometric context.

We begin by setting up the relevant truss algorithms. The crucial property
is that stratified truss coarsening is confluent, in the sense that every series of
iterated truss coarsenings eventually ends in the same normalized stratified
truss.
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Proposition 5.3.59 (Stratified truss coarsening is confluent). Let T be
a stratified n-truss. Every maximal chain of non-identity truss coarsenings,
beginning with T , ends in the same normalized n-truss [[T ]]. Furthermore,
there is a unique truss coarsening T → [[T ]].

An equivalent formulation is the following: for a stratified n-truss T , there is
a unique normalized stratified n-truss [[T ]] with a truss coarsening T → [[T ]],
and there is a unique such coarsening.

Terminology 5.3.60 (Normal forms of stratified trusses). For a stratified
truss T , the normalized stratified truss [[T ]] having a truss coarsening T → [[T ]],
is called the normal form of the stratified truss T .

Proof of Proposition 5.3.59. Let F (1) : T → T (1) and F (2) : T →
T (2) be non-identity truss coarsenings of the stratified truss T . The underlying
unstratified truss maps F (i) : T → T (i) are coarsenings of the truss T . By
Construction 4.2.78, we may form the mesh coarsening realizations ∥F (i)∥crsM :

∥T∥M → ∥T (i)∥M. By modifying ∥T (i)∥M and the realization maps if need
be, we may assume that ∥T (i)∥M and ∥T∥M all have the same support in Rn,
and that the mesh coarsenings are identities on underlying spaces.

Now form the stratified mesh realization (∥T∥M, ∥T∥str) of the stratified
truss T . Since the maps F (1) and F (2) are truss coarsenings of stratified
trusses, both mesh realizations ∥T (1)∥M and ∥T (2)∥M refine the stratification
∥T∥str. By Key Lemma 5.2.13, we may take the mesh join ∥T (1)∥M∨∥T (2)∥M,
which of course still refines the stratification ∥T∥str. Take the fundamental
stratified truss S := ΠT(∥T (1)∥M∨∥T (2)∥M, ∥T∥str), and observe that we have
a diagram of truss coarsenings:

T (1)

T S

T (2)

F (1)

F (2)

It follows that there cannot be two maximal chains of truss coarsenings
ending in distinct stratified trusses, and of course the end of any chain is
a normalized stratified truss, which we may denote [[T ]]. Furthermore, if
there were two distinct truss coarsenings F (1) and F (2) from T to its normal
form [[T ]], the above argument and resulting diagram (for those coarsenings)
contradicts the fact that [[T ]] is normalized. □

Example 5.3.61 (Confluence of truss coarsenings). In Figure 5.36, we
depict two truss coarsenings F and G of a stratified 2-truss. The procedure in
the preceding proof produces the further coarsenings F ′ and G′ to the same
stratified 2-truss. We leave the projections of the trusses implicit, and note
that the composite truss coarsening F ′ ◦ F = G′ ◦ G is the one previously
shown in Figure 5.26.
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F F ′

G G′

Figure 5.36. Confluence of truss coarsenings.

Remark 5.3.62 (Mesh joins as truss pushouts). Though the given proof of
Proposition 5.3.59 leans heavily on our earlier construction of mesh joins, one
could instead prove the confluence of truss coarsening in purely combinatorial
terms.

Consider the diamond of truss coarsenings of stratified trusses constructed
in that proof. The induced diagram of coarsenings of underlying trusses is a
pushout in the category Trscrsn of n-trusses and their coarsenings. Note that
pushout is preserved by the total poset functor (−)n : Trscrsn → Pos, and is
also preserved by the truncation functor (−)<n : Trscrsn → Trscrsn−1.

To produce a combinatorial proof, then, it suffices to construct that
pushout of truss coarsenings directly. As one could bet on, that construction
would proceed inductively, with an inductive step involving 1-truss bundle
pushouts whose existence is less more straightforward (than the mesh case)
than one would hope.

The preceding discussion generalizes to the case of stratified truss bundles,
relying of course on Theorem 5.3.39 and Theorem 5.3.42. We summarize the
bundle case as follows.

Observation 5.3.63 (Normal forms of stratified truss bundles). Consider
a stratified truss bundle p over a base poset B. Every maximal chain of
base-preserving and label-preserving non-identity truss bundle coarsenings,
beginning with p, ends in the same normalized truss bundle [[p]], and the truss
bundle coarsening p→ [[p]] is unique. The bundle [[p]] is called the ‘normal
form’ of the truss bundle p.

Equipped with the confluence of truss coarsenings, it is certainly algo-
rithmic to find the normal form of a stratified truss, as follows.

Observation 5.3.64 (Normal forms are computable). Given a stratified
n-truss T , there is a finite set of surjective n-truss maps F : T → S, thus
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of coarsenings of n-trusses, thus of label-preserving coarsenings i.e. truss
coarsenings. Search that set of truss coarsenings for the one with the smallest
codomain, and note that is the truss coarsening T → [[T ]] to the normal
form.

Remark 5.3.65 (Normal forms are efficiently computable). Of course
there are better algorithms for computing normal forms than the preceding
brute-force search. For instance, we can take an inductive approach, sketched
as follows.

Given a stratified n-truss T := (T , lblT ), we will first normalize just the
stratified 1-truss bundle (pn : Tn → Tn−1, lblT ) (see Observation 5.3.63);
abusively abbreviate the resulting normal form bundle T̃n ≡ (p̃n : T̃n →
Tn−1, lblT̃n

) := [[(pn, lblT )]]. To produce that normalization algorithmically,
proceed as follows. Consider any trivially stratified open 1-truss subbundle
o : On → On−1 of the bundle pn, i.e. a subbundle whose labeling is constant:

On Tn Π(T )

On−1 Tn−1

const

o

lblT

pn

(Here both Oi ↪→ Ti are open subposets, and o is an open 1-truss bundle.)
The normal form T̃n is obtained by coarsening any and every such subbundle
o to the trivial open fiber bundle On−1 × T̊0 → On−1. (Recall T̊0 is the
trivial open 1-truss, see Terminology 2.1.23.) That normal form can be
obtained efficiently: proceed iteratively through the points x ∈ Tn−1 in order
of decreasing depth in the poset Tn−1 (i.e. by decreasing cell dimension in
the corresponding mesh); in the fiber p−1

n (x)→ {x}, coarsen completely any
trivially stratified open neighborhood O ⊂ p−1

n (x) whose downward closure
in the poset Tn is also trivially stratified.

Equipped with that normalized bundle T̃n, now construct a ‘projected’
stratified (n− 1)-truss T<n, whose underlying truss is the (n− 1)-trunction
T<n, and whose stratification lblT<n is defined thusly: an arrow of Tn−1

remains inside one stratum if and only if the labeled 1-bordism fiber, over
that arrow, of the stratified bundle T̃n is an identity.

Suppose inductively that the algorithm we are in the midst of describing
works, and produces a normal form stratified (n − 1)-truss ˜̃T<n := [[T<n]].
(In practice, this means begin by normalizing the stratified 1-truss bundle
pn−1 : Tn−1 → Tn−2 as above to produce p̃n−1 : T̃n−1 → Tn−2, and then read
the remainder of the construction, and apply it at the (n − 1)-stage, and
so forth iteratively down and then back up the tower to obtain ˜̃T<n.) By
the definition of the stratified (n − 1)-truss ˜̃T<n (as a normalization of an
(n − 1)-truss stratified by the normal type of labeled 1-truss fibers), there
is a unique stratified 1-truss bundle ˜̃pn : ˜̃Tn → ˜̃Tn−1 whose pullback along
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Tn−1 → ˜̃Tn−1 is the bundle p̃n : T̃n → Tn−1. Augmenting ˜̃T<n with the
bundle ˜̃pn yields the normalized truss [[T ]], as desired. (The procedure also
applies in the case of stratified n-truss bundles.)

From the computability of normal forms of stratified trusses, we may now
immediately derive that one can algorithmically determine the coarsest refin-
ing mesh of a tame stratification, and decide whether two tame stratifications
are framed stratified homeomorphic.

Proof of Corollary 5.1.29. Let (Z, f) be a tame stratification,
whose tameness is witnessed by a refining mesh M . Form the fundamental
stratified truss ΠT(M,f) and compute its normal form [[ΠT(M,f)]]. The truss
coarsening ΠT(M,f)→ [[ΠT(M,f)]] determines a mesh coarsening M →M ′,
the target of which is the coarsest refining mesh of the tame stratification. □

Proof of Theorem 5.1.30. Given tame stratifications (Z, f) and
(W, g), determine their coarsest refining meshes M and N , respectively. Those
tame stratifications are framed stratified homeomorphic if and only if the
corresponding stratified trusses ΠT(M,f) and ΠT(N, g) are balanced isomor-
phic. Whether such a balanced isomorphism exists is certainly algorithmically
decidable, and thus so is the given homeomorphism problem. □

The thus established computational tractibility of tame stratifications
hinges on the existence of mutual coarsenings of mesh decompositions; we
close by reiterating how contrary in character that property is from the
classical Hauptvermutung mirage of mutual refinements of triangulations or
cellular decompositions.

5.3.3.2. ♦Tame singularities, tame cells, and their duality. As we
have highlighted along the way, one of the distinguishing features of framed
combinatorial topology is that it is self-contained under duality: every open
truss has a dual closed truss and vice versa, and similarly every open mesh
has a dual closed mesh and vice versa. As a consequence, most results
immediately have a correlate dual. In particular, the confluence of stratified
truss coarsening, given above in Proposition 5.3.59, implies the dual statement
that stratified truss degeneracies are confluent. We will discuss and illustrate
that latter confluence shortly, but beforehand we take the opportunity to
describe the elementary components of tame stratifications, namely tame
cells and tame singularities, and their duality. With that duality in mind, we
will be better equipped to appreciate degeneracy confluence.

Recall from Definition 5.3.20 that a mesh cell is a stratified mesh block
for which the dense stratum of the block is a stratum of the stratification; and
a mesh singularity is a stratified mesh brace for which the codense stratum
of the brace is a stratum of the stratification. The examples in Figures 5.29
and 5.30 will call to mind these notions. Because we now know that a tame
stratification has a canonical coarsest refining mesh, we may discard (without
undue consequence), from the notions of mesh cells and mesh singularities,
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the underlying mesh; all that is retained is the euclidean stratification. The
resulting notions are that of tame cells and tame singularities, as follows.

Definition 5.3.66 (Tame cells). An n-tame m-cell is an n-tame strati-
fication (Z, f), whose coarsest refining mesh M with the stratification f is
an n-mesh m-cell (M,f).

Definition 5.3.67 (Tame singularities). An n-tame m-singularity is
an n-tame stratification (Z, f), whose coarsest refining mesh M with the
stratification f is an n-mesh m-singularity (M,f).

Remark 5.3.68 (Tame cells and singularities via normalized trusses).
From Lemma 5.3.32 we know that coarsest refining meshes correspond to
normalized stratified trusses, and altogether by Theorem 5.1.23 that tame
stratifications are classified by normalized stratified trusses. The notions
of tame cell and tame singularity may therefore be rephrased more combi-
natorially as follows: a tame cell is a tame stratification whose classifying
normalized stratified truss is a truss cell; similarly a tame singularity is a tame
stratification whose classifying normalized stratified truss is a truss singularity.
In practice, given a tame stratification whose tameness is witnessed by a
refining mesh, one takes the stratified fundamental truss of the refining mesh,
computes its normalization, and checks if the result is a truss cell or truss
singularity.

Example 5.3.69 (Tame cells and singularities). In Figure 5.37, we depict
a collection of tame cells and tame singularities, and a duality relating them.
(The duality will be described in the subsequent construction.) On the left
are three 2-tame singularities and their dual 2-tame cells. (Of course these
are the singularities and cells whose tameness is witnessed by the (coarsest)
refining meshes shown in Figures 5.29 and 5.30.) On the right are three
3-tame singularities and their dual 3-tame cells. Note that excepting the top
right tame singularity, the other five tame singularities are classified by the
five truss singularities in Figure 5.27.

The duality of cells and singularities illustrated in the preceding example is a
special case of a general procedure of dualizing tame stratifications, which is
formalized as follows.

Construction 5.3.70 (Dual stratifications). Let (Z, f) be an n-tame
stratification. Construct its classifying normalized stratified truss T =
(T , lblT ), as provided by Theorem 5.1.23. (Practically, from any refining
mesh of the tame stratification, take the stratified fundamental truss and
normalize it by Observation 5.3.64 or Remark 5.3.65.) Define the dual strat-
ified truss T † ≡ ((T †), lblT †) to have underlying truss (T †) := (T )† and
labeling lblT † := lblopT : T op

n → Π(T )op. Take the stratified mesh realization
(M †, f †) := ∥T †∥M of that dual stratified truss. Finally define the dual tame
stratification (Z, f)† := (Z†, f †) to be the tame stratification of the space
Z† := (M †)n ⊂ Rn with the stratification f †.
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Figure 5.37. Tame singularities and their dual tame cells.

Example 5.3.71 (Dual stratifications). In Figure 5.38, we depict two
pairs of dual tame stratifications. The first tame stratification is familiar from
the last example in Figure 5.2, and the third tame stratification witnesses
the tameness of the middle embedding in Figure 5.3.

1

2 2

1

2

1

2

1
† †

Figure 5.38. Duality of tame stratifications.

Remark 5.3.72 (Dual stratified maps). The duality of stratifications
can also be applied to maps of stratifications. Given a map F : T → S
of stratified trusses, one has the dual map F † := F op : T † → S† of the
respective dual stratified trusses. Correspondingly, we say that maps of tame
stratifications (Z, f)→ (Y, g) and (Z†, f †)→ (Y †, g†) ‘are dual’ when their
stratified fundamental truss maps are dual.

We may now return to dualizing the confluence of truss coarsening to a
confluence of truss degeneracies. Recall from Terminologies 2.3.63 and 2.3.65
that a map of (unstratified) n-trusses is a degeneracy when, on every 1-truss
fiber map in the whole tower, it is surjective, endpoint-type-preserving, and
singular.

Terminology 5.3.73 (Degeneracies of stratified trusses). A map F :
T → S of stratified trusses is a truss degeneracy if the underlying truss map
F is a degeneracy of n-trusses, and the label map lblF is the identity.
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Proposition 5.3.59 established that any chain of non-identity truss coars-
enings eventually ends in the same normalized truss. The dual statement
follows immediately.

Corollary 5.3.74 (Stratified truss degeneracy is confluent). Let T be a
stratified n-truss. Every maximal chain of non-identity truss degeneracies,
beginning with T , ends in the same stratified n-truss. Furthermore there is a
unique truss degeneracy from the given stratified truss T to that maximally
degenerated stratified truss.

We may refer to that maximally degenerated stratified truss as being the
‘degeneracy normal form’ of the initial stratified truss.

Despite requiring no further work, this result has a rather different charac-
ter from the confluence of truss coarsening: a truss coarsening fundamentally
preserves the topology of the associated stratification (here associated means
via stratified mesh realization), whereas a truss degeneracy definitely alters
that topology. Of course, the topological degenerations that can occur in a
truss degeneracy are constrained by the preservation of the overall architec-
ture of the associated framed stratification; still, it is notable that there is a
unique way to maximally collapse regions in a tame stratification without
intrinsically altering the character of its framed stratified structure.

Recall from Terminology 5.3.18 that a mesh coarsening (of stratified
meshes) is a map of stratified meshes that is a coarsening of underlying
meshes and is an identity of stratifications. Similarly, a ‘mesh degeneracy’
(of stratified meshes) is a map of stratified meshes that is a degeneracy
of underlying meshes and is an identity of stratifications. (See Terminolo-
gies 4.1.20 and 4.1.91.) Note that the stratified fundamental truss map of a
mesh degeneracy is a truss degeneracy.

Terminology 5.3.75 (Degeneracies of tame stratifications). Let (Z, f)
and (Z ′, f ′) be tame stratifications with coarsest refining meshes M and M ′

respectively. A framed map of tame stratifications (Z, f) → (Z ′, f ′) is a
‘degeneracy’ if it induces a map of stratified meshes M →M ′ that is a mesh
degeneracy.

Example 5.3.76 (Degeneracies of tame stratifications). In Figure 5.39, we
depict three maps of tame stratifications that are degeneracies. In fact, each
of these degeneracies is maximal, in the sense that no further degeneration is
possible, or equivalently that the stratified fundamental truss of the target is
in degeneracy normal form.

5.3.3.3. ♦Coarsest cell structures and framed homeomorphism. A
space that admits a regular cell complex structure has, of course, numerous
distinct such cell structures, among which there is in no reasonable sense a
canonical one. Any cell structure may be subdivided indefinitely, so there
is certainly no finest or ‘maximal’ cell structure; hypothetically one might
ask for a coarsest or ‘minimal’ cell structure, but that simply does not exist.
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Figure 5.39. Degeneracies of tame stratifications.

Adding a framing does not by itself fix matters: given a framed regular cell
complex, there is no coarsest cell structure in its framed homeomorphism
class. However, insisting that there is a framed realization does the trick:
we will presently see that given a framed regular cell complex admiting a
framed realization, there is a canonical coarsest cell structure in its framed
homeomorphism class.

Recall from Terminology 1.3.63, Definition 1.3.64, and Terminology 1.3.65
that we refer to n-framed regular cell complexes as n-directed graphs, and to
n-framed regular cell complexes admiting a framed realization as n-directed
acyclic graphs, or n-DAGs for short. Recall further from Construction 1.3.4
and Proposition 1.3.13 that, given a regular cell complex X, the stratified
realization ∥X∥ is the stratification of the geometric realization |X| by open
cells.

Terminology 5.3.77 (Framed homeomorphisms of n-DAGs). A ‘framed
homeomorphism’ F : X → Y between n-DAGs is a homeomorphism F :
|X| → |Y |, such that for any framed realization i : |Y | → Rn, the composite
i ◦ F : |X| → Rn is a framed realization.

This notion of framed homemorphism signals that n-directedness is a structure
that does not really depend on the cell complex structure of the n-graph, but
exists instrinsically on the topological space of that complex.

Terminology 5.3.78 (Framed coarsenings of n-DAGs). A framed home-
omorphism F : X → Y of n-DAGs is a ‘framed coarsening’ if the stratified
realization F : ∥X∥ → ∥Y ∥ is a stratified coarsening.

Remark 5.3.79 (Framed homeomorphism of n-directed graphs). The
above phrasing of the notion of framed homeomorphism is expedient for its
use of acyclicity, but one need not in fact restrict attention to the acyclic
case. A ‘framed homeomorphism’ of n-directed graphs is, for instance, a
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homeomorphism of geometric realizations that is (in a suitably specified
sense) a framed map on each cell.37

Terminology 5.3.80 (n-Directed spaces). An ‘n-directed graph struc-
ture’ on a space Z is an n-directed graph X together with a homeomorphism
|X| ∼= Z. An ‘n-directed space’ is a space with an n-directed graph structure.
Similarly an ‘n-directed acyclic space’ is a space with an ‘n-directed acyclic
graph structure’ i.e. an n-DAG and a homeomorphism to the space.

Terminology 5.3.81 (Compatible n-directed structures). The n-directed
(acyclic) graph structures F : |X| ∼= Z and G : |Y | ∼= Z are ‘compatible’ if
the composite G−1 ◦ F is a framed homeomorphism.

Given an n-directed (acyclic) graph X, we say that an n-directed (acyclic)
graph structure G : |Y | ∼= |X| is ‘compatible’ with X, meaning that G is
compatible with the identity structure Id : |X| ≡ |X|.

We are now equipped to state the advertized existence of coarsest cell
structures. The proof, for which we merely provide ingredients, reprises
the use of join stratifications from the construction of coarsest meshes in
Chapter 4 and the use of section and spacer cells from the comparison of
framed and proframed complexes in Chapter 3.

Theorem 5.3.82 (Coarsest cell structures of n-directed acyclic graphs).
Given an n-DAG X, there is a unique compatible n-DAG structure Xmin on
the space |X|, that admits no framed coarsening. Furthermore, every n-DAG
structure compatible with the n-DAG X has a unique framed coarsening to
Xmin.

Proof ingredients. Let F : |X| ∼= Z and G : |Y | ∼= Z be compatible
n-DAG structures. For convenience, fix a map i : Z → Rn such that i◦F and
i◦G are framed realizations of X and Y , respectively. Denote by f := F ∥X∥
and g := G ∥Y ∥ the induced cell stratifications on the underlying space Z.
Now endeavor to show that the join f ∨ g is a regular cell complex, with
framing and framed realization inherited from the map i. (That much suffices:
from an n-DAG X, framed coarsen it until it can be framed coarsened no
further, and call the result Xmin; if there were a compatible n-DAG structure
Y that does not coarsen to Xmin, then Xmin coarsens to the join of the
structures Xmin and Y , a contradiction.)

As a preliminary matter, consider the ‘n-framed boundary complex’ ∂nX,
defined as follows. A cell d ∈ X belongs to the boundary ∂nX when (1) it
projects (by πn ◦ i ◦F ) homeomorphically into Rn−1, and (2) there is at most
one cell c ∈ X with d ⊂ ∂c and πn ◦ i ◦ F (d) = πn ◦ i ◦ F (c). Observe that
the boundary complexes ∂nX and ∂nY have identical images (call it ∂nZ)

37One way to specify that condition is as follows. The cell-to-mesh realization (see
Terminology 4.2.7) of each framed cell is a mesh block, with its framed realization in
euclidean space. For n-directed graphs X and Y , the homeomorphism F : |X| → |Y | is
framed on the cell x ∈ X if for each cell y ∈ Y , the restriction F |x∩F−1(y) is framed, via
the cell-to-mesh realizations, in the sense of Definition 4.1.86.
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in the underlying space Z, and πn ◦ i ◦ F and πn ◦ i ◦G are (n− 1)-framed
realizations of those complexes. In particular then the boundary complexes
∂nX and ∂nY provide compatible (n− 1)-DAG structures. Let ∂nf and ∂ng
denote the induced cell stratifications of the space ∂nZ.

By induction, we have that the join ∂nf ∨ ∂ng is a regular cell complex,
with framing and framed realization inherited from the map πn ◦ i. Now
distinguish lower and upper boundary subcomplexes (∂nf ∨ ∂ng)± of the
boundary join, and finally establish that the join f ∨ g is a suitably framed
regular cell complex by the method of section–spacer cell induction, based at
the lower boundary complex. □

Recall that a tame embedding is by definition a constructible substratifi-
cation of an open stratification admitting a mesh refinement. Further as we
have seen, there is a minimal coarsest such refining mesh of an embedding.
Suppose the embedding is compact and, for simplicity, trivially stratified;
in that case, the minimal coarsest refining mesh (or indeed any refining
mesh) induces an n-framed cell complex i.e. n-directed graph structure on
the embedded space, as follows: take the fundamental truss of the refining
mesh, cubically compactify it, take the mesh-to-cell gradient to produce a
framed cell complex, and finally restrict to the subcomplex corresponding to
the embedded image.

Terminology 5.3.83 (Mesh cell structure). The ‘mesh cell structure’
of a tamely embedded compact space is the (acylic) framed cell complex
structure induced, via the above procedure, by the minimal coarsest refining
mesh of the embedding.

The mesh cell structure of a tamely embedded space is parsimonious, but
it is by no means minimal as a framed cell structure, for it retains cellular
subdivisions corresponding to a (now forgotten) global mesh structure. As a
particular application of Theorem 5.3.82, we can further and often drastically
simplify the mesh cell structure to the coarsest cell structure of the n-directed
acylic graph itself.

Example 5.3.84 (Coarsest cell structures of tame embeddings). In Fig-
ure 5.40, we depict a tame embedding of the circle in R2, along with (on the
far right) its mesh cell structure, and a further framed coarsening to (on the
center right) the coarsest cell structure of that mesh cell structure DAG. (As it
happens in this case it does not matter whether this is considered as a 1-DAG
or a 2-DAG.) That coarsest cell structure is the minimal, canonical framed
cell structure on the directed space defined by the tame embedding.

As the existence of coarsest refining meshes gave us an algorithmic
handle on framed stratified homeomorphism of tame stratifications (see
Theorem 5.1.30), the existence of coarsest cell structures provides similar
purchase on framed homeomorphism of n-directed acyclic graphs, as follows.

Proof of Theorem 5.1.31. Given n-DAGs X and Y , determine their
coarsest cell structures Xmin and Ymin. (That determination may be achieved
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Figure 5.40. Coarsest cell structure of a tamely embedded
circle.

for instance by greedily taking any maximal chain of framed coarsenings
whose underlying homeomorphism is the identity.) Then determine (by
exhaustion if nothing else) whether Xmin and Ymin are isomorphic as n-
DAGs. Applying Theorem 5.3.82 (see also Terminology 5.3.81), note that
those coarsest n-DAGs are isomorphic if and only if the original n-DAGs are
framed homeomorphic. □

Example 5.3.85 (Deciding framed homeomorphism of 1-DAGs). In
Figure 5.41, we depict the procedure for deciding framed homeomorphism of
n-DAGs, in the 1-dimensional case for simplicity. On the top left and top right
are two given 1-DAGs, with the direction of every cell indicated concisely
by the red arrows. The dashed gray arrows are the framed coarsenings
to the respective coarsest cell structures, which are directed isomorphic as
shown.

∼=

Figure 5.41. Decidability of framed homeomorphism for
1-DAGs.
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5.4. Diagrammatic algebra and diagrammatic geometry

In this final section, among a large pool of further topics that deserve
discussion, we select and discuss two important research directions that build
on framed combinatorial topology. Both are rooted in the interpretation
of tame stratifications as certain diagrams: namely, as pasting diagrams
of morphisms in higher categories (yielding a combinatorial foundation for
diagrammatic higher algebra), or as gluing diagrams of manifolds embed-
ded in higher-dimensional space (yielding a combinatorial foundation for
diagrammatic geometry).

Outline. In Section 5.4.1 we first study tame stratifications that are,
in an appropriate framed sense, conical stratifications. We then describe
the subclass of conical tame stratifications whose normal cones of strata
are transversal to the ambient framing: we will call such stratifications
manifold diagrams. Manifold diagrams solve the long-standing problem
of generalizing string diagrams and surface diagrams to higher dimensions,
and provide directed-topological semantics to compositions and coherences
of higher-categorical morphisms.

In Section 5.4.2 we describe a class of tame stratifications, called tame
tangles, that model embedded manifolds with corners. We discuss how
these tangles admit perturbations in combinatorial terms, and how, applied
locally, this yields a combinatorial theory of singularities. Crucially, the
similarity of combinatorial and differential singularity theory will motivate a
set of conjectures, relating tame tangles and differential manifolds. Together
these conjectures constitute a first faithful combinatorialization of smooth
structures.

5.4.1. Manifold diagrams. String diagrams are a ubiquitous tool for de-
scribing compositional structures in low dimensions, such as tensor networks
[BCJ11], spin networks [BC98, RS95], proof nets [Mel06], Feynman di-
agrams [BL11], quantum circuits and Frobenius algebras [AC04, CP07],
and, more generally, (symmetric) monoidal categories [Hot65, JS91]. String
diagrams provide a powerful representation of such structures since they natu-
rally model certain equivalences of compositional constellations via geometric
transformations (namely, via stratified isotopies).

Manifold diagrams generalize the idea of string diagrams to higher di-
mensions. The theory of manifold diagrams builds directly on that of tame
stratifications. Concretely, manifold diagrams are tame stratifications with
two simple additional constraints: a local triviality condition which is a
framed variant of classical conicality, and a transversality condition that
ensures strata ‘flow in generic directions’.

5.4.1.1. Conicality. One way in which stratified spaces naturally arise is by
geometric dualization of cell complexes: the resulting strata intersect cells of
the original complex transversally and are of dual dimensions. Stratifications
obtained in this way exhibit a fundamental property called conicality : recall,
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conicality of a stratification requires the existence of neighborhoods that
decompose into a product of a ‘tangential’ trivially stratified space and a
‘normal’ stratified cone (see Terminology B.3.1). Conicality is a fundamental
ingredient in the theory of stratified spaces. For example, it allows the
elegant construction of higher fundamental categories of stratifications (see
Section B.3.2), including a formulation of a stratified analog of the classical
homotopy hypothesis [AFR19].

Example 5.4.1 (Conical stratifications dual to a cell complex). In the
center row of Figure 5.42 we depict a neighborhood of the dual stratum of the
central 2-simplex in the simplicial complex on the left (obtained by gluing two
3-simplices). This neighborhood decomposes as the product of a tangential
R1 and a transversal cone stratification as shown on the right.

∼= R1×

∼= cone
( )

dualizes

Figure 5.42. A neighborhood as a product of its tangential
and its conical transversal parts.

In general, strata in conical stratifications need not be manifolds;38 however,
for our purposes, we assume tangential spaces are always euclidean, which
ensures strata are manifolds.

For tame stratifications, there is a natural analog of conicality that admits
equivalent formulations both on the topological and the combinatorial side of
the theory. In fact, the condition becomes simpler to state since the theory
of meshes comes with built-in notions of R-products (as mesh bundles with
trivial fibers) and geometric duality; in particular, closed meshes, which are
regular cell complex, are dual to open meshes, which are conical by the above
logic. (Of course, we know, and self-duality suggests, that all meshes are
conical; while this allows strata that are manifolds with corners we focus on
the open case here.) Using local building blocks of stratified open meshes as
our models for conical neighborhoods we arrive at the following condition.

38Extending the complex illustrated in Figure 5.42, consider, for example, the dual of the
complex consisting of three 3-simplices attached along a single mutual 2-simplex; the
stratum dual to the central 2-simplex would now comprise three lines glued at a point,
which is no longer a 1-manifold. Note that this complex no longer embeds in R3 either.
Since we work with cell complexes that can be realized in Rn, in an appropriate sense,
such situations will never arise for us, and we can assume all strata to be manifolds.
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Definition 5.4.2 (Framed conicality). A tame stratification is framed
conical if all points have neighborhoods that are framed stratified homeo-
morphic to tame singularities.

The preceding definition can be unpacked to resemble the classical conicality
condition more directly by expressing tame singularities as certain product
stratifications: the ‘trivial trangential’ space Rm is spanned by all 1-mesh
bundles in the coarsest refining mesh of the singularity which have trivial
fiber; the remaining 1-mesh bundles span the coordinates of the ‘normal cone’
stratification. Note that the definition also carries over to the case of tame
embeddings, by applying it to the image of an embedding.

Example 5.4.3 (Framed conical and non-conical statifications). Every
open mesh, as a cell-wise stratified space, is trivially a framed conical tame
stratification. Less trivially, we illustrate a framed conical 2-tame embedding
of a stratified circle in Figure 5.43 on the left, while on the right we depict
a tame embedding of a stratified circle that fails to be framed conical:
indeed, at the two indicated points, no neighborhood exists that is stratified
homeomorphic to a tame singularity.
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1

Figure 5.43. Framed conical and non-conical stratifications.

Remark 5.4.4 (Framed conicality, combinatorially). As a consequence
of the combinatorialization results in this chapter, framed conicality has the
following equivalent combinatorial phrasing: a stratified n-truss (T, lblT ) is
‘conical’ if, for each x ∈ T , the stratified subtruss induced by restricting lblT
to the upper closure T≥x ↪→ T normalizes to a truss singularity.

5.4.1.2. Transversality. Strata in framed conical n-tame stratifications
inherit a well-defined framing type by restricting the ambient standard
framing of Rn. We now turn our attention to those framing types that are,
in an appropriate sense, generic with respect to that ambient framing. To
understand what we mean by genericity, consider the family of tame linear
embeddings of the open interval I in R2 shown in Figure 5.44. Post-compose
the embedding with the standard projection π2 : R2 → R1, which yields a
homeomorphism for all but one member of the family. This precisely singles
out the green class of embeddings and with them a framing type (indeed,
thinking of the embeddings as framed realizations, the green class corresponds
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exactly to one of two possible framing types of 2-embedded framed 1-simplices,
while the blue embedding corresponds to the other framing type). We say
that the green embeddings are ‘transversal’, and in this sense generic, as their
image is transversal to the fibers of the projection π2.

R2

π2

2

1embed

Figure 5.44. Genericity of induced framings on the embed-
ded interval.

Transversality generalizes to manifolds of general dimension: a tame embedded
k-manifold ι :W ↪→ Rn is ‘transversal’ if post-composition with the projection
π≤k : Rn = Rm×Rk → Rk yields a local homeomorphism W → Rk. Similarly,
we say that a tame k-singularity is ‘transversal’ if its central k-stratum is
transversal. Transversality can also be conveniently understood at the level
of underlying coarsest refining meshes (and has an analogous combinatorial
formulation in terms of trusses): namely, a tame k-singularity is transversal
if and only if the lowest k bundles pk, . . . , p1 in its coarsest refining mesh are
1-mesh bundles with trivial open fiber.

Imposing transversality on all singularities in our earlier definition of
framed conicality, we arrive at the following central notion.

Definition 5.4.5 (Manifold diagrams). A manifold n-diagram is an
n-tame stratification in which all points have neighborhoods that are framed
stratified homeomorphic to a transversal tame singularity.

Example 5.4.6 (Manifolds diagrams and non-diagrams). In Figure 5.45,
on the left we illustrate a manifold 2-diagram; in contrast, the framed conical
tame stratification on the right fails to be a manifold diagram as its central
horizontal line stratum is not transversal (cf. Figure 5.44).
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Figure 5.45. A manifold diagram and a non-diagram.
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Remark 5.4.7 (Manifold diagrams, combinatorially). As a consequence
of the combinatorialization results in this chapter, manifold diagrams (up to
framed stratified homeomorphism) are fully and faithfully captured by the
following purely combinatorial notion: a ‘combinatorial manifold n-diagram’
(T, lblT ) is a conical stratified n-truss in which neighborhoods T≥x ↪→ T ,
x ∈ Tn, normalize to n-truss k-singularities whose lowest k truss bundles
have trivial open 1-truss fiber.

The formalization of manifold n-diagrams in all dimensions resolves a
long-standing open problem. Previously, stratified topological definitions to
capture the notion of manifold diagrams (or versions thereof) had only been
given in low dimensions: initially in dimension 2 [JS91], later in dimension 3
[Hum12, BMS12] (see also [Tri99]), and in restricted form in dimension 4
[CKS96, CS98]. As mentioned in the beginning of this section, the usefulness
of manifold diagrams (and, historically, string diagrams in particular) derives
from a correspondence of algebraic compositional equivalences and certain
geometric deformations [Sel10, Had24]. We can now make the latter precise.

Definition 5.4.8 (Manifold diagram isotopies). A manifold n-diagram
k-isotopy (or, when k = 1, simply a manifold n-diagram isotopy) is a
manifold (n+k)-diagrams that does not contain l-singularities for l < k.

In particular, we say that two manifold n-diagrams are related by an isotopy
(and thus a geometric deformation in the preceding sense) if there exists a
manifold diagram isotopy between them; more precisely, this means that when
restricted the appropriate ‘end fibers’ of π≤1 : Rn+1 → R (namely, fibers
over points x ∈ R in the end strata of the 1-mesh truncation of the isotopy’s
coarsest refining (n+ 1)-mesh), the isotopy recovers the former diagrams up
to framed stratified homeomorphism.

Example 5.4.9 (The simplest isotopy). The simplest manifold diagram
isotopy is the braid, see Figure 5.5, which runs between two manifold 2-
diagrams that each comprise two points embedded in the plane, and whose
positions are switched by the isotopy. In algebraic terms, the braid expresses
a commutativity relation in the composition of those point strata.

The dualization constructions of Section 5.3.3.2 apply to our notion
of manifold diagrams and yield a geometrically dual counterpart to such
diagrams, which may reasonably be called ‘cellular diagrams’. These cellular
diagrams generalize many kinds of pasting diagrams of morphisms found
in the study of higher categories, which leads us to the following somewhat
more speculative remark on manifold diagrams as a foundation for higher
categories and higher types.

Remark 5.4.10 (Manifold-diagrammatic higher category theory). The
dual cellular complexes of manifold diagrams can be directly understood as
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so-called categorical pasting diagrams, i.e., as diagrams that describe the
composition of morphisms in higher categories. This interpretation turns
manifold diagrams into suitable local models of higher categories [Cis19]; the
study of the resulting theory of higher categories has been forward-thinkingly
termed manifold-diagrammatic higher category theory, but is firmly beyond
this book’s scope.

We nonetheless mention one key observation: the manifold-diagrammatic
approach to defining higher categories exhibits a striking difference from
existing approaches (including both algebraic and presheaf models [Lei04,
CL04, Ber20]). This difference concerns the treatment of so-called categor-
ical coherences, which determine structural equivalences between pastings
(cf. Example 5.4.9). Coherences are both a central feature and a central
source of complexity in higher category theory. The novelty of the manifold-
diagrammatic approach may be succinctly put as follows:

››››› In classical approaches, given pastings of morphisms that have some
property X, we require some coherence to exist.

››››› In the manifold-diagrammatic approach, given pastings of morphisms
that have some property X, these pastings are coherences.39

The resulting ‘generatable’ perspective on higher-categorical coherences, in
which coherences are built from the same combinatorial building blocks as
pastings, is connected to several deeper principles at play.40 It also provides
a novel mechanism for expressing finitely specified higher structures (such as
higher inductive types) without the need for auxiliary machinery that creates
new terms to satisfy coherence existence conditions.

5.4.2. Tame tangles. A tame tangle is a tamely embedded manifold whose
image admits a decomposition into traversal ‘critical strata’; we make this
precise as follows:

Definition 5.4.11 (Tame tangles). An n-tame m-tangle is an n-tame
embedding W ↪→ Rn of an m-manifold W whose image can be refined by an
n-manifold diagram.

We remark (but do not prove) that there always exists a unique minimal
coarsest n-manifold diagram refining a given tame tangle. This allows us to
define the following.

Terminology 5.4.12 (Critical strata of a tame tangle). The ‘k-critical
strata’ of a tame m-tangle are the k-strata of its minimal coarsest refining
manifold diagram, for k ≤ m.

39The property X in question is simply ‘being an isotopy’, see Definition 5.4.8.
40First is the cobordism hypothesis [BD95]: our duality of cells and manifold diagrams

leads to a combinatorial analog of the classical Thom-Pontryagin construction and
its generalization to stratified bordisms [BRS76, Pon76]. Second is the principle of
semi-strictification: the coherences that are expressed in manifold diagrams are exactly
the ‘minimal necessary’ ones in the sense of semi-strictifiability of higher categories.
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Example 5.4.13 (Tangles and their refining manifold diagams). In Fig-
ure 5.46 we illustrate three tame tangles with their respective minimal coarsest
refining manifold diagrams; note that critical strata precisely run along ‘folds’
of the manifold with respect to the ambient framing.

2

1

2

1

2

3

1

2

3

1

2

3

1

2

3

1

Figure 5.46. Tangles with their minimal coarsest refining
manifold diagrams.

Terminology 5.4.14 (Tangle singularities). Anm-tangle k-singularity
(or, when k = 0, simply an ‘m-tangle singularity’) is a tame m-tangle whose
minimal coarsest refining manifold diagram is a tame k-singularity.

Example 5.4.15 (Tangle singularities). In Figure 5.47 we illustrate tangle
singularities arising from the 3-tame 2-tangle illustrated in the previous figure.
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Figure 5.47. Two tangle singularities in a tame tangle.
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As before, the results of this chapter allow us to formulate an analogous
combinatorial theory of tame tangles. Moreover the notion of tame tangles
extends straightforwardly to cases with boundary.41

We next turn our attention to the study and classification of tangle
singularities; indeed, not all such singularities are created equal, as some
are ‘more elementary’ than others. Intuitively, as a comparative measure of
elementarity, one can try define a notion of perturbations, which we sketch
as follows.

Terminology 5.4.16 (Tame tangle perturbation). A ‘tangle pertur-
bation’ is tame bundle over the stratified interval ∥[1]∥ whose special and
generic fibers are n-tame tangle, such that the underlying stratified topologi-
cal bundle is a trivial bundle over the unstratified interval, i.e., of the form
[0, 1]× g → [0, 1]. We say that the special fiber tangle ‘can be perturbed’ to
the generic fiber tangle.

We say that a tangle (0-)singularity W is ‘adjacent’ to another singularity
W ′ if W can be perturbed to a tame tangle V one of whose singularities is
W ′ such that all of V ’s singularities (including W ′) are in an appropriate
sense, combinatorially simpler than W—there are several ways of making
precise what ‘combinatorially simpler’ means, though a basic such measure of
complexity is the cardinality of the corresponding normalized stratified truss.
We leave a more precise exploration of this design space to future work, and
focus on outlining key intuitions of the story for now.

Terminology 5.4.17 (Elementary tangle singularities). We say a singu-
larity is elementary if no other singularity is adjacent to it.

Example 5.4.18 (Elementary and non-elementary singularities). We
illustrate an adjacency of singularities in Figure 5.48, where we perturb the
‘monkey saddle’ (see [Mil63]) to a tangle containing two ordinary saddles;
both of these singularities which are combinatorially simpler than the monkey
saddle and, thus, the monkey saddle is adjacent to the ordinary saddle. In
fact, the ordinary saddle can be shown to be an elementary singularity.

From the definitions outlined above follows a theory of elementary tame
tangle singularities that is rather reminiscent of classical singularity theory.
Indeed, elementary 2-tangle singularities exactly recover a collection of classi-
cal 2-dimensional singularities: the Morse-type singularities (saddles, minima,
and maxima) and Cerf-type singularities (cusps of 1-parameter families of
1-variable functions).

41And, it is worth emphasizing again that the combinatorial-topological theory of tame
stratifications deals elegantly with ‘manifolds with corners’, which otherwise often require
particular technical attention [Joy09]; in tame stratified topology, these can be modeled
simply using half-open n-trusses and n-meshes.
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Figure 5.48. A perturbation of the monkey saddle into two
ordinary saddle singularities.

For codimension-1 m-tangle singularities with m > 2 the parallel with
classical singularities initially continues into higher dimensions, at least for
the so-called simple singularities as described by Arnold [Arn75] (which, in
particular, include the elementary singularities that were described in the work
of Thom [TF18]). These singularities include, for example, the swallowtail
singularities (succeeding the cusp in Arnold’s list of Ak singularities) whose
corresponding elementary tangle singularity was depicted already in Figure I.7,
but also higher-dimensional singularities such as Arnold’s D4 singularity.

As the number of parameters increases, the classical machinery of smooth
singularity theory eventually breaks down and non-simple singularities arise
(for parameter dimensions above 5, see [PS14, §7.6]): the “dimensions of jet
spaces outgrow the dimensions of the structure groups”, which causes the
smooth equivalence relation of singularities to become too fine, leading to
uncountably many equivalence classes of singularities. By stark contrast, the
combinatorial machinery of elementary tangle singularities ‘must work’ in all
dimensions in that it can, by design, only generate countably many classes of
singularities, leading to a profound discrepancy between the two approaches
in higher dimensions. The precise nature of elementary tangle singularities
and their relation to classical singularity theory remains an open question;
we formulate the following problems.

Problem 5.4.19 (Classify elementary singularities in codimension-1).
Can we list all elementary tame tangle singularities in codimension 1? Can
we make precise a correspondence with simple differential singularities?

More ambitiously, we could also ask the following.42

Problem 5.4.20 (Classify elementary singularities in higher codimension).
Can we enumerate all elementary tame tangle singularities in codimension
k > 1?

42However, higher codimensions bring the complexity of knottings and even exotic smooth
sphere structures (known in dimension 7 and upwards).
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Remark 5.4.21 (Classifying elementary tangle isotopies). An ‘m-tangle
k-isotopy’ (or, when k = 1, simply an m-tangle isotopy) is a tame m-tangle
that does not contain any tangle l-singularities for l < k. Complementary
to the classification of singularities, we could ask for a classification of
the elementary isotopies, which should be those isotopies that cannot be
perturbed into simpler ones. Elementary isotopies include, e.g., the braid or
the Reidemeister III. The nature of such elementary isotopies is much less
well-studied than that of elementary singularities (and, to our knowledge, no
classical definitional counterpart exists), which can be partially attributed to
the absence of a framework in which to uniformly represent such isotopies.
We leave crafting good questions about elementary tangle isotopies to the
reader’s imagination.

In formulating the above problems, we have been agnostic about the
structure of the embedding ι : W ↪→ Rn; in general, it makes sense to at
least require ι to be a PL embedding of a PL manifold. Indeed, without
this condition, our notion of tangles would include triangulated manifolds
that are not PL manifolds, such as those obtained from double suspensions
of homology spheres; see [Bry02, Thm. 9.1]. However, these triangulated
manifolds do not linearly embed in codimension 1, so codimension-1 tangles
are not affected by such pathologies.

Beyond PL structures, our illustrations of the correspondence of combina-
torial tangle singularities and differential singularities suggest a deeper con-
nection to smooth manifolds, which we now outline. Our guiding observation
is that the inductive structure of the canonical combinatorial decomposition
of a tame tangle (via its minimal coarsest refining mesh) is maximally rigid:
it decomposes the tangle as a tower of iterated stratified 1-mesh bundles,
whose fibers are 1-dimensional and admit no ‘exotic’ behavior when glued
together. One may therefore expect exotic smooth behavior to arise purely
from the global compositional interplay of tangle singularities and tangle
isotopies. Motivated by the hypothesis that tangle singularities faithfully
encode smooth singularities, we conjecture that the combinatorial structure
of a tangle, which encodes its singularities, isotopies, and their composition,
is a faithful invariant for the tangle’s smooth structure.

Note: earlier text
restricted attention
to codim-1 singular-
ities. But this are
only sufficient to de-
scribed framed bor-
disms/manifolds. In
general, e.g., the
Serre automorphism
may be trivialized!

Conjecture 5.4.22 (Framed stratified homeomorphism implies diffeo-
morphism). From any two smooth embeddings e :M ↪→ Rn and e′ :M ′ ↪→ Rn

that correspond to the same normalized stratified truss, we can produce a
diffeomorphism M ∼=M ′.

Conversely, one may ask whether any smooth manifold can be represented
as a tangle. A positive answer seems to be suggested by standard transversality
arguments appropriately adapted to the framed stratified setting; we record
this possibility in the following conjecture.

Conjecture 5.4.23 (Smooth embedded manifolds are generically tame
tangles). Given a compact smooth k-manifold M , any smooth embedding
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e :M ↪→ Rn has an arbitrarily small perturbation such that the image of the
perturbed embedding e′ :M ↪→ Rn defines a tame k-tangle in Rn.

If these conjectures hold, the resulting correspondence of tame tangle
representations of manifolds M and smooth structures on M would realize a
goal similar to that of MacPherson’s program of combinatorial differential
manifolds [Mac91]: the faithful combinatorial representation of smooth
structures and the ability to work smoothly without direct reference to the
continuum R.



APPENDIX A

♢Linear and affine frames

This appendix provides some motivational context concerning various
notions of frames, not on combinatorial objects but on classical linear and
affine spaces.

In Section A.1.1, we observe that linear orthonormal frames may be
reformulated either in terms of sequences of linear subspaces, yielding a
notion of indframes, or in terms of sequences of linear projections, yielding
a notion of proframes. Though the notion of orthonormal frame depends
on a euclidean structure on the vector space, neither the notion of indframe
nor proframe does. We then define not-necessarily-orthonormal frames to be
orthoequivalent when they induce the same indframe or equvialently proframe;
orthoequivalence classes of frames thus provide an effective generalization of
orthonormal frames to non-euclidean vector spaces.

In Section A.1.2, we expand attention to three generalized notions of linear
frames: an ordinary frame on a vector space corresponds to a trivialization
V ∼−→ Rm, but we may also consider projections V Rk, leading to a notions
of partial trivializations and frames, or consider injections V ↪→ Rn, leading to
notions of embedded trivializations and frames, or altogether consider arbitrary
linear maps V → Rn, leading to notions of embedded partial trivializations
and frames. Pushing out the reformulations and the generalizations of
frames provides further notions of partial, embedded, and embedded partial
indframes and proframes, and eventually a notion of orthoequivalence classes
of generalized trivializations that consistutes an effective substitute for partial,
embedded, or embedded partial orthonormal frames even in the absense of a
euclidean structure.

Finally in Section A.2, we briefly discuss the affine space analogs of
the preceding assortment of linear space concepts. We highlight the crucial
asymmetry between affine linear projections and affine linear injections, that
leads to a fundamental preferencing for affine proframes over affine indframes.
We conclude by emphasizing the conceptual throughline from orthonormal
embedded linear frames, to orthoequivalence classes of embedded linear
trivializations, to embedded linear proframes, to embedded affine proframes,
to embedded simplicial proframes, to embedded simplicial frames, thus back
to the starting point of this book.

355
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A.1. Linear frames

A.1.1. Linear trivializations, frames, indframes, and proframes. We
recall linear trivializations and linear frames of vector spaces, and introduce
the related notions of linear indframes and linear proframes. For euclidean
vector spaces, oriented indframes and oriented proframes provide the same
information as orthonormal frames, but indframes and proframes provide a
suitable generalization of orthonormal frames to arbitrary vector spaces. The
combinatorial analog of proframes in particular plays a pervasive inspirational
and technical role in our development of framed combinatorial structures.

We begin with classical linear trivializations and frames.

Definition A.1.1 (Linear trivializations). A linear trivialization of
an m-dimensional vector space V is a linear isomorphism V ∼−→ Rm.

Preimages of the standard basis vectors ei ∈ Rm under the linear trivialization
map define an ordered list of ‘frame vectors’ vi ∈ V . Every linear trivialization
therefore determines and is determined by a linear frame in the following
sense.

Definition A.1.2 (Linear frames). A linear frame of an m-dimensional
vector space V is an ordered list (v1, v2, . . . , vm) ⊂ V of linearly independent
vectors.

We now want to compare the structure of linear trivializations (and
equivalently of linear frames) on vector spaces to the following two structures.

Definition A.1.3 (Linear indframes). A linear indframe on an m-
dimensional vector space V is a sequence of inclusions of vector spaces Vi,
with dim(Vi) = i:

0 = V0 ↪→ V1 ↪→ V2 ↪→ · · · ↪→ Vm−1 ↪→ Vm = V.

Definition A.1.4 (Linear proframes). A linear proframe on an m-
dimensional vector space V is a sequence of projections of vector spaces V i,
with dim(V i) = i:

V = V m V m−1 V m−2 · · · V 1 V 0 = 0.

Observation A.1.5 (Equivalence of indframes and proframes). Note
that linear indframes and proframes define the same structure on a vector
space. For a linear indframe {Vi ↪→ Vi+1}0≤i<m on V , the corresponding
proframe is determined by the cokernels of the sequence of inclusions into
the total vector space: (V V m−i) := coker(Vi ↪→ V ). Conversely, for
a linear proframe {V i V i−1}0<i≤m on V , the corresponding indframe
is determined by the kernels of the sequence of projections from the total
vector space: (Vi ↪→ V ) := ker(V V m−i). An illustration is given in
Figure A.1.

There are two important standard instances of indframes and proframes.
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indframe proframe

Figure A.1. A corresponding indframe and proframe.

Terminology A.1.6 (The standard euclidean indframe). The ‘standard
euclidean indframe’ of Rn is the sequence of subspace inclusions

0 ↪→ R ↪→ R2 ↪→ · · · ↪→ Rn−1 ↪→ Rn

where Ri−1 ↪→ Ri is the inclusion as the subspace with first coordinate being
zero.

Terminology A.1.7 (The standard euclidean proframe). The ‘standard
euclidean proframe’ of Rn is the sequence of projections

Rn Rn−1 Rn−2 · · · R1 R0

where Ri Ri−1 forgets the last component of vectors in Ri.

The standard 3-dimensional indframe and proframe are illustrated in Fig-
ure A.2.

R1 = ⟨x3⟩ R2 = ⟨x2, x3⟩ R3 = ⟨x1, x2, x3⟩ R2 = ⟨x1, x2⟩ R1 = ⟨x1⟩

Figure A.2. The standard indframe and proframe.

Note that the complement of the image of each standard indframe in-
clusion Rn−i = ⟨xi+1, . . . , xn⟩ ↪→ Rn−i+1 = ⟨xi, . . . , xn⟩ has two components
Rn−i+1 \ Rn−i = ϵ−i ⊔ ϵ

+
i , where the ‘negative’ component ϵ−i and ‘positive’

component ϵ+i consist of points with i-th numeral coordinate xi negative and
positive, respectively; we let ϵ−i and ϵ+i also refer to the images (under the
standard indframe inclusions) of these components in the total euclidean space
Rn. This assignment of signs to those components gives the standard ind-
frame its standard ‘orientation structure’; an orientation of an indframe more
generally is such an assignment of signs to the complementary components,
as follows.
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Terminology A.1.8 (Oriented indframe). An ‘oriented indframe’ on
a vector space V is an indframe {Vi−1 ↪→ Vi} together with an association
ν±i of signs to the connected components of the complement of the image of
each inclusion: Vm−i+1 \ Vm−i = ν−i ⊔ ν

+
i . (We let ν−i and ν+i also refer to

the images, under the indframe inclusions, of these components in the total
vector space V .)

An orientation structure on an indframe is equivalent to having an oriented
vector space structure on each subspace Vi.

Note that the fiber π−1
i (0) over 0 ∈ Ri−1 of each standard proframe

projection πi : Ri → Ri−1 is R, and so π−1
i (0) \ 0 has again a ‘negative’

component ϵi− = R<0 ⊂ π−1
i (0) and a ‘positive’ component ϵi+ = R>0 ⊂

π−1
i (0). That assignment of signs gives the standard proframe its standard

‘orientation structure’; for a general proframe the corresponding notion is as
follows.

Terminology A.1.9 (Oriented proframe). An ‘oriented proframe’ on a
vector space V is a proframe {pi : V i V i−1} together with an association
νi± of signs to the connected components of the complements p−1

i (0) \ 0 =

νi− ⊔ νi+.

An orientation structure on a proframe is equivalent to an oriented vector
space structure on each quotient V i.

Our earlier correspondence of indframes {Vi ↪→ Vi+1} and proframes
{pi : V i V i−1} on an m-dimensional vector space V extends to the oriented
case. We will write p>i for the composite projection pi+1◦...◦pm−1◦pm : V
V i. An orientation structure on the indframe determines an orientation
structure on the corresponding proframe by setting νi± := p>i(ν

±
i ), and

conversely by setting ν±i := p−1
>i (ν

i
±). (This correspondence is illustrated later

in Figure A.3.)

The standard indframe of Rm can be transported across a trivialization
V ∼−→ Rm, by pulling back the standard subspaces, to give an indframe on
the vector space V , and indeed any indframe on V can be obtained this
way. Similarly, the standard proframe of Rm can be transported across a
trivialization V ∼−→ Rm, by composing with the standard projections. These
transports are special cases of the following more general constructions, which
will be useful later when we consider partial and embedded indframes and
proframes.

Terminology A.1.10 (Pullback sequence). Given a sequence of vector
space inclusions {Wi ↪→Wi+1} and a map F : V →Wj , as shown below, we
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obtain a ‘pullback sequence’ of inclusions {Vi ↪→ Vi+1} by iterated pullback:

0 V0 V1 V2 · · · Vj−1 Vj = V

0 W1 W2 · · · Wj−1 Wj

⌟ ⌟ ⌟
· · ·

⌟
F

.

Terminology A.1.11 (Restriction sequence). Given a sequence of vector
space projections {W i W i−1} and a map F : V → W j , as shown below,
we obtain a ‘restriction sequence’ of projections {V i+1 V i} by iterated
image factorization:

V V j V j−1 V j−2 · · · V 1 V 0 = 0

W j W j−1 W j−2 · · · W 1 0

F · · ·
.

Observation A.1.12 (Trivializations induce oriented indframes and
proframes). A trivialization F : V ∼−→ Rm induces an oriented indframe on V
by taking the pullback sequence of the standard indframe of Rm along the
map F . Similarly a trivialization F : V ∼−→ Rm induces an oriented proframe
on V by taking the restriction sequence of the standard proframe of Rm along
the map F . Note that when you take the proframe induced by a trivialization,
and then take the corresponding indframe in the sense of Observation A.1.5,
you obtain exactly the indframe induced by the trivialization. This indframe
inherits an orientation ν±i from the standard orientation of Rm by requiring
F (ν±i ) = ϵ±i .

Note well that distinct linear trivializations may induce the same oriented
indframe (or equivalently the same oriented proframe). Considering when
trivializations induce the same oriented indframe provides the following
equivalence relation.

Definition A.1.13 (Orthoequivalence). Two linear trivializations of the
same vector space are orthoequivalent if they induce the same oriented
indframe, or equivalently the same oriented proframe.

When the vector space has a euclidean structure, each orthoequivalence class
of linear trivializations corresponds to a unique orthonormal frame, and so
we have the following correspondence.

Observation A.1.14 (Orthonormal frames, oriented indframes, and
oriented proframes are equivalent). Recall that when V is an m-dimensional
euclidean vector space, an orthonormal frame is a linear frame whose vectors
are orthogonal and of unit length. A frame is orthonormal exactly when
its corresponding trivialization is an isometry. Any oriented indframe on
V is induced by exactly one isometry F : V ∼−→ Rm, namely the one such
that F (ν±i ) = ϵ±i . Similarly, any oriented proframe is induced by exactly
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one isometry. Thus, isometric trivializations and orthonormal frames both
correspond precisely to oriented indframes and oriented proframes. This
correspondence is illustrated in Figure A.3.

oriented indframe

−

−
−+

+
+

≡≡
3

2 1

orthonormal frame

oriented proframe

−−

−
++

+

Figure A.3. An orthonormal frame and its corresponding
oriented indframe and oriented proframe.

Remark A.1.15 (Orthoequivalence generalizes orthonormality). As dis-
cussed, for a euclidean vector space, orthoequivalence classes of trivializations
correspond to orthonormal frames, but the former notion is well defined in the
absence of a euclidean structure and so provides an effective generalization
of orthonormal frames to arbitrary vector spaces.

A.1.2. Partial and embedded trivializations and frames. Instead
of considering linear trivializations V ∼−→ Rm, we may relax our attention
to projections V Rk or injections V ↪→ Rn or indeed general linear
maps V → Rn; these provide notions of ‘partial’, ‘embedded’, and ‘partial
embedded’ trivializations. We next describe the related generalized notions
of frames, indframes, and proframes. The combinatorial analogs of these
generalizations, especially of the notion of embedded proframes, will be
essential to our development of framed combinatorial complexes that involve
gluing structures of different dimensions.

We start with the case of partial trivializations V Rk and the related
partial frames.

Definition A.1.16 (Linear partial trivializations). A linear k-partial
trivialization of an m-dimensional vector space V is a linear projection
V Rk.
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Definition A.1.17 (Linear partial frames). A linear k-partial frame
of an m-dimensional vector space V is an ordered list (v1, v2, . . . , vk) of k
linearly independent vectors in V .

Observation A.1.18 (Comparison of partial trivializations and partial
frames). If the vector space has a euclidean structure, there is a bijective
correspondence between isometric partial trivializations and orthonormal
partial frames, as follows.

Given an isometric partial trivialization V Rk (i.e. one that is isometric
on the orthogonal complement of the kernel), consider the unique isometric
section Rk ↪→ V (i.e. whose image is the orthogonal complement of the
kernel of the trivialization); the image of the standard frame of Rk under this
section is an orthonormal partial frame of V .

Conversely, an orthonormal partial frame (v1, v2, . . . , vk) of V determines
an isometry Rk ↪→ V sending the standard basis to the partial frame; the
resulting partial isometry V Rk, that splits Rk ↪→ V and whose kernel is
the orthogonal complement of the image of Rk ↪→ V , is an isometric partial
trivialization. (This correspondence is illustrated later in Figure A.4.)

In the absence of a euclidean structure, there is no longer a precise corre-
spondence of partial trivializations and partial frames. We may nevertheless
think of a partial frame (v1, v2, . . . , vk) as ‘compatible’ with a partial trivi-
alization V Rk if the map Rk ↪→ V associated to the partial frame is a
section of the trivialization. This compatibility is, though, by no means a
bijective correspondence.

Next we consider the case of embedded trivializations V ↪→ Rn and the
related embedded frames.

Definition A.1.19 (Linear embedded trivialization). A linear n-
embedded trivialization of an m-dimensional vector space V is a linear
inclusion V ↪→ Rn.

Definition A.1.20 (Linear embedded frame). A linear n-embedded
frame of an m-dimensional vector space V is an ordered list (v1, v2, . . . , vn)
of n vectors in V , exactly m of which are nonzero, and such that the nonzero
vectors are linearly independent.

Observation A.1.21 (Comparison of embedded trivializations and em-
bedded frames). If the vector space has a euclidean structure, then there
is a many-to-one correspondence of isometric embedded trivializations and
orthonormal embedded frames, as follows.

Given an isometric embedded trivialization V ↪→ Rn, consider the partial
isometry ϕ : Rn V , whose kernel is the orthogonal complement of the
image of the trivialization. Take the vectors (ϕ(e1), ϕ(e2), . . . , ϕ(en)) ⊂ V
and set to zero those vectors that are in the span of the preceding vectors;
call the resulting embedded frame (v1, v2, . . . , vn) ⊂ V . From this, construct
an orthonormal embedded frame (w1, w2, . . . , wn) as follows: if vi is zero, let
wi be zero, otherwise set wi to be the unique (suitably signed) unit vector
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orthogonal to ⟨vi+1, . . . , vn⟩ inside ⟨vi, . . . , vn⟩. Note well, this association,
from an isometric embedded trivialization to an orthonormal embedded frame,
is far from injective. (The association is illustrated later in Figure A.5.)

Conversely, given an embedded frame (v1, v2, . . . , vn) ⊂ V all of whose
nonzero vectors are orthonormal, there is an associated isometric embedded
trivialization V ↪→ Rn sending the nonzero vi ∈ V to the standard basis
vectors ei ∈ Rn. Note well that this embedded trivialization is ‘axial’ in the
sense that its image is the span of a subset of the standard basis of euclidean
space. Needless to say, this association therefore only hits a very special
subset of all embedded trivializations.

In the absence of a euclidean structure, there is no longer such a defi-
nite correspondence between embedded trivializations and embedded frames.
However, there remains a notion of ‘compatibility’ between embedded triv-
ializations and embedded frames; that notion will be described later in
Terminology A.1.28 using induced proframes.

Finally, there is a common generalization of partial trivializations and
embedded trivializations, and an analogous notion of frames, as follows.

Definition A.1.22 (Linear embedded partial trivializations). A linear
n-embedded k-partial trivialization of an m-dimensional vector space V
is a linear map V → Rn with k-dimensional image.

Definition A.1.23 (Linear embedded partial frames). A linear n-
embedded k-partial frame of an m-dimensional vector space V is an
ordered list of n vectors (v1, v2, . . . , vn) ⊂ V , exactly k of which are nonzero,
and such that the nonzero vectors are linearly independent.

As in the previous cases, these generalized trivializations do not corre-
spond in a faithful way to these generalized frames, even when there is a
euclidean structure. (Nevertheless, there will be a correspondence, mentioned
below, of orthoequivalence classes of embedded partial trivializations and
orthonormal embedded partial frames; this is illustrated later in Figure A.6.)

The failure of the correspondence of embedded partial trivializations
and embedded partial frames can be somewhat remedied by working with
suitably orthonormal frames and considering the trivializations up to a
suitable notion of orthoequivalence. As in the case of ordinary frames, the
notion of orthoequivalence will be based on (now generalized) notions of
indframes and proframes, which we introduce presently.

Given a partial trivialization V Rk, an n-embedded trivialization
V ↪→ Rn, or an n-embedded partial trivialization V → Rn, we may form
the pullback sequence, along the trivialization, of the standard euclidean
indframe. Sequences of inclusions obtained in this way respectively give
notions of partial, embedded, and embedded partial indframes, as follows.
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Definition A.1.24 (Linear partial, embedded, and embedded partial
indframes). A linear k-partial indframe on an m-dimensional vector space
V is a sequence of the following form (where dim(Vi) = i):

0 ↪→ Vm−k ↪→ Vm−k+1 ↪→ · · · ↪→ Vm−1 ↪→ Vm = V.

A linear n-embedded indframe on an m-dimensional vector space V is a
sequence of the following form (where dim(Vmi) = mi, and, for each i, either
mi+1 = mi + 1 or mi+1 = mi):

0 = V0 = Vm0 ↪→ Vm1 ↪→ Vm2 ↪→ · · · ↪→ Vmn−1 ↪→ Vmn = Vm = V.

A linear n-embedded k-partial indframe on an m-dimensional vector
space V is a sequence of the following form (where dim(Vki) = ki, and for
each i, either ki+1 = ki + 1 or ki+1 = ki):

0 ↪→ Vm−k = Vk0 ↪→ Vk1 ↪→ Vk2 ↪→ · · · ↪→ Vkn−1 ↪→ Vkn = Vm = V.

An n-embedded k-partial indframe on an m-dimensional vector space is
simply n-embedded if k = m, or simply k-partial if n = k.

One defines ‘orientations’ as before by associating signs to the connected
components of the complements Vki \ Vki−1

(when those complements are
non-empty).

Similarly, given a partial trivialization V Rk, an n-embedded trivializa-
tion V ↪→ Rn, or an n-embedded partial trivialization V → Rn, we may form
the restriction sequence, along the trivialization, of the standard euclidean
proframe. Sequences of projections obtained in this way respectively give
notions of partial, embedded, and embedded partial proframes, as follows.

Definition A.1.25 (Linear partial, embedded, and embedded partial
proframes). A linear k-partial proframe on an m-dimensional vector space
V is a sequence of the following form (where dim(V i) = i):

V = V m V k V k−1 V k−2 · · · V 0 = 0.

A linear n-embedded proframe on an m-dimensional vector space V is a
sequence of the following form (where dim(V mi) = mi, and, for each i, either
mi−1 = mi − 1 or mi−1 = mi):

V = V m = V mn V mn−1 V mn−2 · · · V m1 V m0 = 0.

A linear n-embedded k-partial proframe on an m-dimensional vector
space V is a sequence of the following form (where dim(V ki) = ki, and, for
each i, either ki−1 = ki − 1 or ki−1 = ki):

V = V m V k = V kn V kn−1 V kn−2 · · · V k1 V k0 = 0.

An n-embedded k-partial proframe on an m-dimensional vector space is
simply n-embedded if k = m, or simply k-partial if n = k.

One defines ‘orientations’ as before by associating signs to the connected
components of the complements p−1

ki
(0) \ 0, for the projections pki : V

ki

V ki−1 (when those complements are non-empty).
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Observation A.1.26 (Equivalence of generalized indframes and
proframes). In each of the above three generalized cases (namely with the
adjectives ‘partial’, ‘embedded’, or ‘embedded partial’), the notions of ind-
frame and proframe define equivalent structures on a vector space V ; one can
be constructed from the other as before by taking cokernels and conversely
kernels.

We can now associate generalized indframes and proframes to generalized
trivializations and thereby consider the resulting orthoequivalence relation
on generalized trivializations.

Observation A.1.27 (Generalized trivializations induce corresponding
indframes and proframes). By taking the pullback sequence of the standard
indframe of euclidean space, a partial, embedded, or embedded partial trivi-
alization of a vector space V induces a corresponding partial, embedded, or
embedded partial indframe of V , referred to as the induced indframe. Sim-
ilarly taking the restriction sequence of the standard proframe of euclidean
space produces a corresponding partial, embedded, or embedded partial
proframe of V , referred to as the induced proframe. Given a generalized
trivialization, its induced indframe corresponds to its induced proframe.

Terminology A.1.28 (Compatibility of generalized frames and triv-
ializations). Given a generalized frame (v1, ..., vn) of V and a generalized
trivialization V → Rn, we say the frame and trivialization are compatible
when each vi spans the kernel of the projection V ki V ki−1 in the induced
proframe of the trivialization. (The condition can alternatively be phrased in
terms of the induced indframe.)

Definition A.1.29 (Generalized orthoequivalence of trivializations). Two
partial, embedded, or embedded partial trivializations of the same vector
space are orthoequivalent if they induce the same oriented indframe, or
equivalently, the same oriented proframe.

Equipped with the notion of orthoequivalence of trivializations, we can
now identify a tighter relationship, in the presence of a euclidean structure,
between trivializations and orthonormal frames, as follows. For simplicity,
we let orientations and the preservation of orientation structures be mostly
implicit.

Observation A.1.30 (Orthoequivalence classes of partial trivializations
correspond to orthonormal partial frames). Given a euclidean m-dimensional
vector space V and a (not necessarily partial isometry) partial trivialization
V Rk, consider the induced partial indframe 0 ↪→ Vm−k ↪→ Vm−k+1 ↪→
· · · ↪→ Vm−1 ↪→ Vm = V . There is a unique (suitably oriented) unit vector
v1 ∈ Vm orthogonal to Vm−1, and then a unique (suitably oriented) unit
vector v2 ∈ Vm−1 orthogonal to Vm−2, and so forth. The resulting partial
frame (v1, v2, . . . , vk) is orthonormal.
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Conversely, starting with the orthonormal frame, we construct an as-
sociated isometric partial trivialization, by the procedure given in Obser-
vation A.1.18. Both that constructed isometric partial trivialization and
the original partial trivialization have the same induced indframe, and are
therefore orthoequivalent.

The relationship of partial trivializations, partial frames, partial indframes,
and partial proframes is illustrated in Figure A.4.

partial indframe partial proframe

partial
triv.

partial
frame

V2

v1

V3 = V 3 V 1

Figure A.4. A 1-partial trivialization, frame, indframe, and
proframe.

Observation A.1.31 (Orthoequivalence classes of embedded trivial-
izations correspond to orthonormal embedded frames). Given a euclidean
m-dimensional vector space V and a (not necessarily isometric) embedded
trivialization V ↪→ Rn, recall from Observation A.1.21 the construction of an
associated orthonormal embedded frame: consider the orthogonal projection
ϕ : Rn V , and then take a suitable orthnormalization (w1, w2, . . . , wn) ⊂ V
of the vector sequence (ϕ(e1), ϕ(e2), . . . , ϕ(en)) ⊂ V .

Conversely, starting with the orthonormal frame (w1, w2, . . . , wn) ⊂ V ,
define an isometric embedded trivialization V ↪→ Rn by sending each nonzero
wi to ei ∈ Rn, again as in Observation A.1.21. The resulting trivialization is
orthoequivalent to the original one.

The relationship of embedded trivializations, embedded frames, embedded
indframes, and embedded proframes is illustrated in Figure A.5.

We leave the conceptual pushout of the two previous observations to the
exhaustive reader. The correspondence is illustrated in Figure A.6.

Remark A.1.32 (Orthoequivalence of generalized trivializations general-
izes orthonormality). As observed, given a euclidean structure, orthoequiva-
lence classes of embedded partial trivializations have unique embedded partial
orthonormal frame representatives; that notion of orthoequivalence classes
makes sense, though, in the absence of euclidean structure and so provides
an effective substitute for orthonormality of generalized frames.

A.2. Affine frames

In the previous section we discussed trivializations, frames, indframes, and
proframes in the setting of linear vector spaces. We now briefly describe how



A.2. AFFINE FRAMES 366

e3 e2

e1

v3
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embedded indframe embedded proframe

Vm0
Vm1

Vm2
Vm3

V m3 V m2 V m1 V m0

emb.
triv.

emb.
frame

v2=0

Figure A.5. A 3-embedded trivialization, frame, indframe,
and proframe.

embedded partial indframe embedded partial proframe
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Vk2
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V V k3 V k2 V k1 V k0

=

v2
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emb.
partial
triv.

emb.
partial
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Figure A.6. A 3-embedded 1-partial trivialization, frame,
indframe, and proframe.

these notions carry over to the case of affine linear spaces. The resulting affine
linear structures constitute an instructive analog for a number of the core
affine combinatorial structures developed in the book proper; we leave the
detailing of that analogy, though, almost entirely to the reader’s imagination.

Terminology A.2.1 (Affine spaces and their maps). An affine space
V is a space freely and transitively acted upon by a vector space V⃗, called the
‘associated vector space’. Vectors in the associated vector space V⃗ are called
‘translations’. An affine map F : V → W of affine spaces is a continuous
map such that for a necessarily unique linear map F⃗ : V⃗→ W⃗ (the ‘associated
vector space map’) we have F(v)− F(v′) = F⃗(v − v′). Denote the category
of affine spaces and affine maps by Aff. The associated vector space and
associated vector space map provide a functor

−⃗ : Aff → Vect.
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Of course this associated vector space functor has a canonical section, namely
the functor

− : Vect→ Aff

that simply forgets the origin of the vector space.

Terminology A.2.2 (Geometric realizations of simplices). Given an
unordered m-simplex S, its ‘geometric realization’ |S| (also called the associ-
ated ‘geometric simplex’) is the subspace, of the free vector space R⟨S⟩ (on
the set of vertices of S), consisting of convex combinations of the standard
basis.

The realization |S| is contained in an affine hyperplane of R⟨S⟩; we denote
that hyperplane ⟨S⟩. The affine structure of ⟨S⟩ restricts to a partial affine
structure on |S| (‘partial’ in the sense that the action by translations of the
associated vector space ⃗⟨S⟩ is partial).

Terminology A.2.3 (Affine maps of simplices). Given a simplex S and
an affine space W, an affine map |S| →W is a map that is the restriction of
an affine map ⟨S⟩ →W defined on the associated affine hyperplane.43

Notation A.2.4 (Standard geometric simplices). We denote the geomet-
ric realization of the standard m-simplex, with vertices {0, 1, . . . ,m}, by ∆m,
and refer to it as the ‘standard geometric m-simplex’.

Terminology A.2.5 (Space of affine vectors). Given an affine space V,
the ‘space of affine vectors’ in V, denoted V̂, is the space of affine embeddings
e : ∆1 ↪→ V, of the standard geometric 1-simplex ∆1 into V. Note that the
space of affine vectors is itself an affine space (it has an action by V⃗⊕ V⃗), and
note that there is a canonical affine isomorphism V× V ∼= V̂. Any affine map
F : V→W induces (by postcomposition) a map of spaces of affine vectors
F̂ : V̂→ Ŵ. The formation of affine vectors and affine vector maps together
provide an ‘affine vector functor’ −̂ : Aff → Aff.

Terminology A.2.6 (Basepoint forgetting map). Given an affine space
V, there is a canonical ‘basepoint forgetting’ map V̂→ V⃗, sending an affine
vector e : ∆1 ↪→ V to the translation vector e(1)− e(0).

Equipped with the above affine terminology, we may now crudely transport
the notions of trivializations, frames, indframes, and proframes to the affine
setting as follows.

Terminology A.2.7 (Affine trivializations, frames, indframes, and
proframes). By an ‘affine trivialization’ or ‘affine frame’ or ‘affine indframe’
or ‘affine proframe’ of an affine space V, we will mean respectively a linear

43In the main text, abusing terminology, we refer to affine maps |S| → W, from affine
realizations of simplices, as ‘linear maps’.
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trivialization or linear frame or linear indframe or linear proframe of its
associated vector space V⃗.

Though these affine notions may be concisely specified as above in terms
of the associated vector spaces, the concepts may also be understood more
directly in terms of structures on affine spaces, as follows.

Remark A.2.8 (Affine perspective on affine trivializations and frames).
Given an affine space V, an isomorphism V ∼−→ Rm of affine spaces would be
a purely affine notion of ‘affine trivialization’; such an isomorphism provides
a linear isomorphism V⃗ ∼−→ Rm, thus an affine trivialization in the previous
sense.

For an affine space V, we may ask for a collection of frame vectors
vxi : ∆1 → V, for all x ∈ V, with vxi based at x in the sense that vxi (0) = x,
and such that the frame vectors are invariant under every translation; such a
collection would be a purely affine notion of ‘affine frame’. The basepoint
forgetting map V̂→ V⃗ sends such a collection of frame vectors {vxi } to a linear
frame of V⃗, thus provides an affine frame in the previous sense. Conversely,
pulling back a linear frame along the basepoint forgetting map provides a
compatible collection of frame vectors based at every point of the affine
space.

We may similarly try to express affine indframes and affine proframes in
more native affine terms. However, we encounter the following obstruction.

Observation A.2.9 (Asymmetry of affine projections and injections).
Given an affine space V, and a linear projection V⃗ W of its associated
vector space, there is a canonically induced affine projection V W whose
associated vector space map is the given vector space projection; here W is
constructed as the quotient of V by the action of the kernel ker(V⃗ W ).

By contrast, given a linear injection U ↪→ V⃗ into the associated vector
space, there is no canonical candidate for a corresponding affine injection
U ↪→ V (whose associated vector space map is the given vector space inclusion).
In particular, given an affine projection V W, whose associated linear
map has the kernel ker(V⃗ W⃗) ↪→ V⃗, there is no canonical choice of ‘affine-
linear kernel’ U ↪→ V, whose associated vector space map is the given linear
kernel.

Remark A.2.10 (Asymmetry of simplicial degeneracies and affine faces).
The asymmetry between affine projections and affine injections has an analog
in the affine combinatorics of simplices. Indeed, while all relevant projections
of simplicies can be accounted for by honest simplicial degeneracy maps, there
are relevant ‘affine inclusions’ of simplices that simply cannot be expressed
as honest simplicial face maps; those inclusions necessitate the introduction
of the notion of affine face map of simplices and the related notion of affine
kernel of a simplicial degeneracy.
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The mismatch between affine projections and affine inclusions may be
marginally ameliorated by working with ‘basepoint-wise indframes’, as follows.

Observation A.2.11 (Basepoint-wise affine indframes). Given an affine
space V and an indframe 0 = V⃗0 ↪→ V⃗1 ↪→ ... ↪→ V⃗m = V⃗ on the associated
vector space V⃗, we can pull the indframe back along the basepoint forgetting
map V̂→ V⃗, to obtain a filtration of the space of affine vectors V̂; this process,
roughly speaking, bases a copy of the indframe at every point of V. Still,
the structure of an affine indframe cannot be encoded in any faithful and
canonical way via honest affine maps into the original affine space V.

In practice, the aforementioned asymmetry makes affine proframes a much
more convenient tool than affine indframes. In particular, we can reformulate
the notion of affine proframes in natively affine terms as follows.

Definition A.2.12 (Affine proframes). An affine proframe on an m-
dimensional affine space V is a sequence of surjective affine maps of the
following form (where dim(Vi) = i):

V = Vm Vm−1 Vm−2 ... V1 V0 = 0.

Observation A.2.13 (Correspondence between linear and affine
proframes). Given an affine space V and a proframe V⃗ = V⃗m V⃗m−1

· · · V⃗0 on its associated vector space V⃗, there is a corresponding sequence
of affine surjective maps, thus an affine proframe, obtained by applying the
construction of Observation A.2.9 to each projection in the linear proframe.
Conversely, given any affine proframe on V, in the sense of Definition A.2.12,
we obtain a linear proframe of the associated vector space V⃗ simply by
considering the associated vector space maps.

The notion of affine proframes (as in Definition A.2.12), and the correspon-
dence of linear and affine proframes (a la Observation A.2.13), generalize
straightforwardly to the cases of partial, embedded, and partial embedded
proframes.

We may finally, tersely, trace the following motivational thread all the
way from classical linear frames to our combinatorial affine frames, as follows.
(For definiteness we mention the embedded frame case, though this may be
specialized to ordinary frames or generalized to partial ones as desired.) An
orthonormal embedded linear frame of a vector space (as in Definition A.1.20)
corresponds, by Observation A.1.31, to an orthoequivalence class of embedded
linear trivializations, which by Definition A.1.29 corresponds to an embedded
linear proframe; such an embedded linear proframe corresponds, by the
embedded analog of Observation A.2.13, to an embedded affine proframe.
Now, the geometric realization of an embedded proframe on a simplex is
evidently and precisely an embedded affine proframe of the affine space
geometric realization of that simplex. Finally, that embedded proframe on a
simplex corresponds, by Observation 3.2.23, to an embedded frame on the
simplex, as in our core Definition 1.1.36. Altogether, frames on simplices
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provide a faithful affine combinatorial analog of classical linear frames on
vector spaces.
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The notion of stratified space (or singular space) refers to a decomposition
of a space into strata [Fri20, Ban07, Wei94, Pfl02], often ordered by some
index of dimension or depth. Frequently, such order is enforced by working
with filtrations X0 ⊂ X1 ⊂ ... ⊂ Xk−1 ⊂ Xk of spaces X = Xk where Xi−1 is
required to be closed in Xi. Equivalently, and more concisely, such a filtration
may be expressed by a continuous function f : X → [k]op (where [k]op is the
poset (0← 1← ...← k) topologized such that downward closed subposets are
open sets) which allows us to recover Xi as the preimage f−1[i]op, i ≤ k. This
has been generalized by defining stratifications as continuous maps of spaces to
any poset, yielding, for instance, definitions of ‘S-filtered spaces’ in [GM88,
§III.2.2.1] and of ‘P -stratifications’ in [Lur12, Def. A.5.1]. Note, however,
posets in the codomain of such continuous maps may contain information
that is unrelated to the decomposition of the underlying space, even when
the map is surjective.

In this appendix, we develop a notion of stratifications which is similarly
general, but in which the role of posets faithfully represents topological
information about the stratification, yielding a categorically more natural
and robust definition. The different definitions coincide in many cases, for
instance, in the case of locally finite stratifications.

B.1. Stratified spaces

In our discussion of stratified spaces, we will use the following conventions.

Convention B.1.1 (Specialization topology). Given a preorder (P,≤) we
regard it as a topological space with the specialization topology, declaring the
open subsets to be those that are downward closed; a subset U is downward
closed if x ≤ y and y ∈ U implies that x ∈ U .44

In general, the specialization topology will not be Hausdorff or weakly Haus-
dorff. However, posets do belong to the category of compactly generated spaces
[Str09] (since all first-countable spaces do): this category is categorically
convenient in that it admits cartesian closed structure.

A category convenient for the purposes of homotopy theory is that of
compactly generated weakly Hausdorff spaces: the category admits useful
categorical constructions, such as closure under certain pushouts, and has a

44We frequently write the relation x ≤ y as x→ y, interpreting preorders and posets as
categories.
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homotopy theory equivalent to that of categories of ‘cell-like’ models such as
simplicial sets. We fix the following notation.

Notation B.1.2 (Categories of spaces). We denote by TOP the category
of all topological spaces, by kTop the subcategory of compactly generated
spaces, and by Top the subcategory of compactly generated weakly Hausdorff
spaces. The category kTop is cartesian closed with internal hom denoted by
Map(−,−), and this internal hom is inherited by Top.

While we will not be concerned with the nuances of these definitions, it will
be useful to keep in mind that they represent slightly different conceptions of
spaces tailored to specific purposes: for us, all underlying spaces of stratified
realizations, which are cell-like spaces, belong to Top; in contrast, posets as
spaces live in kTop. To work in a joint setting of both cell-like and poset-like
spaces we therefore assume the following.

Convention B.1.3 (Compactly generated spaces). By default, all spaces
will be assumed to be compactly generated.

Finally, there is also an inverse translation from spaces to posets.

Remark B.1.4 (Specialization order). Given a topological space X ∈
kTop, we denote by SpclX its specialization order : this is the preorder whose
objects are the objects of the underlying set X, and whose morphisms x→ y
are given whenever y is contained in the closure of x.

Note that for a poset P we have SpclP = P . The specialization topology
provides a functor, which is an adjoint equivalence between finite preorders
and finite topological spaces. The inverse functor is given by the specialization
order functor Spcl. The equivalence is concrete, meaning that both unit and
co-unit of the adjunction are identities on underlying sets.

Before proceeding to our first definitions, we briefly remark on the follow-
ing key convention that has been, often implicitly, used throughout the book
and will play an explicit role in the next sections.

Remark B.1.5 (Entrance versus exit paths). There are categorically
dual conventions for the ‘fundamental categories Π•f ’ of stratifications f ,
based on whether one chooses to work with ‘entrance paths’ or ‘exit paths’
in a stratified space. In this book, we chose the former convention over the
latter, since it often yields more intuitive (namely, covariant) descriptions
of constructible bundles [AFR19]. An illustration of this observation is
given in Figure B.1 for a stratified bundle π over a stratified circle (S1, f)
and its associated covariant functor on the fundamental poset Π•f defined
using entrance paths; all involved notions will be formally defined in this
appendix.

B.1.1. Entrance paths, stratifications, and fundamental posets. In
this section we introduce the basic notions of stratified spaces, including their
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π

(S1, f) Π1f

category of sets

covariant
functor

Figure B.1. A stratified bundle represented as a covariant
functor on fundamental categories.

fundamental posets and their characteristic functions which map stratified
spaces to their fundamental posets.

A robust definition of stratified spaces is obtained by letting the topologi-
cal decomposition of a space into strata determine the corresponding poset
structure, in terms of the existence of so-called entrance paths between strata,
as follows.

Definition B.1.6 (Entrance path). Given a space X and two subspaces
Xr and Xs, an entrance path from Xr to Xs is a path α : [0, 1]→ X with
α([0, 1)) ⊂ Xr and α(1) ∈ Xs.

Here, the path is thought of as entering from the former subspace Xr into
the latter subspace Xs.

Definition B.1.7 (Formal entrance path). Given a space X and two
subspaces Xr and Xs, we say there exists a formal entrance path from Xr

to Xs, when the closure of Xr has nonempty intersection with Xs.

In contrast to entrance paths, note that the structure of formal entrance paths
is boolean: either there exists a formal entrance path between subspaces or
there doesn’t. If there is an entrance path from a subspace Xr to a subspace
Xs of a space X this implies the existence of a formal entrance path, but
the converse need not hold unless additional conditions are imposed (see
Lemma B.1.30).

Terminology B.1.8 (Formal entrance path relation of a decomposition).
Consider a decomposition {Xs ⊂ X}s∈Dec of a space X into disjoint subspaces
Xs (that is, X =

⊔
s∈DecXs). The ‘formal entrance path relation’ of the

decomposition is the relation on the indexing set Dec of subspaces that has
an arrow r → s exactly when there is a formal entrance path from Xr to
Xs.

Note that the formal entrance path relation of a decomposition is reflexive,
but need not be antisymmetric or transitive. Stratifications are exactly those
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decompositions for which this relation has no cycles, that is for which it is a
directed acyclic graph.

Definition B.1.9 (Prestratifications and stratifications). A prestratifi-
cation (X, f) of a space X is a decomposition f = {Xs ⊂ X}s∈Dec(f) of X
into disjoint, nonempty, and connected subspaces indexed by a set Dec(f),
called the ‘decomposition set’. The subspaces Xs are called strata of (X, f).
A stratification (X, f) is a prestratification such that the formal entrance
path relation on the decomposition set Dec(f) has no cycles.

Notation B.1.10 (Shorthand for (pre)stratifications). We frequently
abbreviate a (pre)stratification (X, f) simply by f , referring to f as a
‘(pre)stratification on X’. Moreover, we often abbreviate a stratum Xs ⊂ X
simply by its index s ∈ Dec(f).

Observe that, given a stratification (X, f), the transitive closure of the
formal entrance path relation on the decomposition set Dec(f) is a partially
ordered set, which has an arrow r → s exactly when there is a chain of
formal entrance paths beginning at r and ending at s. This does not hold
true if (X, f) is merely a prestratification, in which case Dec(f) obtains the
structure of a preordered set.

Definition B.1.11 (Fundamental preorder and poset). For a prestrati-
fication (X, f), the fundamental preorder Π(f) is the decomposition set
of the prestratification together with the transitive closure of the formal
entrance path relation. If (X, f) is a stratification, then we refer to Π(f) as
the fundamental poset of (X, f).

Remark B.1.12 (Exit paths and the exit path preorder). Given a prestrat-
ification (X, f), the opposite preorder Π(f)op of the fundamental preorder
is also often called the ‘exit path preorder’. Its arrows may be understood
as ‘exit paths’: an exit path from Xs to Xr is a path p : [0, 1] → X with
p(0) ∈ Xs and p((0, 1]) ⊂ Xr; the path is exiting from the stratum Xs into
the stratum Xr.

Whether to focus on entrance or exit paths is a matter of convention
and convenience; in this book, we find that entrance paths have more nat-
ural functoriality dependencies and so we work entirely with them, see
Remark B.1.5.

Example B.1.13 (Fundamental poset). Figure B.2 shows a stratification
of the open 2-disk into five strata, along with its fundamental poset (shown
on the right, together with an indication of which poset elements correspond
to which strata).

Example B.1.14 (Fundamental poset requiring transitive closure). Fig-
ure B.3 depicts a stratification of the open interval, into one open interval
and two half-open interval strata, together with its fundamental poset.



B.1. STRATIFIED SPACES 375

(X, f) Π(f)

Figure B.2. Fundamental poset of a stratification.

Figure B.3. A stratification with fundamental poset as the
transitive closure of the entrance path relation.

Example B.1.15 (Fundamental preorder). In Figure B.4 we depict a
decomposition of the circle that is not a stratification but a prestratification,
because the formal entrance path relation has a cycle.

Figure B.4. A decomposition that is not a stratification but
a prestratification, and its formal entrance path relation.

Remark B.1.16 (Fundamental posets as generalizations of connected
component sets). Fundamental posets play a fundamental role in the theory
of stratified spaces: from a perspective of algebraic topology, they are the
analog of connected component sets π0X of topological spaces X for stratified
spaces.45

Terminology B.1.17 (Discrete and indiscrete stratifications). Every
space X has an ‘indiscrete stratification’ whose strata are the connected
components of X. The fundamental preorder of the indiscrete stratification
is the set of connected components of X. Conversely, every space also has

45A yet more abstract analogy can be similarly made from a perspective of higher category
theory: fundamental posets are the (0, 1)-truncated fundamental categories of stratified
spaces, which conversely are the ∞-categorical analogs of posets, a.k.a. (∞, 1)-posets
or simply ∞-posets, just as spaces in the form of ∞-groupoids are the ∞-categorical
analogs of sets. See later in Remark B.3.19.
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a ‘discrete prestratification’, such that each point becomes its own stratum.
The fundamental poset of the discrete stratification of X is the specialization
order SpclX (in particular, the definition of specialization orders can be
recovered from the definition of fundamental preorders).

Unless indicated otherwise, a bare topological space is implicitly given the
indiscrete stratification.

Terminology B.1.18 (Finite (pre)stratifications). We call a
(pre)stratification (X, f) ‘finite’ if its fundamental preorder Π(f) is finite, and
call it ‘infinite’ otherwise.

Definition B.1.19 (Characteristic function). Given a prestratification
(X, f), we refer to the function X → Π(f) sending each point x ∈ Xr to
its corresponding stratum r ∈ Π(f), as the characteristic function of the
prestratification; we denote the characteristic function of a prestratification
(X, f) by f : X → Π(f).

A fundamental property of characteristic functions is that they are finitely
continuous, as follows.

Terminology B.1.20 (Finitely continuous maps). A function of topolog-
ical spaces F : X → Y is called ‘finitely continuous’ if for each finite subspace
Q ⊂ Y the function restricts to a continuous map F : F−1(Q)→ Q.

Lemma B.1.21 (Finite continuity in prestratifications). Characteristic
functions are finitely continuous.

Proof. Consider a prestratification (X, f) with characteristic function
f : X → Π(f). Consider a finite subposet Q ⊂ Π(f), and let U ⊂ Q be
a downward closed subposet of Q (i.e., an open subspace). Arguing by
contradiction, assume f−1(U) ⊂ f−1(Q) is not open. Then there is a point
p ∈ f−1(U) such that each neighborhood of p intersects a preimage f−1(q)
of some q ∈ Q \ U . Since Q is finite, there must be a q ∈ Q \ U such that
f−1(q) intersects all neighborhoods of p. This means p lies in the closure of
f−1(q). By definition of formal entrance paths there must be an arrow from
q to f(p) ∈ U . But this contradicts downward closure of the latter subposet.
Thus, f−1(U) ⊂ f−1(Q) must be open, showing finite continuity of f . □

In the case of finite prestratifications, this of course implies that their charac-
teristic functions are continuous in the usual sense. In fact, this also holds
for the more general notion of locally finite stratifications. (From now on, we
will focus most of our attention on stratifications instead of working in the
more general context of prestratifications; nonetheless, several of the following
definitions and results still generalize to the case of prestratifications.)

Definition B.1.22 (Locally finite stratifications). A stratification (X, f)
is locally finite if every stratum s has an open neighborhood s ⊂ N(s)
which is a union of finitely many strata.
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Terminology B.1.23 (Locally finite posets). A poset (P,≤) is ‘locally
finite’ if all downward closures P≤x = {y | y ≤ x} are finite.

The definition of local finiteness can also be phrased as a pointwise local
condition under the further assumption of so-called frontier-constructibility.

Definition B.1.24 (Frontier-constructibil-
ity). A frontier-constructible stratification (X, f) is a stratification in
which the closure s of each stratum s can be written as a union of strata in
f .46

The frontier-constructibility condition is also sometimes simply referred to as
the frontier condition in the literature. In Lemma B.2.10 we show that this
condition holds iff f : X → Π(f) is an open map.

Observation B.1.25 (Local finiteness for frontier-constructible stratifi-
cations). Given a stratification (X, f) consider the following conditions.

(1) (X, f) is locally finite,
(2) Any point x ∈ X has an open neighborhood intersecting only finitely

many strata,
(3) The fundamental poset Π(f) is locally finite.

In general, only condition (1) and (3) are equivalent. If (X, f) is frontier-
constructible, then all three conditions become equivalent.

Lemma B.1.26 (Locally finite characteristic functions are continuous).
If (X, f) is a locally finite stratification, then its characteristic function
f : X → Π(f) is continuous.

Proof. We show each point x ∈ X has an open neighborhood restricted
to which f is continuous. Let x lie in a stratum s = f(x) ∈ Π(f). Using local
finiteness, pick a neighborhood U of s intersecting only finitely many strata.
By definition of formal entrance paths, we can shrink this to a neighborhood
U ′, which is contained in f−1(Π(f)≤s). Continuity of f restricted to U ′ now
follows from the finite stratified case, see Lemma B.1.21, applied to the finite
substratification of f obtained from the union of strata in Π(f)≤s. □

Remark B.1.27 (Characteristic maps). Whenever a characteristic func-
tion is continuous we usually refer to it as a characteristic map.

Note, characteristic functions of general infinite (pre)stratifications need not
be continuous, as the next example illustrates.

Example B.1.28 (Discontinuous characteristic function). In Figure B.5
we depict a stratification of the closed interval with non-continuous charac-
teristic function. Note that the stratification is not locally finite.

46The name ‘frontier-constructible’ may be thought of as a reference to the observation
that in a frontier-constructible stratification the inclusions of closures of strata into the
full stratification induce constructible stratified bundles (with empty or singleton fibers).
Note also, that the condition equivalently asks for the characteristic map to be open, see
Lemma B.2.10.
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Figure B.5. A stratification with non-continuous character-
istic function.

As we will see in Lemma B.1.39, there is a precise characterization of those
functions f : X → P from a space to a finite poset which are characteristic
maps of stratifications.

Finally, let us revisit the relation of entrance paths and formal entrance
paths.

Definition B.1.29 (Pairwise path-connectedness). A stratification (X, f)
is called pairwise locally path-connected if for each pair of strata r, s ∈
Π(f) the union r ∪ s ⊂ X is locally path-connected.

Lemma B.1.30 (Conditions for dropping formality). Given a pairwise
locally path-connected stratification (X, f), and a formal entrance path from r
to s, then there exists an entrance path starting in r and with endpoint some
x ∈ s. Moreover, if (X, f) is frontier-constructible, then such a path can be
constructed for any x ∈ s.

Proof. The proof is straightforward. For the first statement, choose x
in the intersection r ∩ s and use pairwise local path-connectedness. For the
second part, note s ⊂ r. □

Observation B.1.31 (Fundamental posets via entrance paths). Note
that in a fronter-constructible stratification, the fundamental poset has an
arrow from r to s precisely when there is a formal entrance path from r
to s (i.e. the transitive closure is not needed). Let us call a stratification
‘reasonably regular’ when it is pairwise locally path-connected and also frontier
constructible. By the preceding lemma, the fundamental poset of a reasonably
regular stratification has an arrow from r to s precisely when there is an
(actual not formal) entrance path from r to s.

B.1.2. Poset structures and quotient maps. In this section we relate
our definitions of stratifications to the closely related but different notion of
poset structures on spaces.

Definition B.1.32 (Poset structures). Given a poset P , a P -structured
space (X, f) is a space X together with a continuous map f : X → P .

We will first show that characteristic maps of finite stratifications can be
understood as a certain class of poset structures. Later we will show that,
conversely, every poset structure can be universally split into a stratification.

Recall, a surjective continuous map f : X → Y of spaces is a quotient map
if for each subset U ⊂ Y we have that U is open if and only if f−1(U) is open.
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If Y is the specialization topology of a poset, we call f a ‘poset quotient’.
Poset quotients (to finite posets) admit the following useful characterization.

Notation B.1.33 (Covering relation). Given a poset (P,≤) its covering
relation is usually defined as follows: we say x ∈ P ‘covers’ y ∈ P , written
y <cov x, if y < x is non-refinable (that is, for any y < z < x we have either
y = z or z = x).

Lemma B.1.34 (Quotient maps to finite posets). For a space X, a finite
poset P , and a surjective continuous map f : X → P , the following are
equivalent:

(1) f is a quotient map,
(2) for any cover p <cov p′ in P there is a formal entrance path from

f−1(p) to f−1(p′).

Remark B.1.35 (A quotient of posets is a map that is surjective on
objects and on covers). In the lemma, if X is itself the specialization topology
on a poset Q, then the lemma simplifies to saying that f : Q → P is a
quotient map if and only if f is surjective on objects and on covers.

Proof of Lemma B.1.34. For p ∈ P , define Kp
0 to be the preimage

f−1(p). Set Ip0 = {p}. Let Ip1 be the set of q ∈ P such that f−1(q) intersects
the closure Kp

0. Note that continuity of f implies that p ≤ q for each q ∈ Ip1 .
Define Kp

1 to be the union of preimages f−1(q) of q ∈ Ip1 . Set Ip2 to be the
set of q ∈ P such that f−1(q) intersects the closure Kp

1, and define Kp
2 to

be the union of preimages f−1(q) of q ∈ Ip2 . Repeating this process, since P
is finite, we find an index j with Ipj = Ipj+1 and Kp

j = Kp
j+1 = K

p
j . Denote

these sets by Ip and Kp respectively.
First, assume f is a quotient map. Consider a cover p < p′. We claim it

is impossible that p′ /∈ Ip: indeed, the complement X \Kp is the preimage
of P \ Ip. Since X \ Kp is open and since f is a quotient map, it follows
that P \ Ip is open which contradicts the assumption that p < p′ and p′ /∈ Ip.
Thus assume p′ ∈ Ip. This implies f−1(p′) ⊂ Kp (and thus intersects Kp).
Then there is a sequence p = p0 < p1 < ... < pk = p′ with pi ∈ Ipi . Since
p < p′ is a cover we must have k = 1, meaning f−1(p′) intersects the closure
of f−1(p).

Conversely, assume f satisfies that for any cover p < p′ in P , the preimage
f−1(p′) intersects the closure of the preimage f−1(p). Let Q ⊂ P be a
subposet. Let IP\Q and KP\Q be the respective unions of all Ip and Kp

for each p ∈ P \ Q. If Q is open then f−1(Q) is open by continuity of f .
If f−1(Q) is open, then it must be disjoint from KP\Q (by construction of
KP\Q). Thus IP\Q = P \Q. Note that IP\Q is upward closed by our initial
assumption. It follows that Q is downward closed, i.e., open as required. □

A central role will be played by poset quotients whose equivalence classes are
connected in the following sense.
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Definition B.1.36 (Connected-quotient maps). For a space X and a
finite poset P , a continuous map f : X → P is called a connected-quotient
map if it is a poset quotient map whose preimages of points p ∈ P are
connected. (Note, we take ‘connected’ to also entail ‘non-empty’.)

Definition B.1.37 (Connected-quotient maps between posets). A
connected-quotient map f : Q → P where Q is a poset (endowed with
specialization topology) is a poset quotient whose preimages are connected
subposets of Q.

Example B.1.38 (Connected-quotient map). In Figure B.6 we depict
three maps from the circle to three different posets (color coding images and
preimages in the same color). The first map is a connected-quotient map; the
second map fails to be a quotient map despite having connected preimages,
the third map is a quotient map but fails to have connected preimages.

Figure B.6. A connected-quotient map and non-examples.

We now characterize stratifications among P -structures.

Lemma B.1.39 (Characteristic maps are connected-quotient maps). For
a space X, a finite poset P , and a P -structure f : X → P , the following are
equivalent:

(1) f is the characteristic map of a stratification (that is, the decompo-
sition of X into preimages of f is a stratification with characteristic
map f and fundamental poset Π(f) = P ),

(2) f is a connected-quotient map.

Proof. If f is a characteristic map then, by definition, it has connected
preimages and satisfies the second condition in Lemma B.1.34. Thus f is a
connected-quotient map.

Conversely, if f is a connected-quotient map, then f defines a stratifi-
cation by decomposing X into the preimages of f (which are connected by
Definition B.1.36). By Lemma B.1.34 the map f : X → P is exactly the
characteristic map of this stratification. □

Observation B.1.40 (Connected-quotient maps compose). Using the
definition of connected-quotient maps one verifies that, given a connected-
quotient map X → P (of some finite stratification on X) and a connected-
quotient map P → Q (of some finite stratification of P ), their composite
X → Q yields another connected-quotient map.
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As an immediate corollary of Lemma B.1.39, this observation implies that
characteristic maps of finite stratifications compose. As we will see, composi-
tions of characteristic functions describe coarsenings (see Lemma B.2.12).

We end with the remark that similar results hold in the infinite case: the
correspondence of characteristic maps and connected-quotient maps from
Lemma B.1.39 may be generalized to the context of infinite stratifications by
characterizing characteristic functions as finitely connected-quotient maps
(analogous to the notion of finite continuity in Lemma B.1.21), but we forego
a discussion of the infinite (and the locally finite) case here.

B.1.3. Factoring poset structures into stratifications and labelings.
In this section we show that any poset structure factors into a stratification
followed by a labeling. A labeling of a stratification in a category C functorially
associates data in C to the strata and the formal entrance paths of that
stratification.

Terminology B.1.41 (Labelings). Let C be a category, and (X, f) a
(pre)stratification. A ‘C-labeling’ (or simply a ‘labeling’) of (X, f) in C is a
functor L : Π(f)→ C. If C is a poset, we also call L a ‘poset labeling’.

We briefly remark on the following higher categorical generalization: instead
of considering labelings as functors from the fundamental (preorder or)
poset of a (pre)stratification, one may of course also consider functors from
the fundamental category or fundamental ∞-category, as defined later in
Definition B.3.10.

Example B.1.42 (Specialization labelings). Let (X, f) be a finite
(pre)stratification. The ‘specialization labeling’ of X associated to f is
the labeling of the discrete prestratification of X → SpclX given by the
functor Spcl f : SpclX → Π(f) (obtained by applying the specialization
topology functor to the continuous map f : X → Π(f)).

We now show that any P -structure canonically factors as a stratification
with a discrete labeling on that stratification. This factorization is referred
to as the P -structure’s connected component splitting. Discreteness of the
labeling will mean the following.

Terminology B.1.43 (Discrete map). A map of posets F : Q → P
is called a ‘discrete map’ if its preimages are discrete, that is, for each
p ∈ P the preimage F−1(p) contains no non-identity arrows. Note that
the condition is equivalent to requiring F to be a conservative functor of
categories Q→ P .

Construction B.1.44 (Connected component splittings). For a P -
structure f : X → P , the connected component splitting of f is the
factorization

f = (X
char(f)−−−−→ cmpnt(f)

discr(f)−−−−→ P )
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defined as follows. The map char(f) is the characteristic function of the
stratification decomposing X into the connected components of preimages
of f ; note that the formal entrance path graph cannot have cycles since
P is assumed to be a poset and f to be continuous. The discrete map
discr(f) : cmpnt(f)→ P maps a given connected component of a preimage
f−1(p) back to p.

Note that even if f : X → P is continuous, the characteristic func-
tion char(f) need not be continuous (see Example B.1.46). We point out
three universal properties of connected component splittings: universality
among connected-quotient factorizations, universality among discrete map
factorizations, and uniqueness among connected-quotient and discrete map
factorizations.

Lemma B.1.45 (Universality of connected component splitting). Let
f : X → P be a P -structure. Assume f factors into maps g : X → Q and
b : Q → P , where g is continuous and b a map of posets. Consider the
following diagram:

Q

X P

cmpnt(f)

b
f

g

char(f) discr(f)
.

(1) Characteristic map universality: If g is characteristic, then there
is a unique poset map Q → cmpnt(f) making the above diagram
commute.

(2) Discrete map universality: If b is a discrete map, then there is a
unique poset map cmpnt(f) → Q making the above diagram com-
mute.

(3) Combined universality: If g is characteristic and b is a discrete map,
then there is a unique poset isomorphism Q ∼= cmpnt(f) making the
above diagram commute.

Proof. We first prove statement (1). Since g is characteristic it has con-
nected preimages. Thus its preimages must lie in the connected components
of preimages of f . The map Q→ cmpnt(f) is the inclusion of strata of g into
strata of char(f).

We next prove statement (2). We first show that preimages of g are
unions of strata of char(f) (i.e., connected components of preimages of f).
Let Z be a connected component of a preimage of f . Let {qZi }i∈I be the set
of objects in Q whose preimages rZi = g−1(qZi ) intersect Z. Note that, since
b is assumed to be a discrete map, there are no arrows between any qZi in Q.
Let QZ

i be the downward closure of qZi in Q. Since g is assumed continuous,
we have a disjoint open cover ⊔ig−1(QZ

i )∩Z of Z. Since Z is connected, the
indexing set I must be of cardinality 1. This shows that preimages g−1(q)
of g are unions of connected components Z of preimages of f . The map
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cmpnt(f)→ Q can then be defined by mapping the strata Z ⊂ g−1(q) back
to q.

The final statement (3) follows from combining statements (1) and (2). □

Example B.1.46 (Translating P -structures into stratifications). The
map on the left in Figure B.6 determines a stratification. This stratification
is recovered from the two P -structures shown on the right by connected
component splitting. In particular, there are many P -structures with the same
underlying stratification. In Figure B.7 we depict another P -structure (again
coloring images and preimages in the same color); its connected component
splitting recovers the stratification from Figure B.5 with non-continuous
characteristic function.

Figure B.7. A non-continuously splitting poset structure.

B.1.4. Relation to other notions of stratifications. Using the construc-
tions from the preceding sections, we now describe the relation of our notion
of stratifications to two other frequently used definitions of stratifications,
namely to P -stratifications and S-filtered spaces.

Remark B.1.47 (Relation of stratifications and P -stratifications). Our
notion of a P -structure, given by a continuous map from X to P , is also known
as a ‘P -stratification’ (see [Lur12, Def. A.5.1]). Given a P -stratification
f : X → P we can construct a stratification with characteristic map char(f)
obtained by connected component splitting from Construction B.1.44 (note
that there may be many different P -stratifications f : X → P that lead to the
same stratification in this way). Conversely, every locally finite stratification
(X, f) arises as the connected component splitting of a P -stratification; indeed,
by Lemma B.1.26, we can simply set P = Π(f) and the characteristic map
f : X → P will be continuous.

Remark B.1.48 (Relation of stratifications and S-filtered spaces). Given
a poset S with unique minimal element ⊥, an ‘S-filtration’ of a space X is
a collection of closed subsets Xs, s ∈ S, such that X⊥ = X and Xs ⊂ Xt if
s ≥ t in S (see [GM88, §III.2.1], up to opposite poset conventions). This
defines a continuous map fS : X → S, mapping points in the subspace
Xt \

⋃
s>tXs to t ∈ S. The characteristic function char(fS) of the connected

component splitting of fS yields a stratification in our sense. Conversely,
every stratification (X, f) with continuous characteristic map f : X → Π(f)
yields a Π(f)◁-filtration of X by setting Xs = f−1(Π(f)≥s) (here, Π(f)◁ is the
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poset obtained by adjoining a new bottom element ⊥ to Π(f), and Π(f)≥s is
the upper closure of an element s in Π(f)).47

B.1.5. Stratified realizations of posets. In this section we discuss that
the geometric realization of any poset P itself carries canonically the structure
of a stratification, called the stratified realization of P .

Remark B.1.49 (Nerves of posets). Recall the nerve NP of a poset
(P,≤) is the simplicial set whose m-simplices S are the length-m chains of
composable arrows in P ; in other words, an m-simplex is a map of posets
S : [m] → P . The simplex S : [m] → P is called nondegenerate if it is
injective.

Remark B.1.50 (Geometric realizations of posets). Recall the ‘geometric
realization’ |P | of a poset P is obtained by applying the geometric real-
ization of simplicial sets to the nerve of P . Explicitly, |P | is the space of
functions w : obj(P )→ R≥0 whose support supp(w) ⊂ obj(P ) is the object
set of a nondegenerate simplex in P , and whose total weight is fixed, i.e.,∑

p∈obj(P )w(p) = 1. We refer to such w as a ‘convex combination of objects’
of the poset.

Construction B.1.51 (Stratified realizations of posets). The geometric
realization |P | of a poset P has a stratification ∥P∥, called the stratified
realization, with fundamental poset P itself, constructed as follows: the
characteristic function of ∥P∥ sends a convex combination w of objects of
the poset to the minimal object min(supp(w)) (in P ) of the support of that
convex combination:

∥P∥ : |P | → P , w 7→ min(supp(w)) ∈ P.
The stratum corresponding to the object p ∈ P is denoted str(p) ⊂ ∥P∥; it
consists of all convex combinations w of objects weakly greater than p, whose
value at p is nonzero.

As we will see later in Construction B.2.14, stratified realization of
posets extends to a functor from the category of posets to the category of
stratifications.

Example B.1.52 (Stratified realizations). We illustrate three stratified re-
alizations in Figure B.8: from left to right, we depict the stratified realizations
∥P∥ of the ‘1-cell poset’ P = {−1← 0→ 1}, the 2-simplex P = {0→ 1→ 2}
and the product of two 1-simplices P = {0→ 1} × {0→ 1}.

B.2. Stratified maps
11 : Probably some
words belong here (cf
B.1/B.3). If not
need a nobreak.
12 : Probably some
words belong here as
well (cf B.1.1/B.3.1).
If not need a no-
break.

B.2.1. Maps, coarsenings, and substratifications.

47In fact, in the case of finite stratifications, we can always recover (X, f) from an N-
filtration of X. Define a depth map depth : Π(f) → Nop, mapping s ∈ Π(f) to k
if chains in Π(f) starting at s have maximal length (k + 1). Define the filtration
X0 ⊂ X1 ⊂ ... ⊂ Xkmax = X, where kmax is the maximal depth of elements in Π(f), by
setting Xi to be the preimage of [0, i] under the composite depth ◦ f .
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∥{−1← 0→ 1}∥ ∥{0→ 1→ 2}∥ ∥{0→ 1} × {0→ 1}∥

Figure B.8. Stratified realizations of posets

Definition B.2.1 (Map of stratifications). Given stratifications (X, f)
and (Y, g) with respective characteristic maps f : X → Π(f) and g : Y →
Π(g), a map of stratifications F : (X, f) → (Y, g) is a continuous map
F : X → Y for which there exists a (necessarily unique) map of posets
Π(F ) : Π(f)→ Π(g) such that Π(F ) ◦ f = g ◦ F .

Terminology B.2.2 (Stratified maps). We frequently refer to maps of
stratifications simply as ‘stratified maps’.

Example B.2.3 (Map of stratifications). In Figure B.9 we depict a
stratified map on the left and a non-stratified map on the right. In both
cases, the underlying map of topological spaces is given by vertical projection.

Figure B.9. A stratified map and a non-stratified map.

Definition B.2.4 (Coarsenings and refinements of stratifications). A
map of stratifications F : (X, f)→ (Y, g) is a coarsening of (X, f) to (Y, g),
or, synonymously, a refinement of (Y, g) by (X, f), if the underlying map
of spaces F : X → Y is a homeomorphism.

Note that we use coarsening and refinement as synonyms of dual flavor,
i.e., describing dual processes: a coarsening coarsens the domain, while a
refinement, in opposite direction, refines the codomain.

Example B.2.5 (Coarsening and refinement). In Figure B.10 we illustrate
a coarsening of stratifications on the circle, along with the corresponding
refinement indicated by a dashed arrow in opposite direction.

Definition B.2.6 (Substratification). A stratified map (X, f)→ (Y, g)
is a substratification if the underlying map X ⊂ Y is an inclusion and if
every stratum s of f is a connected component of X ∩ t for some stratum t
of g.
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coarsening

refinement

Figure B.10. A coarsening and its corresponding refinement
of stratifications.

By extension we refer to stratified maps that are not inclusions of underlying
sets, but whose underlying map is injective and a stratified homeomorphism
onto a substratification, also as ‘substratifications’.

Example B.2.7 (Substratification). In Figure B.11 we depict two strati-
fied maps: the first is a substratification, which though is not injective on
fundamental posets; the second is a substratification which is injective on
fundamental posets (and, in fact, it is a constructible substratification as we
define below). In Figure B.12 we depict a map that is a stratified map whose
underlying map is injective, but which fails to be a substratification.

Figure B.11. Two substratifications.

Figure B.12. A stratified map that is not a substratification.

Definition B.2.8 (Stratification restrictions). Given a stratification (Y, g)
and a subspace X ⊂ Y , the restriction (X, g|X) (also simply written (X, g))
is the substratification of (Y, g) whose strata are the connected components
of intersections X ∩ t for all strata t of g.

Definition B.2.9 (Constructible substratifications). A substratification
(X, f) → (Y, g) is constructible if every stratum of (X, f) is exactly a
stratum of (Y, g).

B.2.2. Classifying stratifications via stratified maps. In this sec-
tion we briefly discuss how three classes of stratifications, namely, frontier-
constructible stratifications, substratifications, and coarsened stratifications,
can be understood in terms of maps.
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Recall from Definition B.1.24, a frontier-constructible stratification is
a stratification (Y, g) in which the topological closure s of each stratum s
yields a constructible substratification (s, g|s) of g (by restricting g to s).
Frontier-constructibility has an alternative description purely in terms of
characteristic functions as follows.

Lemma B.2.10 (Frontier-constructible stratifications are those with open
characteristic function). A stratification (X, f) is frontier-constructible if and
only if the characteristic function f : X → Π(f) is an open map.

Proof. Assume f is frontier-constructible. Let U ⊂ X be an open subset.
We need to show that f(U) ⊂ Π(f) is open, which in the specialization
topology means that f(U) is downward closed. It suffices (because the
fundamental poset is generated by formal entrance paths) to check that given
an element s ∈ f(U) and a formal entrance path r → s, we have r ∈ f(U).
The existence of the formal entrance path r → s means s ∩ ∂r ̸= ∅; frontier-
constructibility then implies that s ⊂ ∂r. As s ∈ f(U), there is some point
of the stratum s that is in U , and because U is open, there must be a point
of the stratum r that is in U . Thus r ∈ f(U) as required.

Conversely, assume f : X → Π(f) is open. It suffices to show that if there
is a formal entrance path r → s, i.e., s ∩ ∂r ≠ ∅, then s ⊂ ∂r. Suppose there
is such an entrance path but by contrast there is a point p ∈ s \ ∂r = s \ r.
Then we can choose an open neighborhood p ∈ U ⊂ X disjoint from the
closure r. By assumption it follows that the image f(U) is open, which is
to say downward closed; thus s ∈ f(U) and r → s implies that r ∈ f(U),
contradicting the fact that the neighborhood U does not intersect even the
closure of r. □

We can characterize substratifications and coarsenings in terms of funda-
mental poset maps, as follows.

Lemma B.2.11 (Substratification from discrete maps). A map of finite
stratified spaces F : (X, g) → (Y, f) is a substratification if and only if
F : X → Y is a subspace inclusion and Π(F ) : Π(g) → Π(f) is a discrete
map.

Proof. By definition every substratification is a subspace inclusion of
underlying spaces. The fact that Π(F ) is a discrete map follows since strata
of substratifications are defined as connected components of the intersection
of the subspace X with strata of f , and since Π(f) is a poset.

Conversely, assume the stratified map F is a subspace inclusion and that
Π(F ) is a discrete map. Note that the substratification (X, f |X) of f is
obtained exactly by connected component splitting of f ◦ F : X → Π(f),
see Construction B.1.44. Since g is a continuous characteristic map, and
since Π(F ) is a discrete map, statement (3) of Lemma B.1.45 (applied to
f : Y → Π(f) restricted to X ⊂ Y ) shows that F is a substratification as
claimed. □
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Lemma B.2.12 (Coarsenings from connected-quotient maps). Let (X, f)
be a finite stratification. Coarsenings of f (up to isomorphism) are canonically
in bijection with connected-quotients of Π(f): namely, the bijection takes
coarsenings F to their fundamental poset maps Π(F ).

Proof. Let F : (X, f) → (X, g) be a coarsening. Then Π(F ) is a
connected-quotient map since its preimages are connected and it satisfies
condition (2) in Lemma B.1.34.

Conversely, let H : Π(f) → P be a connected-quotient map. Define a
stratification (X, g) whose strata are unions of those strata in f that are
mapped to the same object in P underH. Since preimages ofH are connected,
these unions are connected subspaces of X and thus define a prestratification.
In fact, since H is a connected-quotient map to a poset P , this defines a
stratification with fundamental poset Π(g) = P , see Lemma B.1.39. The
resulting coarsening (X, f)→ (X, g) is the identity on the underlying space
X, and maps fundamental posets by H. □

Again, we forego discussing analogs of the above results for the case of infinite
(and locally finite) stratifications.

B.2.3. The category of stratifications. Having defined stratified spaces
and maps, we now obtain the category of stratifications.

Terminology B.2.13 (The ordinary category of stratifications). Denote
by Strat the category of stratifications and their stratified maps.

Posets faithfully embed into stratifications by the stratified realization functor
as follows (recall the construction of stratified realizations ∥P∥ of posets P
from Construction B.1.51).

Construction B.2.14 (Stratified realization functor). Given a map of
posets F : P → Q, then the map ∥F∥ : ∥P∥ → ∥Q∥, mapping ∥F∥ (w)(q) =∑

p∈F−1(q)w(p), is a stratified map. This yields the ‘stratified realization’
functor

∥−∥ : Pos→ Strat

from the category of posets to the category of stratifications.

Conversely, the fundamental poset construction previously described yields a
functor from the category of stratifications to the category of posets.

Construction B.2.15 (Fundamental poset functor). The association
of the fundamental poset Π(f) to the stratification (X, f), and of the map
of posets Π(F ) to the map of stratifications F : (X, f)→ (Y, g) provides the
‘fundamental poset’ functor

Π : Strat→ Pos

from the category of stratifications to the category of posets.
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Observation B.2.16 (The fundamental poset inverts stratified real-
ization). The preceding functors form a section-retraction pair: namely,
Π ∥−∥ = id.

We can further promote the fundamental poset functor to a functor of
∞-categories. We usually model ∞-categories using Top-enriched categories
(or else, using quasicategories). For generality, the constructions below will
be given in the case of kTop-enriched categories (see Notation B.1.2). Indeed,
while our interest usually lies with homotopically well-behaved ‘cell-like’
spaces in Top, working with kTop will precisely allow us to include the case
of stratified ‘poset-like’ spaces (see Convention B.1.1).

Notation B.2.17 (The kTop-enriched category of stratifications). Denote
by Strat the kTop-enriched category of stratified spaces and their stratified
maps: hom spaces Strat((X, f), (Y, g)) are topologized as subspaces of the
internal hom Map(X,Y ) in kTop (see Notation B.1.2).

Note that restricting attention only to spaces X ∈ Top similarly yields a
Top-enriched category of stratifications.

We next define the kTop-enriched category of posets. It will be convenient
to assume local finiteness at this point (though it is possible to generalize
the discussion below to other cases as well). For the rest of this section we
will assume basic familiarity with the categorical theory of (core) compactly
generated spaces; see [ELS04] for an excellent introduction. We first record
the following useful technical facts.

Observation B.2.18 (Properties of locally finite posets). Let P and Q
be locally finite posets.

(1) Local finiteness of P implies that P is core compact, and thus
exponentiable (see [ELS04, Def. 2.8 & Thm. 2.9]).

(2) By probing P with compact Hausdorff probes
∣∣P≤x

∣∣→ P≤x ↪→ P
one verifies that P is compactly generated (see [ELS04, Def. 3.1]).

(3) The internal hom Map(P,Q) in kTop is the k-ification of the space
C0(P,Q), defined as the set of continuous maps F : P → Q (which,
in our case, are exactly poset maps P → Q) with topology given
by subbasic opens M(U, V ) = {F | U ≪ F−1(V )} for open U ⊂ P
and open V ⊂ Q (note, ‘≪’ indicates that U is relatively compact
in F−1(V ), see [ELS04, Def. 4.1, Prop. 5.11, Thm. 5.15]).

(4) Given an open set V ⊂ P and open set U ⊂ P that is relatively
compact in V then U must be finite. Indeed, consider the open
cover {V ≤x | x ∈ V }. By relative compactness, there exists a finite
subcover. By local finiteness of P this subcover only contains finitely
many objects. Conversely, any finite open U ⊂ V is relatively
compact. We may thus work with subbasic opens M(U, V ) =
{F | F (U) ⊂ V } for finite open U ⊂ P and open V ⊂ Q.
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Notation B.2.19 (The kTop-enriched category of locally finite posets).
The kTop-enriched category Pos lf of locally finite posets is the kTop-enriched
category obtained by topologizing hom sets Pos(P,Q) using the internal homs
Map(P,Q) in kTop.

Remark B.2.20 (The case of finite posets). For finite posets P and Q,
the space Map(P,Q) is exactly the hom poset Pos(P,Q) of poset functors
and natural transformations endowed with specialization topology.

Construction B.2.21 (Fundamental poset ∞-functor). Let Stratlf de-
note the full subcategory of Strat consisting of locally finite stratifications.
The fundamental poset functor Strat→ Pos induces an ∞-functor of kTop-
enriched categories

Π : Stratlf → Pos lf .

The continuity of the functor on hom spaces can be derived using standard
arguments as follows. We need to check that Π : Stratlf((X, f), (Y, g)) ↪→
Map(X,Y ) → Pos lf(Π(f),Π(g)) is continuous. Recall Pos lf(Π(f),Π(g)) =
kC0(Π(f),Π(g)) (see Observation B.2.18). Since k-ification is a right ad-
joint, it suffices to check continuity of the underlying function mapping into
C0(Π(f),Π(g)). Pick a subbasicM(U, V ) for the latter space. Since U is finite,
we can pick a finite compact set K = {ps ∈ f−1(s) | s ∈ U}, K ⊂ X. Since
g is locally finite, the characteristic map g : Y → Π(g) is continuous. Thus
W = g−1(V ) is open in Y . Then M(K,W ) = {F : X → Y | F (K) ⊂ W}
is an open subset of Map(X,Y ) (see [Str09, Def. 2.8]), and its intersection
with Stratlf((X, f), (Y, g)) equals Π−1M(U, V ), showing the latter is open as
required.

Remark B.2.22 (Stratified realization ∞-functor). Converse to the pre-
ceding construction, one can try to construct a functor ∥−∥ : Pos lf → Stratlf .
However, while ∥P∥ is locally finite if P is, this functor is not continuous on
hom spaces. For example, consider ∥−∥ : Pos lf([0], [1])→ Stratlf(∥[0]∥ , ∥[1]∥).
Choose a subbasic M({0}, (1− ϵ, 1]), ϵ > 0, in the latter space. Neither of
the subbasics M({0}, {0→ 1}) and M({0}, {0}) includes in the preimage of
that subbasic.

This failure is symptomatic of an earlier mistake, as was detailed in
Remark 4.2.17: Pos lf and Strat have non-invertible 2-categorical structure
that gets inverted by working with topologically enriched categories.

Finally, we also mention a tensoredness property of stratifications. We
assume the underlying space of stratifications to be locally compact Hausdorff
spaces for the next two constructions (see [Str09, Prop. 2.6]).

Construction B.2.23 (Stratified products). Given two stratifications
(X, f) and (Y, g), the product stratification is simply (X ×Y, f × g) where
f × g is the characteristic function X × Y → Π(f)×Π(g) obtained by taking
the product of characteristic functions f : X → Π(f) and g : Y → Π(g).
One further defines products of stratified maps by taking products of their
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underlying continuous maps. This yields the topological ‘product’ functor

(−×−) : Strat × Strat → Strat .

Taking products with topological spaces provides a ‘fiberwise Top-tensor’ on
the category of stratified spaces as follows.

Construction B.2.24 (Fiberwise Top-tensoredness of Stratlf). Let (X, f)
and (Y, g) be locally finite stratifications and F : Π(f) → Π(g) a map of
their fundamental posets. Denote by Stratlf(f, g)F the preimage of F of the
map Π : Stratlf(f, g)→ Pos lf(Π(f),Π(g)). Using cartesian closedness of Top,
identify Map(Z,Map(X,Y )) ∼= Map(Z ×X,Y ) (for Z ∈ Top); in particular,
we obtain a homeomorphism

Map(Z, Stratlf(f, g)F ) ∼= Stratlf(Z × f, g)F
where the right hand side denotes the space of stratified maps Z × f → (Y, g)
whose underlying map of fundamental posets is F (noting Π(Z × f) ∼=
Π(f))).

B.2.4. Stratified bundles and pullbacks. A stratified bundle is a strati-
fied map that is locally trivial along each stratum of the base. The notion
generalizes the ordinary notion of fiber bundles of topological spaces. We
assume all spaces in this section to be locally compact Hausdorff spaces.

Definition B.2.25 (Stratified bundles). A stratified map p : (X, f)→
(Y, g) is a stratified bundle if for each stratum s of g and each point
x ∈ s, there is a neighborhood Ux ⊂ s inside the stratum s, such that
there is a stratification (Z, h) together with an isomorphism of stratifications
τ : Ux × h ∼= (p−1(Ux), f) for which p ◦ τ : Ux × h → Ux is the projection.
The stratification (Z, h) is called the fiber of p over the stratum s.

Note that every fiber bundle is naturally a stratified bundle with indiscrete
stratifications on both base and total space. We will usually further assume
that all the fibers of a stratified bundle are non-empty, in other words that
the underlying map of spaces is surjective. In this case the stratification of
the total space determines the stratification of the base space.

Observation B.2.26 (The base stratification is determined by the total
stratification). Suppose (X, f) → (Y, g) and (X, f) → (Y, g′) are stratified
bundles with the same underlying surjective map F : X → Y . Then the
stratifications g and g′ are equal.

Just as fiber bundles can be pulled back along continuous maps, stratified
bundles can be pulled back along stratified maps. Here, a pullback of stratified
maps means the following.

Definition B.2.27 (Pullbacks of stratifications). Given stratifications
(X, f), (Y, g), and (Z, h) and maps F : f → h and G : g → h, the pullback
stratification (X, f)×(Z,h) (Y, g) is the stratification (X×Z Y, f×h g), where
X ×Z Y is the pullback of spaces and f ×h g is the restriction f × g|X×ZY of
the product stratification f ×g to the pullback space X×Z Y ⊂ X×Y .
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Example B.2.28 (Pullback stratifications need not be finite or have con-
tinuous characteristic function). In Figure B.13 we depict a pullback of finite
stratifications that is not finite and does not have continuous characteristic
function.

Figure B.13. Pullbacks of stratifications need not preserve
finiteness.

Observation B.2.29 (Pullbacks of stratified bundles). Given a stratified
bundle p : (X, f) → (Y, g) and a stratified map F : (Y ′, g′) → (Y, g), then
the pullback map (X ×Y Y

′, f ×g g
′)→ (Y ′, g′) is a stratified bundle itself,

usually denoted by F ∗p : F ∗f → g′. This follows since stratified maps map
strata into strata, which allows us to ‘pull back’ trivializations of p over
neighborhoods in strata of g to trivializations of F ∗p over neighborhoods in
strata of g′.

Remark B.2.30 (Constructible bundles). There is a natural strength-
ening of the notion of stratified bundles, namely to so-called ‘constructible
bundles’ [GV72, Tre09, MS22]. The condition of ‘constructibility’ requires
that bundles can be reconstructed up to isomorphism from functorial data
associated to the fundamental categorical structure of their base stratifica-
tions (here, ‘fundamental categorical structure’ may refer, for example, to
the fundamental poset, fundamental category, fundamental ∞-category, or
another variation thereof).

B.3. Conical and cellulable stratifications

We recall notions of conical and cellulable stratifications. Both are
niceness conditions on stratifications. Lurie shows in [Lur12, App. A] that
conical stratifications have fundamental ∞-categories, providing a natural
generalization of fundamental ∞-groupoids of spaces. We will provide a
similar (but simpler) construction in the case of cellulable stratifications.

B.3.1. Conical stratifications. Many of the stratifications in this book
satisfy an additional regularity condition called conicality. This condition
requires neighborhoods around strata that look like the product of a cone
normal to the stratum and an open set tangential in the stratum. Let us
first formalize the operation of taking cones on stratifications.
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Terminology B.3.1 (Stratified cones). Given a stratification (X, f),
we can define its open cone cone(f) to be the unique stratification of
cone(X) = X× (0, 1]∪X×{1}⊤ containing f × (0, 1) (see Construction B.2.23)
as a constructible substratification on X × (0, 1).

Similarly, one defines the closed cone cone(f) to be the stratification
of cone(X) = X × [0, 1] ∪X×{1} ⊤ which contains f as a constructible sub-
stratification on X × {0} and cone(f) as a constructible substratification on
cone(X).

Note that the poset Π(cone(f)) is Π(f)▷, i.e., obtained from Π(f) by
adding a new terminal element ⊤. The map cone(f) sends the cone point ⊤
to ⊤ ∈ Π(f)▷.

Definition B.3.2 (Conical stratification). A tubular neighborhood of
a point x of a stratification (X, f) is a neighborhood Ux of x, together with a
stratified space (Yx, link(x)), called a link at x, a connected topological space
Zx, called the tangential neighborhood, and a stratified homeomorphism

Zx × cone(link(x)) ∼= (Ux, f |Ux)

sending z ×⊤ to x, for some z ∈ Zx. (Here ⊤ is the cone point in the cone
cone(link(x)).) A stratification is conical if it has a tubular neighborhood at
every point.

Example B.3.3 (Conical and non-conical stratifications). In Figure B.14
we illustrate an example of a conical stratification, together with an illustration
of a tubular neighborhood as a product of a cone and a space. By contrast,
in Figure B.15 we depict two stratifications (the latter of the same space
as before, but now decomposed into only two strata) which are not conical
stratifications.

×=

=

cone( )

Figure B.14. A conical stratification with a tubular neigh-
borhood.

Remark B.3.4 (Topological stratifications). A conical stratification in
which every stratum is a topological manifold is usually (and maybe confus-
ingly) called a ‘topological stratification’. In this situation, the tangential
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(X, f) (Y, g)

Π(f) = Π(g) =

Figure B.15. Two non-conical stratifications and their fun-
damental posets.

spaces Zx can always be chosen to be euclidean. The conical stratification
shown in Figure B.14 is a topological stratification. An instance of a coni-
cal stratification (with two strata) that is not a topological stratification is
depicted in Figure B.16.

Figure B.16. A conical stratification that is not topological.

Observation B.3.5 (Constructible substratifications inherit conicality).
If the stratification (X, f) is conical and (Y, g) ↪→ (X, f) is a constructible
substratification (Definition B.2.9), then the stratification (Y, g) is also conical.

Observation B.3.6 (Coarsening need not preserve conicality). If the
stratification (X, f) is conical and (X, f)→ (X, g) is a coarsening, then the
stratification (X, g) need not be conical.

Remark B.3.7 (Conical implies frontier-constructible). Every conical
stratification is frontier-constructible (see Definition B.1.24). In particular,
a conical stratification is locally finite if and only if its fundamental poset
is.
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Proposition B.3.8 (Locally finite stratified realizations are conical).
The stratified realization ∥P∥ (see Construction B.1.51) of any locally finite
poset P is conical.

Proof. For any poset element p ∈ P , and any point x ∈ str(p) of the
corresponding stratum, we construct a tubular neighborhood, which is in fact
independent of the choice of x within the stratum. Recall, the points of the
stratum str(p) correspond to convex combinations of objects in P≥p (with
non-zero coefficient for p). The canonical link stratification at any such point,
written link(p), is defined to be ∥P<p∥. Note that since P≥p and P<p include
into P we may trivially extend convex combinations of objects in the former
to convex combination of objects in P . The resulting inclusion str(p) ↪→ ∥P∥
extends to a tubular neighborhood str(p)× cone(link(p)) ↪→ ∥P∥ by mapping
(cf. [Lur12, Prop. A.6.8])

str(p)× link(p)× (0, 1]→ ∥P∥
(wstr(p), wlink(p), t) 7→

(
w(q) := t · wstr(p)(q) + (1− t) · wlink(p)(q)

)
This verifies conicality of ∥P∥ as claimed. □

Remark B.3.9 (Natural non-conical stratifications). Some natural oper-
ations lead outside the realm of conical stratifications. For example, while
the stratified n-simplex ∥[n]∥ is conical by the preceding result, the sub-
stratification determined by the simplex boundary, denoted by ∂ ∥[n]∥, is
not.

B.3.2. Fundamental higher categories. A central reason for considering
conical stratifications is the availability of a good notion of (higher) entrance
path homotopies between entrance paths, leading to a definition of fundamen-
tal ∞-category which we present below. While we usually take ∞-category
to mean Top-enriched category, in the context of fundamental ∞-categories
of stratifications, we work in terms of quasicategories instead. (In fact, we
will later sketch yet another definition given in terms of ‘categories with weak
equivalences’).

Definition B.3.10 (Fundamental ∞-category, [Lur12, Rmk. A.6.5]).
The fundamental∞-category Π∞(f) of a conical stratification (X, f) is the
quasicategory with underlying simplicial set having as m-simplices maps of
the stratified m-simplex ∥[m]∥ to f ; that is Π∞(f)m := Strat(∥[m]∥ , f).

Equipped with this notion of fundamental ∞-category, we may recover the
fundamental poset and also a notion of fundamental 1-category by a process
of categorical truncation, as follows.

Remark B.3.11 (Periodic table and truncations of categories). Recall,
an (n, k)-category, where 0 ≤ k ≤ n + 1, is a category that may have a
non-trivial hom sets of i-morphisms for 0 ≤ i ≤ n (non-trivial meaning ‘more
than one object’), and any i-morphism with i > k is an equivalence (i.e.,
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has an inverse up to higher equivalences). Common cases include (1, 1)-
categories (i.e., ordinary 1-categories), (∞, 1)-categories (which we also refer
to as ∞-categories), and (∞, 0)-categories (also known as ∞-groupoids). But
the classification also has interesting low-dimensional edge cases: (−1, 0)-
categories are the booleans, (0, 0)-categories are sets, and (0, 1)-categories
are preorders (and thus, up to equivalence of preorders, posets).

Keeping the preceding examples in mind, we give a brief description of
the construction of (n, k)-truncations of (m, l)-categories C in two cases.
First, when k = n + 1, then the (n, n + 1)-truncation τn,n+1C is obtained
from C by replacing any non-trivial hom set of (n+1)-morphisms by a trivial
set; in other words, by a boolean (up to the map Set → Bool that detects
non-emptiness). Second, if k = n, and l ≤ n, then the (n, n)-truncation τn,nC
is obtained from C by replacing (n+1)-morphisms by strict equalities.48

Terminology B.3.12 (0-truncations and 1-truncations). A technically
convenient notion of truncations in the preceding sense, that applies to
quasicategories as a model of (∞, 1)-categories, is described in [CL18].
Therein, (0, 1)-truncations are referred to simply as ‘0-truncations’, and
(1, 1)-truncations are referred to simply as ‘1-truncations’. We adopt this
convention when no confusion arises.

Observation B.3.13 (Fundamental poset truncation). For a conical
stratification (X, f), the 0-truncation of the fundamental ∞-category Π∞(f)
is the fundamental poset Π(f), i.e., τ0,1Π∞(f) = Π(f).

Construction B.3.14 (Fundamental 1-categories). The fundamental
1-category Π1(f) of a conical stratification (X, f) is the 1-truncation of the
fundamental ∞-category Π∞(f).

A direct definition of the fundamental 1-category, not using the fundamental
∞-category or categorical truncation, proceeds using path components of the
space of entrance paths (see [Woo09]).

Remark B.3.15 (The fundamental ∞-categories of stratifications). The
class of∞-categories that are (up to equivalence) obtained as the fundamental
∞-categories of conical stratifications can be characterized as precisely the∞-
categories with a conservative functor to a poset (see [BGH18, §2.1]). Thus,
they could reasonably be called ‘∞-posets’: ∞-posets are to posets, what
∞-groupoids are to sets, and what ∞-categories are to categories (indeed, in
each case the left hand term is fully characterized as having a conservative
truncation to the right hand term).

48A general definition of (n, k)-truncation can be given in a similar spirit, but would require
us to give a precise definition of the structure needed for a general i-morphism to be an
equivalence (several, mostly equivalent technical frameworks could be chosen for this
purpose): indeed, an (n, k)-truncation, k < n, keeps only equivalences as i-morphisms of
the original category when i > k, and replaces equivalence by strict equality in dimension
(n+ 1).
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Recall that an ∞-category is called 0-truncated if its hom spaces are
(−1)-types, meaning they are either empty or contractible.

Lemma B.3.16 (Fundamental∞-category of stratified realizations). Given
a locally finite poset P , the fundamental ∞-category of its stratified realization
∥P∥ is equivalent to (the nerve of) P , that is,

Π∞ ∥P∥ ≃ NP.
In particular, Π∞ ∥P∥ is 0-truncated (see [CL18]).

Proof. We first check that C ≡ Π∞ ∥P∥ is 0-truncated. It suffices
[CL18, Prop. 3.12] to show that any sphere ∂[m]→ C, for m > 1, has a filler
(note, here we think of [m] as a simplicial set, which is sometimes denoted
∆[m] in the literature). Given such a map ϕ : ∂[m] → C, by the definition
of Π∞, the map ϕ is represented by a continuous map |ϕ| : |∂[m]| → |P |.
Pick x ∈ P such that |ϕ| (0) ∈ str(x). Then im |ϕ| lies in the closure of
str(x), i.e., in

∣∣P≥x
∣∣ ⊂ |P |. Note that

∣∣P≥x
∣∣ = cone |P>x|. Similarly, identify

|[m]| ∼= cone(|∂[m]|) =
(
|∂[m]| × [0, 1]

)/
|∂[m]|×{0}. Then define the filler

ψ : |[m]| →
∣∣P≥x

∣∣ by mapping (q, t) 7→ t · |ϕ| (q). By construction, ψ sends
the interior of |[m]| to the stratum str(x) and thus is a stratified map as
needed.

Since C is 0-truncated, it is equivalent to N(ho(C)) [CL18, Prop. 3.8].
Furthermore, the homotopy category of any 0-truncated ∞-category has a
skeleton that is a poset [CL18, Prop. 3.10]. Let Q denote a posetal skeleton
of ho(C). Observe that Q must be isomorphic to P : the map Q→ P sending
q to x iff q ∈ str(x) witnesses that isomorphism. We thus obtain

Π∞ ∥P∥ ≡ C ≃ N(ho(C)) ≃ NQ ∼= NP.

as desired. Note that the composed equivalence is the canonical one: it takes
0-simplices q of Π∞ ∥P∥ to 0-simplices x in NP iff q ∈ str(x). □

Definition B.3.17 (0-truncated stratifications). A conical stratification
(X, f) is called 0-truncated if Π∞(f) is 0-truncated.

In particular, the preceding lemma shows that stratified realizations of posets
are 0-truncated. This can be aligned with our analogy to sets and spaces.

Remark B.3.18 (Analogy to sets and spaces). As mentioned earlier,
posets are to (sufficiently nice) stratifications what sets are to (sufficiently nice)
spaces. The above result provides another facet of this analogy: geometric
realizations of sets (thought of as 0-categories) are discrete spaces and their
fundamental ∞-groupoids are 0-truncated; similarly, the preceding result
shows that fundamental ∞-categories of stratified realizations of posets are
0-truncated.

Remark B.3.19 (The higher category of stratifications). Since stratifi-
cations have fundamental (∞, 1)-categories, the category of stratifications
is naturally an (∞, 2)-category. This description can be sharpened: we saw
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that the fundamental category of a stratification is precisely a (∞, 1)-poset
(i.e. an (∞,∞)-category whose truncation functor to its homotopy poset is
conservative). Consequently, the category of stratifications is, more precisely,
an (∞, 2)-poset (i.e. an (∞,∞)-category whose truncation functor to its
homotopy 2-poset is conservative; here a 2-poset is a poset-enriched category,
i.e. a (1, 2)-category). The situation is again analogous to the familiar setting
of spaces: a space has a fundamental (∞, 0)-category (i.e. an (∞,∞)-category
whose truncation functor to its homotopy set is conservative), and so the
category of spaces is an (∞, 1)-category (i.e. an (∞,∞)-category whose
truncation functor to its homotopy 1-category is conservative).

B.3.3. Cellulable stratifications. In this final section we discuss cellulable
stratifications. Recall, a regular cell complex is a stratification in which strata
are open disks (also called its ‘open cells’) whose closures are closed disks
(also called its ‘closed cells’).

Definition B.3.20 (Cellulable stratifications). The class of cellulable
stratifications is the smallest class of stratifications containing regular cell
complexes with the following closure properties:

(1) If (X, f)→ (Y, g) is a coarsening and (X, f) is cellulable then (Y, g)
is cellulable.

(2) If (Y, g) ⊂ (X, f) is a constructible substratification and (X, f) is
cellulable then (Y, g) is cellulable.

Remark B.3.21 (Local finiteness assumption). We will assume that our
cellulable stratifications have locally finite fundamental posets. One way to
ensure this is to require in the above definition that regular cell complexes
are locally finite and coarsenings F : (X, f) → (Y, g) are open finite, i.e.,
Π(F ) is open with finite preimages.

Since constructible substratifications and coarsenings commute (i.e., any
constructible substratification of a coarsening is a coarsening of a constructible
substratification), the definition of cellulable stratifications can be phrased
via an intermediate notion of cellular stratifications as follows.

Definition B.3.22 (Cellular stratifications). A stratification (Y, f) is
called a cellular stratification if there exists a regular cell complex X
(implicitly taken to be stratified by its cells) and a stratified inclusion (Y, f) ↪→
X making (Y, f) a constructible substratification of X.

Terminology B.3.23 (Cellulations). A refinement of a stratification by
a cellular stratification is called a ‘cellulation’.

Observation B.3.24 (Cellulable stratifications). A cellulable stratifica-
tion is precisely a stratification that can be obtained by coarsening a locally
finite cellular stratification.

To better understand the definition of cellulable stratifications we briefly
discuss two properties of locally finite regular cell complexes. We begin with
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the property of conicality. Note that the stratification of general (non-regular)
cell complexes need not be conical in general, even when the complex is finite
(i.e., has only finitely many cells). In contrast, in the regular case, we have
the following.

Proposition B.3.25 (Regularity implies conicality). Locally finite regular
cell complexes are conically stratified.

Proof. For a regular cell complexX, there is a stratified homeomorphism
X ∼= ∥ΠX∥ of the complex with the stratified realization of its fundamental
poset (see [Bjö84, §3]). From Proposition B.3.8 it then follows that locally
finite regular cell complexes are conically stratified. □

Observation B.3.26 (Cellular stratifications are conical). Combining
Proposition B.3.25 with Observation B.3.5 it follows that locally finite cellular
stratifications are conical.

Observation B.3.27 (Cellulable stratifications need not be conical, but...).
Following Observation B.3.6, cellulable stratifications need not be conical.
This means that, a priori, the construction of fundamental ∞-categories
introduced in Definition B.3.10 does not apply to cellulable stratifications.
However, as we will see shortly, cellulable stratifications have their own
natural such definition, and, in fact, they remedy certain shortcomings of
conical stratifications: for example, the restriction of the stratification n-
simplex ∥[n]∥ to its boundary is, in general, not conical but it is cellulable;
cellulable stratifications, therefore, will allow us to construct fundamental
∞-categories even for such non-conical spaces.

Remark B.3.28 (Cellular links and stars, Top and PL case). Given a
regular cell complex X its conicality implies that each cell x ∈ X has a
canonical link stratification. This link is called the cellular link link(x) of
x: combinatorially, it is constructed as the stratified realization of the poset
ΠX<x (see the proof of Proposition B.3.8).

Relatedly, one can define the cellular star star(x) around x as the
simplicial star around the corresponding vertex x (in the complex NΠX)
regarded as a subspace of the original regular cell complex, and stratified
by the substratifications induced by X separately on the boundary and the
interior of the star. Note that this yields stratified inclusions star(x) ↪→ X
and x ↪→ star(x). Removing the boundary of star(x) yields the open cellular
star, which contains the open cell x as a stratum, called its core cell.

Observe that strata of the cellular link are realizations of half-open
intervals [y, x) := ΠX<x,≥y. As observed in [Bjö84], open intervals (y, x) in
cellular posets realize to homology spheres, and thus strata in the cellular
link are cones of homology spheres. In general, strata in the cellular link
need not be cells.

Observe that strata in the boundary and the interior of the cellular star
star(x)\x without its core x are higher suspensions (s×Dm)/(a,b)∼(a′,b),b∈∂Dm

of strata s in, respectively, the cellular link of x and the cone of the cellular
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link of x. By an appropriate generalization of the double suspension theorem
[Can79, Edw80, Edw06] strata of the open cellular star are presumably
disks (the suspension of the double cone is the cone of the double suspension).

The failure of cellular link strata to be cells in general can be considered
pathological: that link strata need not be cells follows from the fact that links
in triangulated manifolds need not be spheres but are, in general, merely
homology spheres (the open interval (y, x) appears as a link in the triangulated
sphere |ΠX>y|, cf. [FP90, Bjö84]); indeed, the double suspension of a
triangulated homology sphere being a sphere serves to illustrate this fact,
but relies on infinitary and ‘wild’ constructions. The situation is remedied
precisely by working with PL manifolds: in regular PL cell complexes (i.e.,
stratified realizations of PL cellular posets) the cellular link is again a regular
cell complex.

Remark B.3.29 (Cellular links are stratified links). As stated in Obser-
vation B.3.26, regular cell complexes are conical stratifications in the sense
of Definition B.3.2. We can now manifest this observation in more concrete
terms: their open stars provide tubular neighborhoods, with links being their
cellular links, and tangential neighborhoods being their core cells.

Observation B.3.30 (Cellular stratifications are 0-truncated). Given
a locally finite regular cell complex X, we have a canonical equivalence
Π∞(X) ≃ NΠ(X) that takes a point x to the stratum s that it lives in. This
follows from Lemma B.3.16 since locally finite regular cell complexes are
stratified realizations of locally finite posets. The observation remains true for
cellular stratifications (Y, f), by appropriately restricting the equivalence to
subcategories resp. subposets determined by constructible substratifications.

A common tool for working with cellular stratifications is barycentric
subdivisions, whose construction at the level of posets we briefly record here
for completeness.

Construction B.3.31 (Barycentric subdivision and conical subdivision).
Let X be a combinatorial regular cell complex represented by a cellular poset,
and x ∈ X a cell in X. The conical subdivision CSubX(x) of x in X is
the cellular poset obtained by the pushout

X>x X≥x

X>x × [1] CSubX(x)

id×{0}

Note that the ‘boundary part’ X>x × {1} of CSubX(x) is canonically isomor-
phic to the original boundary X>x of x. This allows us to glue CSubX(x)
onto X \ x, thus replacing x by the ‘interior part’ X≥x of CSubX(x).

The barycentric subdivision BSub(X) (cf. [War96]) is obtained by,
inductively in increasing cell dimensions, replacing all original cells x ∈ X by
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their conical subdivisions. There is a ‘canonical subdivision map’ of posets
BSub(X)→ X, obtained as the composite

BSub(X) = X(N) → X(N−1) → ...X(2) → X(1) → X(0) = X

where N is the maximal cell dimension in X, and each X(i) is obtained from
X(i−1) by gluing in conical subdivisions of all i-cells, such that the map
X(i) → X(i−1) is defined on newly subdivided i-cells x to map interior parts
of CSubX(i)

(x) to x ∈ X(i−1) (and act as the identity elsewhere).

Observation B.3.32 (Barycentric subdivisions are subdivisions). There
is a (up to homotopy unique) stratified coarsening ∥BSub(X)∥ → ∥X∥ whose
fundamental poset mapping is the subdivision map BSub(X)→ X.

An advantage of working with cellulable stratifications (in compari-
son to, say, conical stratifications) is that constructions can exploit the
0-truncatedness of regular cell complexes. For example, fundamental ∞-
categories of cellulable stratifications are easy to define, by presenting them
as posets with weak equivalences.49

Construction B.3.33 (The fundamental∞-category for cellulable strat-
ifications). Let (X, f) be a cellulable stratification. We can find a locally finite
cellular stratification (Y, g) which refines (X, f). Denote by F : Π(g)→ Π(f)
the characteristic map of the refinement. Denote by WF = {α | F (α) = id}
the weak equivalences given by those entrance paths in g that become invert-
ible paths in f . The fundamental ∞-category Π∞(f) of f is the ∞-category
presented by the tuple (Π(g),WF ), i.e., by a category with weak equiva-
lences.

Note that an explicit ∞-category Π∞(f) can be obtained by localizing
Π(g)[W−1

F ] (here, we use the idea of ‘localization’ without reference to a
concrete model; but concrete models could be given [DK80b] [DK80a]).
Note that localizing in the traditional setting of 1-categories, yields the
homotopy category ho(Π∞(f)).

Example B.3.34 (Fundamental categories of the stratified circle). Let
us understand the fundamental Π∞(f) for three different stratifications of
the circle S1. The stratifications are illustrated in Figure B.17.

First, consider the trivially stratified circle (S1, f1). To determine its
fundamental ∞-category, choose a regular cell refinement (Y, g)→ S1; this
has two 1-cells, glued together at their boundaries. In the presentation
of Π∞(f1), all arrows in the fundamental poset of the complex become
weak equivalences (indicated by ∼ in the figure). The resulting 1-category
ho(Π∞(f1)) is equivalent to the category with a single object and a single
generating non-identity automorphism (without further relations). Of course,

49Categories with weak equivalences (in various variations of the idea) are another well-
known model for (∞, 1)-categories. ‘Posets with weak equivalences’ apply the same
structure to posets (regarded as categories). We, however, forego any technical discussion
of this notion here, sketching only the key ideas.
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in the case of trivial stratifications, the definition of Π∞(f1) coincides with that
of the fundamental ∞-groupoid of the underlying space, so our computation
is a presentation of Π∞S

1.
Second, consider the circle (S1, f2) stratified by a single point and its

complement. Note that this stratification is cellulable but not cellular. We
can choose a refining regular cell complex as before, and compute Π∞(f2) as
before. In this case, the resulting 1-category ho(Π∞(f2)) is equivalent to the
category with two objects and two non-identity morphisms running from the
first to the second object (without further relations).

Thirdly, consider the circle (S1, f3) stratified as the regular cell complex
with two 0- and two 1-cells itself. This stratification is certainly cellular. Its
fundamental ∞-category Π∞(f3) is 0-truncated; indeed, it can be presented
by the poset Π(f3) (without any weak equivalences) as shown in the figure.

(S1, f1)

(S1, f2)

(S1, f3)

≃ Π∞(f1)

≃ Π∞(f2)

≃ Π∞(f3)

∼∼

∼∼

∼∼

Figure B.17. Fundamental categories of the stratified circle.

Remark B.3.35 (Well-definedness of the fundamental ∞-category).
Given a cellulable stratification f , our construction of Π∞(f) above de-
pends on a choice of cellular refinement of f . Showing that the resulting
∞-category Π∞(f) is independent of this choice is non-trivial in general.
However, in the case of conical cellulable stratifications one can compare
Π∞(f) with the construction in Definition B.3.10, and show that the two
constructions are indeed equivalent.



APPENDIX C

♢A menagerie of framed regular cells

This appendix illustrates an assemblage of low-dimensional framed regular
cells and their corresponding combinatorial representations as n-truss blocks.
That combinatorial classification was the primary content of Chapter 3, and
the correspondence is informally visible in the pictures: the total poset of
the truss block is the fundamental poset of the regular cell, and successively
projecting out the highest frame direction yields a tower of lower-dimensional
cells and their associated fundamental posets.

C.1. 2-dimensional cells

There is a unique framed regular 1-dimensional cell, namely the closed
framed interval. Already in dimension 2 there are infinitely many framed
regular cells; necessarily they all project to the framed interval. In Figure C.1
we illustrate a few of the simplest framed regular 2-cells; the framing is
induced by realizing the cells in R2, and that realization is indicated by the
axes in the lower left corner of the figure. The first three cells are familiar
shapes, namely the 2-globe, the 2-simplex, and the 2-cube; we refer to the
subsequent three 2-cells as the V-cell, the Y-cell, and the X-cell, as they are
dual to a V-shaped singularity, a Y-shaped singularity, and an X-shaped
singularity, respectively.

C.2. 3-dimensional cells

We next consider framed regular cells in dimension 3. We organize
these cells, primarily, by which framed regular 2-cell they project to, and,
secondarily, by the cardinality of the total poset of their fundamental truss
block.

In Figure C.2 we depict a few of the simplest framed regular 3-cells that
project to the 2-globe. The first four cells are the 3-globe, the suspended
2-simplex, the suspended 2-cube, and the suspended Y-cell. The sixth cell
is a product of a 2-globe c2 and a 1-globe c1; here the product is the usual
stratified product (see Construction B.2.23), with framing induced by the
product c2 × c1 ↪→ R2 × R1 of the given realizations c2 ↪→ R2 and c1 ↪→ R1.
The fifth cell is a degeneration of that product, collapsing one of the fiber
1-cells to a point. The last cell already exhibits a more complicated structure,
where a central Y-cell collapses to a point on one side, and degenerates
asymmetrically to an interval on the other side.
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2

1

Figure C.1. The simplest 2-cells.

In Figure C.3 we similarly depict framed regular 3-cells that project to the
2-simplex. The first such cell is a ‘triangoli cell’, that is a pillowed 2-simplex
having two 2-simplices (glued along their boundaries) as its boundary. The
second cell is the cone of the 2-globe c2; here the cone is the usual stratified
closed cone (see Terminology B.3.1), with framing derived by extending the
given realization c2 ↪→ R2 to a realization cone(c2) ↪→ R × R2. The third
and fourth cells both involve a central 2-simplex partially degenerating, to
an interval or a 2-globe, on one side; the fifth cell has a 2-cube similarly
degenerating to an interval. The last two cells both contain a V-cell slice,
but along different axes. Altogether, of course, the more elaborate framed
3-cells begin to defy concise description.

In Figure C.4 we depict further 3-cells that project to the 2-simplex.
These 3-cells have a somewhat different character than all the previous 3-cells,
in that they admit piecewise linear realizations. The first two cells are both
3-simplices, but with distinct framed structures. The third and fourth cells
are both square pyramids, but again with distinct framed structures. The
last cell is of course a framed product of a 2-simplex and a 1-simplex.

In Figure C.5 we depict framed regular 3-cells that project to the 2-cube.
The first such cell is a ‘ravioli cell’, that is a pillowed 2-cube having two
2-cubes (glued along their boundaries) as its boundary. The second and third
cells burst open an edge or two of the ravioli cell into a 2-globe. The fourth
cell is a product of a 1-globe c1 and a 2-globe c2. We see that the product of
framed cells is not commutative: this cell c1 × c2 is not framed equivalent to
the product c2 × c1 shown in Figure C.2. The fifth cell is another, framed
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distinct from the previous ones, square pyramid. The sixth cell is another
product, of a 1-simplex and a 2-simplex, distinct from the product of the
2-simplex and 1-simplex in the previous figure. The last cell is of course the
standard framed 3-cube, itself a triple product.

Finally, in Figure C.6, we depict a selection of more complicated 3-cells.
To give a deeper understanding of the geometry of these cells, we also now
illustrate their dual open meshes. (The framed cell corresponds to the given
closed 3-truss, which dualizes to an open 3-truss, which in turn corresponds,
by the main equivalence of Chapter 4, to an open 3-mesh.) The first 3-cell
projects to the 2-dimensional V-cell; we sometimes refer to this 3-cell as the
3-dimensional ‘quadratic cell’ because the dual mesh exhibits a quadratic
1-tangle singularity. Note that this cell is the first one in our menagerie that
has a boundary slice (in this case the top 2-3-planar slice) that is not in
fact a topological cell. Though at first perhaps distressing, that behavior
of the boundary slice is still completely combinatorially controlled by the
classifying truss block. The second 3-cell projects to the 2-dimensional X-cell;
we might refer to this 3-cell as a ‘braid cell’, since its dual mesh exhibits
half of a 1-tangle braid, as illustrated. The third and last 3-cell projects to
the 2-globe, and has an X-cell as its 2-3-planar central slice; we refer to it
fancifully as the ‘treccioni’ cell.

C.3. 4-dimensional cells

Though we are reaching the limits of concise visualizability on paper,
we also illustrate several framed regular 4-cells. In Figure C.7 we depict
the simplest framed regular 4-cell, namely the 4-globe. The green arrow
of the 4-frame indicates a fourth dimension (in first coordinate position),
corresponding to the direction of the 1-frame vector. In Figures C.8, C.9,
and C.10 we similarly depict, respectively, the double cone of the 2-globe, the
product of the 2-simplex and the 2-globe, and the (framed distinct) product
of the 2-globe and 2-simplex. Finally, in Figure C.11 we illustrate a more
complex 4-cell, interpolating from a quadratic 3-cell, through a burst ravioli,
to a (circa-2002) reverse astropop.
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Figure C.2. The simplest 3-cells projecting to the 2-globe.
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Figure C.3. The simplest 3-cells projecting to the 2-simplex.
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Figure C.4. Further 3-cells projecting to the 2-simplex.
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Figure C.5. The simplest 3-cells projecting to the 2-cube.
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Figure C.6. More exotic 3-cells and their dual open meshes.
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Figure C.7. The 4-globe as a 4-cell.
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Figure C.8. The double cone of the 2-globe as a 4-cell.
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Figure C.9. The product of the 2-simplex and the 2-globe
as a 4-cell.
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Figure C.10. The product of the 2-globe and the 2-simplex
as a 4-cell.
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Figure C.11. A more involved 4-cell.
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dualization functor of truss bundle
bordisms, ⇝2.1.108

dualization functor of truss
bundles, ⇝2.1.107

dualization functor of trusses, ⇝2.1.26

e

n-embedded k-partial frame on an
m-simplex, ⇝1.1.42

n-embedded k-partial proframe on a
simplex, ⇝3.2.7

n-embedded frame of the
m-simplex, ⇝1.1.37

n-embedded proframe on an
m-simplex, ⇝3.2.5

n-embedded proframed map, ⇝3.2.11
n-embedded proframed

realization, ⇝3.2.9
n-embedded proframed

simplices, ⇝3.2.12
n-embedded subproframed

map, ⇝3.2.13
elementary k-collapse, ⇝1.2.28
elementary tangle isotopy, ⇝5.4.21
elementary tangle singularity, ⇝5.4.14ff
embedded frame on a simplex, ⇝1.1.37
embedded frame on the standard

simplex, ⇝1.1.36
embedded framed simplex, ⇝1.1.36,

⇝1.1.37
embedded partial frame on a

simplex, ⇝1.1.42
embedded proframe on a

simplex, ⇝3.2.5
embedding brace, ⇝2.3.104
embedding of n-truss bundles, ⇝2.3.65
embedding of n-trusses, ⇝2.3.65
embedding of 1-trusses, ⇝2.3.61
entrance path, ⇝4.1.27ff, ⇝B.1.6
entrance path convention, ⇝B.1.5
essentially injective functor, ⇝4.2.22
exit path, ⇝B.1.12
exit path convention, ⇝B.1.5
exit path preorder, ⇝B.1.12

f

S-filtration, ⇝B.1.48
m-frame on a simplex, ⇝1.1.25
n-framed boundary complex, ⇝5.3.82ff
n-framed map, ⇝4.1.86, ⇝5.1.15
n-framed realization of n-mesh

bundles, ⇝4.1.77
n-framed realization, ⇝1.2.18, ⇝1.3.36,

⇝4.1.70
n-framed stratified map, ⇝5.1.15
n-framing of combinatorial regular cell

complexes, ⇝1.3.33
n-framing of simplicial

complexes, ⇝1.2.11
n-framing, ⇝1.2.11, ⇝1.3.33
1-framed circular realization, ⇝4.1.3
1-framed linear realization, ⇝4.1.3
1-framed map of 1-realized

manifolds, ⇝4.1.8
1-framed map, ⇝4.1.7, ⇝4.1.8
1-framed realization of families of

manifolds, ⇝4.1.23
face block, ⇝2.3.81
face in a block set, ⇝2.3.88
face of n-truss bundles, ⇝2.3.65
face of n-trusses, ⇝2.3.65
face of 1-trusses, ⇝2.3.61
face of simplices, ⇝1.1.5
face order, ⇝2.1.10, ⇝2.1.74, ⇝2.3.2,

⇝2.3.27
face order of a 1-truss, ⇝2.1.10
face order of a truss bundle, ⇝2.1.74,

⇝2.3.27
face poset, ⇝1.3.7
facet, ⇝1.3.7ff, ⇝3.3.20
family of 1-meshes, ⇝4.1.24
fence, ⇝2.1.1
fiber 1-mesh, ⇝4.1.34
fiber category, ⇝2.2.36, ⇝3.2.40
fiber category in a 1-truss

bundle, ⇝2.2.36
fiber category in a proframing, ⇝3.2.40
fiber morphism, ⇝2.2.21
fiber set in a simplicial map, ⇝3.2.37
fiber transition functor, ⇝2.2.37
fiberwise compactification of 1-mesh

bundles, ⇝4.1.58
finite fence, ⇝2.1.2
finite stratification, ⇝B.1.18
finitely continuous map, ⇝B.1.20
flow continuation uniqueness, ⇝1.2.31
flow section existence, ⇝1.2.31
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formal entrance path, ⇝4.1.27, ⇝B.1.7
formal entrance path relation, ⇝B.1.8
frame k-vector, ⇝1.2.15
frame label, ⇝1.2.15
frame on a simplex, ⇝1.1.25
frame on the standard simplex, ⇝1.1.24
frame order, ⇝2.1.10, ⇝2.1.74, ⇝2.3.27
frame order of a 1-truss, ⇝2.1.10
frame order of a truss bundle, ⇝2.1.74,

⇝2.3.27
frame restriction, ⇝1.1.48, ⇝1.1.51,

⇝1.1.53, ⇝1.1.55, ⇝1.1.57
frame restriction of partial simplicial

frames, ⇝1.1.57
frame restriction to a simplicial

face, ⇝1.1.48, ⇝1.1.55
frame restriction to a simplicial

vector, ⇝1.1.51
frame restriction to a standard simplicial

face, ⇝1.1.53
framed cellular map, ⇝1.3.51
framed coarsening, ⇝5.3.78
framed collapsible regular cell

complex, ⇝1.3.38
framed collapsible simplicial

complex, ⇝1.2.31
framed combinatorialized

manifold, ⇝5.4.23ff
framed conical stratification, ⇝5.4.2
framed conicality, ⇝5.4.2
framed degeneracy, ⇝1.1.61
framed elementary k-collapse, ⇝1.2.29
framed face, ⇝1.1.60
framed fundamental poset, ⇝1.3.55
framed fundamental poset

functor, ⇝1.3.56
framed Hauptvermutung, ⇝5.1.27,

§5.3.2.2
framed homeomorphism, ⇝5.3.77
framed map, ⇝1.1.59, ⇝1.1.67, ⇝1.2.20,

⇝1.3.51, ⇝4.1.8, ⇝4.1.86, ⇝5.1.15
framed map of embedded partially

framed simplices, ⇝1.1.67
framed map of framed regular cell

complexes, ⇝1.3.51
framed map of framed

simplices, ⇝1.1.59
framed map of realizations, ⇝4.1.87
framed map of standard 1-framed

targets, ⇝4.1.7
framed map of tame

embeddings, ⇝5.1.16

framed map of tame
stratifications, ⇝5.1.15

framed map over a base map, ⇝4.1.86
framed progressive regular cell

complex, ⇝1.3.38
framed progressive simplicial

complex, ⇝1.2.37
framed realization, ⇝1.1.29, ⇝1.1.34,

⇝1.1.40, ⇝1.1.46, ⇝1.2.18,
⇝1.3.36, ⇝4.1.3, ⇝4.1.70

framed realization of embedded framed
simplices, ⇝1.1.40

framed realization of embedded partially
framed simplices, ⇝1.1.46

framed realization of framed regular cell
complexes, ⇝1.3.36

framed realization of framed
simplices, ⇝1.1.29

framed realization of framed simplicial
complexes, ⇝1.2.18

framed realization of manifolds, ⇝4.1.3
framed realization of meshes, ⇝4.1.70
framed realization of partially framed

simplices, ⇝1.1.34
framed regular cell, ⇝1.3.33
framed regular cell complex, ⇝1.3.33
framed regular PL cell, ⇝1.3.62
framed simplex, ⇝1.1.24, ⇝1.1.25,

⇝1.1.31, ⇝1.1.36
framed simplicial complex, ⇝1.2.11
framed simplicial map, ⇝1.2.20
framed stratified

homeomorphism, ⇝5.1.17
framed stratified map, ⇝5.1.15
framed subdivision of framed regular cell

complexes, ⇝4.2.87
framing of combinatorial regular cell

complexes, ⇝1.3.33
framing of simplicial complexes, ⇝1.2.11
frontier-constructible

stratification, ⇝4.1.36, ⇝B.1.24
functional relation, ⇝2.1.31
functorial relation, ⇝2.1.30, ⇝2.3.14
functorial relation of preorders, ⇝2.1.30
fundamental ∞-category, ⇝B.3.10,

⇝B.3.33
fundamental ∞-category for cellulable

stratifications, ⇝B.3.33
fundamental ∞-category of a

stratification, ⇝4.1.38
fundamental 1-category, ⇝B.3.14
fundamental 1-truss bundle, ⇝4.2.11
fundamental category, ⇝4.1.38, ⇝4.1.39
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fundamental category of a
stratification, ⇝4.1.39

fundamental higher category of a
stratification, ⇝4.1.38

fundamental poset, ⇝1.3.7, ⇝4.1.27,
⇝B.1.11

fundamental poset ∞-functor, ⇝B.2.21
fundamental poset functor, ⇝B.2.15
fundamental poset of a regular cell

complex, ⇝1.3.7
fundamental poset of a

stratification, ⇝4.1.27
fundamental poset of a stratified

truss, ⇝5.3.1
fundamental poset truncation, ⇝B.3.13
fundamental preorder, ⇝B.1.11
fundamental stratified truss, ⇝5.3.22
fundamental stratified truss

map, ⇝5.3.24
fundamental truss bundle, ⇝4.2.12
fundamental truss bundle map, ⇝4.2.13
fundamental truss functor, ⇝4.2.14

g

n-gradient framing functor, ⇝3.2.32
n-graph, ⇝1.3.63
2-globe cell, §C.1
generalized orthonormal

frame, ⇝A.2.10ff
generatibility of framed regular

cells, ⇝1.3.60
generatible higher categorical

coherences, ⇝5.4.10
generating arrow, ⇝2.1.79, ⇝2.3.30
generating arrow of 1-truss

bundles, ⇝2.1.79
generating arrows of n-truss

bundles, ⇝2.3.30
geometric m-simplex, ⇝A.2.4
geometric realization, ⇝B.1.50
geometric realization of a

simplex, ⇝A.2.2
geometric realization of posets, ⇝1.3.3,

⇝B.1.50
geometric regular cell complex, ⇝1.3.17
geometric regular cell complex

associated to cellular poset, ⇝1.3.28
geometric simplex, ⇝1.1.11
gradient cell complex of closed

n-trusses, ⇝3.3.17
gradient cell functor, ⇝3.3.17ff

gradient cellular map of singular truss
maps, ⇝3.3.18

gradient frame, ⇝3.2.15
gradient framed map of proframed

maps, ⇝3.2.21, ⇝3.2.31
gradient framing, ⇝3.2.30
gradient framing functor, ⇝3.2.32
gradient functor, ⇝3.2.32

h

half-open 1-truss, ⇝2.1.23
Hauptvermutung, ⇝5.3.53, §5.3.2.2
highest frame number, ⇝1.2.26
highest frame vector, ⇝1.2.26, ⇝1.3.48
highest frame vector of framed regular

cells, ⇝1.3.48
homology sphere, ⇝B.3.28
homotopy coherent nerve, ⇝4.2.6

i

image face, ⇝1.1.54
image refinement of simplicial

map, ⇝5.3.48
indiscrete stratification, ⇝B.1.17
induced indframe, ⇝A.1.27
induced proframe, ⇝A.1.27
infinite stratification, ⇝B.1.18
initial n-truss, ⇝2.3.22
integral collapsible proframing, ⇝3.2.46
integral proframe, ⇝3.2.16
integral proframed cell, ⇝3.3.12
integral proframed cell complex, ⇝3.3.14
integral proframed map, ⇝3.2.22
integral proframing, ⇝3.2.33
integral proframing functor, ⇝3.2.48
integration functor, ⇝3.2.48
interior degeneracy of truss

blocks, ⇝2.3.98
interior evaporation, ⇝2.1.47
isobordism, ⇝2.1.55, ⇝2.1.98, ⇝2.2.72,

⇝2.3.51
isobordism of n-truss bundles, ⇝2.3.51
isotopy of manifold diagrams, ⇝5.4.8
iterated labeled 1-truss bordism

functor, ⇝2.3.23

j
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join of mesh bundles, ⇝5.2.11
join of meshes, ⇝5.2.10
join of stratifications, ⇝5.2.1
join of stratified maps, ⇝5.2.8
jump morphism, ⇝2.2.17

k

kernel of simplicial
degeneracies, ⇝1.1.17

l

P -labeling of a stratification, ⇝B.1.41
C-labeled n-truss bordism, ⇝2.3.11
C-labeled n-truss bundle, ⇝2.3.31
C-labeled n-truss, ⇝2.3.6
C-labeled 1-truss bordism, ⇝2.2.40
C-labeled 1-truss bundle, ⇝2.2.57
C-labeled 1-truss, ⇝2.2.39
C-labeling of a stratification, ⇝B.1.41
label category functor, ⇝2.2.60ff,

⇝2.3.32
label coarsening of stratified

trusses, ⇝5.3.11
label-forgetting functor, ⇝2.2.49
label-preserving map, ⇝2.2.61, ⇝2.3.36
label-preserving map of labeled n-truss

bundles, ⇝2.3.36
label-preserving map of labeled 1-truss

bundles, ⇝2.2.61
labeled n-truss, ⇝2.3.6
labeled n-truss bordism, ⇝2.3.11
labeled n-truss bundle, ⇝2.3.31
labeled n-truss bundle bordism, ⇝2.3.49
labeled 1-truss, ⇝2.2.39
labeled 1-truss bordism, ⇝2.2.40
labeled 1-truss bordism functor, ⇝2.2.50
labeled 1-truss bundle, ⇝2.2.57
labeled 1-truss bundle bordism, ⇝2.2.70
labeled 1-truss isobordism, ⇝2.2.72
labeling functor, ⇝2.2.39, ⇝2.2.40,

⇝2.2.57, ⇝2.3.6, ⇝2.3.11, ⇝2.3.31
labeling functor of a labeled

n-truss, ⇝2.3.6
labeling functor of a labeled n-truss

bordism, ⇝2.3.11
labeling functor of a labeled n-truss

bundle, ⇝2.3.31

labeling functor of a labeled
1-truss, ⇝2.2.39

labeling functor of a labeled 1-truss
bordism, ⇝2.2.40

labeling functor of a labeled 1-truss
bundle, ⇝2.2.57

labeling structure of
stratification, ⇝B.1.41

left-closed right-open 1-truss, ⇝2.1.23
left-open right-closed 1-truss, ⇝2.1.23
linear k-partial frame, ⇝A.1.17
linear k-partial indframe, ⇝A.1.24
linear k-partial proframe, ⇝A.1.25
linear k-partial trivialization, ⇝A.1.16
linear n-embedded k-partial

frame, ⇝A.1.23
linear n-embedded k-partial

indframe, ⇝A.1.24
linear n-embedded k-partial

proframe, ⇝A.1.25
linear n-embedded k-partial

trivialization, ⇝A.1.22
linear n-embedded frame, ⇝A.1.20
linear n-embedded indframe, ⇝A.1.24
linear n-embedded proframe, ⇝A.1.25
linear n-embedded

trivialization, ⇝A.1.19
linear 1-mesh, ⇝4.1.10, ⇝4.1.13
linear 1-truss, ⇝2.1.7, ⇝2.1.10
linear fence, ⇝2.1.2
linear frame, ⇝A.1.2
linear indframe, ⇝A.1.3
linear mesh, ⇝5.3.51
linear proframe, ⇝A.1.4
linear realization of simplicial

complex, ⇝5.3.45
linear simplicial complex, ⇝3.2.44
linear trivialization, ⇝A.1.1
link, ⇝B.3.2, ⇝B.3.28
link in a conical stratification, ⇝B.3.2
link in a regular cell complex, ⇝B.3.28
locally finite poset, ⇝B.1.23
locally finite regular cell

complex, ⇝1.3.8
locally finite stratification, ⇝B.1.22
lower central section cell, ⇝3.3.7
lower endpoint, ⇝2.1.22
lower endpoint of 1-trusses, ⇝2.1.22
lower fiber bound, ⇝5.2.17
lower realization bound, ⇝4.1.15,

⇝4.1.25
lower section, ⇝3.2.39, ⇝3.3.5
lower section of spacer cells, ⇝3.3.5
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lower section of spacer
simplices, ⇝3.2.39

lower truncation of truss
bundles, ⇝2.3.43

m

n-mesh m-block, ⇝4.2.81
n-mesh m-brace, ⇝4.2.94
n-mesh m-cell, ⇝5.3.20
n-mesh m-singularity, ⇝5.3.20
n-mesh bordism category, ⇝4.1.100
n-mesh bundle join, ⇝5.2.11
n-mesh bundle map realization, ⇝4.2.72
n-mesh bundle map, ⇝4.1.84
n-mesh bundle realization

functor, ⇝4.2.73
n-mesh bundle realization, ⇝4.2.71
n-mesh bundle, ⇝4.1.76
n-mesh join, ⇝5.2.10
n-mesh map, ⇝4.1.84
n-mesh realization functor, ⇝4.2.60
n-mesh realization, ⇝4.2.52
n-mesh, ⇝4.1.69
1-mesh (linear), ⇝4.1.13
1-mesh bundle map, ⇝4.1.51
1-mesh bundle, ⇝4.1.28
1-mesh map, ⇝4.1.17
1-mesh, ⇝4.1.9, ⇝4.1.13
manifold, ⇝4.1.2
manifold n-diagram, ⇝5.4.5
manifold n-diagram isotopy, ⇝5.4.8
manifold diagram, §5.4, ⇝5.4.5
manifold-diagrammatic higher category

theory, ⇝5.4.10
map of 1-mesh bundles, ⇝4.1.51
map of n-mesh bundles, ⇝4.1.84
map of n-meshes, ⇝4.1.84
map of n-truss bundles, ⇝2.3.33
map of n-trusses, ⇝2.3.35
map of 1-meshes, ⇝4.1.17
map of 1-truss bundles, ⇝2.1.87
map of 1-trusses, ⇝2.1.16
map of geometric simplices, ⇝1.1.11
map of labeled n-truss bundles, ⇝2.3.32
map of labeled n-trusses, ⇝2.3.34
map of labeled 1-truss bundles, ⇝2.2.60
map of regular cell complexes, ⇝1.3.9
map of stratifications, ⇝B.2.1
map of stratified meshes, ⇝5.3.17
map of stratified trusses, ⇝5.3.10

mapping cocylinder of 1-mesh
maps, ⇝4.1.35, ⇝4.2.6

mapping cocylinder of 1-truss
maps, ⇝2.1.68

mapping cylinder of 1-mesh
maps, ⇝4.1.35, ⇝4.2.6

mapping cylinder of 1-truss
maps, ⇝2.1.68

mesh, ⇝4.1.9, ⇝4.1.69
mesh block, ⇝4.2.81
mesh brace, ⇝4.2.94
mesh bundle join, ⇝5.2.11
mesh bundle map realization, ⇝4.2.72
mesh bundle realization, §4.2.5, ⇝4.2.71
mesh bundle realization functor, §4.2.5,

⇝4.2.73
mesh cell, ⇝5.3.20
mesh coarsening, ⇝5.3.18
mesh coarsening of stratified

meshes, ⇝5.3.18
mesh coarsening realization of closed

truss coarsenings, ⇝4.2.76
mesh coarsening realization of truss

coarsenings, ⇝4.2.78
mesh join, ⇝5.2.10
mesh map, ⇝4.1.17
mesh map realization of truss

maps, ⇝4.2.59
mesh realization, §4.2.5, ⇝4.2.52
mesh realization functor, §4.2.5, ⇝4.2.60
mesh refinement, ⇝5.1.1
mesh singularity, ⇝5.3.20
mesh-to-cell gradient, ⇝4.2.7
minimal coarsest refining mesh, ⇝5.2.28
mixed regular and singular

section, ⇝2.2.12

n

n-fold iterated labeled 1-truss bordism
functor, ⇝2.3.23

negative standard component of
euclidean space, ⇝1.1.28

nerve of posets, ⇝1.3.3
non-integrable framing, ⇝3.2.35
nondegenerate block of a block

set, ⇝2.3.89
nondegenerate simplex, ⇝1.2.9
nondegenerate vector of a

simplex, ⇝1.1.12
nonzero vector, ⇝1.1.12
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normal form of stratified truss
bundle, ⇝5.3.63

normal form of stratified
trusses, ⇝5.3.60

normalized labeled truss
bundle, ⇝5.3.40

normalized stratified truss, ⇝5.1.22
normalized stratified truss

bundle, §5.3.1.5, ⇝5.3.40, ⇝5.3.42
numeral, ⇝1.1.10
numeral set, ⇝1.1.10

o

open n-mesh, ⇝4.1.72
open n-mesh bundle, ⇝4.1.76
open n-truss, ⇝2.3.3
open n-truss bundle, ⇝2.3.28
open 1-mesh, ⇝4.1.11
open 1-mesh bundle, ⇝4.1.29
open 1-truss, ⇝2.1.23
open 1-truss bundle, ⇝2.1.77
open cell, ⇝1.3.6
open characteristic function, ⇝B.2.10
open cone, ⇝B.3.1
order-preserving simplicial map, ⇝1.2.8
ordered m-simplex, ⇝1.1.1
ordered simplex, ⇝1.1.1
ordered simplicial complex, ⇝1.2.6
ordered simplicial complex

representation of cellular
poset, ⇝1.3.28

ordered standard m-simplex, ⇝1.1.7
ordering, ⇝1.2.8
ordering of simplicial complexes, ⇝1.2.8
ordering of simplicial maps, ⇝1.2.8
oriented indframe, ⇝A.1.8
oriented proframe, ⇝A.1.9
orthoequivalence, ⇝A.1.13, ⇝A.1.29
orthoequivalent trivializations, ⇝A.1.29

p

(∞, 1)-poset, ⇝4.2.17ff
(∞, 2)-poset, ⇝4.2.17ff
k-partial frame on a simplex, ⇝1.1.31
k-partial proframe on a simplex, ⇝3.2.3
n-proframed simplicial complex, ⇝3.2.25
n-proframing, ⇝3.2.25
2-poset, ⇝4.2.17ff

pairwise locally path-connected
stratification, ⇝4.1.36, ⇝B.1.29

partial n-framing, ⇝1.2.25
partial frame, ⇝1.1.31
partial proframe, ⇝3.2.3
pasting diagram, ⇝5.4.10
path-dependent constructibility, ⇝4.1.41
PL cellular poset, ⇝1.3.30
point divergence, ⇝2.1.47
polyhedral stratification, ⇝5.3.46
polyhedron, ⇝5.3.45
poset structure on a space, ⇝B.1.32
posetal n-mesh bundle, ⇝4.1.81
posetal n-truss bundle, ⇝2.3.53
posetal 1-mesh bundle, ⇝4.1.41ff
posetal 1-truss bundle, ⇝2.1.85
positive standard component of

euclidean space, ⇝1.1.28
prestratification, ⇝B.1.9
product of cells, §C.2
product of stratifications, ⇝B.2.23
product stratification, ⇝B.2.23
proframe on a simplex, ⇝3.2.1
proframed map, ⇝3.2.11, ⇝3.2.27
proframed map of proframed

simplices, ⇝3.2.11
proframed map of proframed simplicial

complexes, ⇝3.2.27
proframed realization, ⇝3.2.9
proframed simplicial complex, ⇝3.2.25
proframing of simplicial

complexes, ⇝3.2.25
progressive framing, ⇝1.2.37, ⇝2.1.5
progressive framing of fences, ⇝2.1.5
progressive regular cell complex, ⇝1.3.38
projected tame embedding, ⇝5.2.30
pullback n-mesh bundle, ⇝4.1.93
pullback n-truss bundle, ⇝2.3.54
pullback 1-mesh bundle, ⇝4.1.57
pullback 1-truss bundle, ⇝2.1.103
pullback labeled n-truss bundle, ⇝2.3.54
pullback labeled 1-truss bundle, ⇝2.2.76
pullback mesh, ⇝5.2.24
pullback mesh bundle, ⇝4.1.57, ⇝4.1.93
pullback sequence, ⇝A.1.10
pullback stratification, ⇝B.2.27
pullback stratified bundle, ⇝B.2.29
pullback truss bundle, ⇝2.1.103,

⇝2.2.76, ⇝2.3.54
pure poset of dimension m, ⇝3.3.20
pure simplicial complex of dimension

m, ⇝3.3.20
purely regular section, ⇝2.2.12
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pushforward mesh, ⇝5.2.24

q

quadratic 2-cell, §C.1
quasicategory, ⇝2.2.75, ⇝4.1.96
quasicategory of n-mesh

bordisms, ⇝4.1.100
quasicategory of labeled 1-trusses and

their bordisms, ⇝2.2.75
quotient map of posets, ⇝5.3.3, ⇝B.1.35
quotient map to a poset, ⇝B.1.34

r

n-realization of n-mesh bundles, ⇝4.1.77
n-realization, ⇝4.1.70, ⇝4.1.77
1-realization of families of

manifolds, ⇝4.1.23
1-realization, ⇝4.1.23
1-realized manifold, ⇝4.1.3ff
radial catchment path, ⇝4.2.32
ravioli cell, §C.2
realization, §4.2.5, ⇝B.1.50
realization bounds, ⇝4.1.15, ⇝4.1.25
realization bounds of 1-mesh

family, ⇝4.1.25
realization of n-truss bundle

maps, ⇝4.2.72
realization of n-truss bundles, ⇝4.2.71
realization of n-truss maps, ⇝4.2.59
realization of n-trusses, ⇝4.2.52
realization of closed n-truss

bundles, ⇝4.2.69
realization of closed truss

coarsenings, ⇝4.2.76
realization of maps of closed n-truss

bundles, ⇝4.2.70
realization of truss coarsenings, ⇝4.2.78
reasonable regularity, ⇝B.1.31
reasonably regular

stratification, ⇝4.1.36
recognizability of framed regular

cells, ⇝1.3.59
recursive category of C-labeled n-trusses

and their bordisms, ⇝2.3.24
refinement, ⇝B.2.4
refinement of n-trusses, ⇝2.3.67
refinement of stratifications, ⇝B.2.4

refining an embedding, ⇝5.2.27
refining mesh, ⇝5.1.1
regular m-cell, ⇝1.3.14
regular n-mesh bundle map, ⇝4.1.89
regular n-truss bundle map, ⇝2.3.37
regular 1-mesh bundle map, ⇝4.1.52
regular 1-mesh map, ⇝4.1.18
regular 1-truss bundle map, ⇝2.1.88
regular 1-truss map, ⇝2.1.17
regular block complex, ⇝2.3.91
regular cell complex, ⇝1.3.6
regular contour, ⇝4.2.29
regular determined 1-truss

bordism, ⇝2.1.63
regular element, ⇝2.1.13, ⇝2.1.76
regular element of 1-truss, ⇝2.1.13
regular element of 1-truss

bundles, ⇝2.1.76
regular element set, ⇝2.1.13, ⇝2.1.76
regular element set of 1-truss

bundles, ⇝2.1.76
regular endpoint-preserving 1-truss

map, ⇝2.1.67
regular function of a 1-truss

bordism, ⇝2.1.34
regular labeled n-truss bundle

map, ⇝2.3.37
regular labeled 1-truss bundle

map, ⇝2.2.62
regular map, ⇝2.1.17, ⇝2.2.62, ⇝2.3.37,

⇝4.1.18, ⇝4.1.89
regular stratum, ⇝4.1.26
regular-endpoint-preserving

function, ⇝2.1.62
relabeling functor, ⇝2.2.48
relation fully relating elements, ⇝2.1.64
representable boolean

profunctor, ⇝2.1.42
restricted frame, ⇝1.1.53
restricted framing, ⇝1.2.23
restriction of n-mesh bundles, ⇝4.1.94
restriction of 1-mesh bundles over

strata, ⇝4.1.33
restriction of 1-truss bundles, ⇝2.1.91
restriction of labeled n-truss

bundles, ⇝2.3.40
restriction of labeled 1-truss

bundles, ⇝2.2.65
restriction of labeled truss

bundles, ⇝2.2.65, ⇝2.3.40
restriction of simplicial complex

framings, ⇝1.2.23
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restriction of stratifications, ⇝B.2.8
restriction sequence, ⇝A.1.11
retractable compactification, ⇝4.2.49

s

P -stratification, ⇝B.1.47
k-stage, ⇝2.3.2
m-simplex, ⇝1.1.1
2-simplex cell, §C.1
scaffold norm, ⇝2.2.25, ⇝2.2.34
scaffold norm of sections, ⇝2.2.25
scaffold norm of spacers, ⇝2.2.34
scaffold order, ⇝2.2.29, ⇝2.2.35
scaffold order of sections, ⇝2.2.29
scaffold order of spacers, ⇝2.2.35
section cell, ⇝3.3.1
section of 1-truss bundle, ⇝2.2.1
section simplex in proframings, ⇝3.2.38
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set of numerals, ⇝1.1.10
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cells, ⇝3.3.31
shellable poset, ⇝3.3.21
simplex, ⇝1.1.1
simplicial complex, ⇝1.2.2
simplicial map, ⇝1.1.2, ⇝1.1.3, ⇝1.2.2,

⇝1.2.6
simplicial map of ordered simplicial

complexes, ⇝1.2.6
simplicial map of simplicial
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simplicial set, ⇝1.2.1
singular n-mesh bundle map, ⇝4.1.89
singular n-truss bundle map, ⇝2.3.37
singular 1-mesh bundle map, ⇝4.1.52
singular 1-mesh map, ⇝4.1.18
singular 1-truss bundle map, ⇝2.1.88
singular 1-truss map, ⇝2.1.17
singular determined 1-truss

bordism, ⇝2.1.63
singular element, ⇝2.1.13, ⇝2.1.76
singular element of 1-truss, ⇝2.1.13
singular element of 1-truss

bundles, ⇝2.1.76
singular element set, ⇝2.1.13, ⇝2.1.76
singular element set of 1-truss

bundles, ⇝2.1.76

singular endpoint-preserving 1-truss
map, ⇝2.1.67

singular function of a 1-truss
bordism, ⇝2.1.34

singular labeled n-truss bundle
map, ⇝2.3.37

singular labeled 1-truss bundle
map, ⇝2.2.62

singular map, ⇝2.1.17, ⇝2.2.62,
⇝2.3.37, ⇝4.1.18, ⇝4.1.89

singular stratum, ⇝4.1.26
singular-endpoint-preserving

function, ⇝2.1.62
singularity, ⇝5.3.14, ⇝5.3.67, ⇝5.4.14ff
space of framed subdivisions, ⇝4.2.91
spacer cell, ⇝3.3.1
spacer of 1-truss bundle, ⇝2.2.2
spacer simplex in proframings, ⇝3.2.38
specialization labeling, ⇝B.1.42
specialization order, ⇝B.1.4
specialization topology, ⇝B.1.1
spine, §1.1, ⇝1.1.13, ⇝1.1.14
spine vector of an ordered

simplex, ⇝1.1.14
splitting of affine faces, ⇝1.1.22
splitting simplicial degeneracy, ⇝1.1.22
stage functorial relation, ⇝2.3.14
stage in tower, ⇝2.3.2
standard m-simplex, ⇝1.1.7, ⇝1.1.9
standard 1-framed circle, ⇝4.1.1
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standard euclidean indframe, ⇝A.1.6
standard euclidean proframe, ⇝3.2.8,

⇝A.1.7
standard geometric m-simplex, ⇝A.2.4
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star, ⇝1.2.36, ⇝B.3.28
star in a regular cell complex, ⇝B.3.28
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complex, ⇝1.2.36
stratification, ⇝B.1.9
stratification coarsening of stratified

meshes, ⇝5.3.18
stratification from poset labeling, ⇝5.3.6
stratified n-mesh, ⇝5.3.16
stratified n-truss, ⇝5.1.21
stratified n-truss bundle, ⇝5.3.41
stratified bundle, ⇝B.2.25
stratified cone, ⇝B.3.1
stratified map, ⇝B.2.1
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maps, ⇝1.3.5

stratified mesh, ⇝5.3.16
stratified mesh coarsening
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stratified mesh map, ⇝5.3.17
stratified mesh map realization, ⇝5.3.27
stratified mesh realization, ⇝5.3.26
stratified pullback, ⇝B.2.27
stratified realization, ⇝1.3.4
stratified realization ∞-functor, ⇝B.2.22
stratified realization functor, ⇝B.2.14
stratified realization of posets, ⇝1.3.4,

⇝B.1.51
stratified truss, ⇝5.1.21
stratified truss bundle, §5.3.1.5, ⇝5.3.41
stratum of stratified truss, ⇝5.3.1
strict upper closure, ⇝1.3.2
subbundle of n-mesh bundles, ⇝4.1.90
subbundle of n-truss bundles, ⇝2.3.65
subdivision, ⇝4.2.86, ⇝B.3.31
subdivision of regular cell, ⇝4.2.86
subframed map, ⇝1.1.70, ⇝1.3.53
subframed map of framed

simplices, ⇝1.1.70
subframed map of framed simplicial

complexes, ⇝1.2.24
submesh, ⇝4.1.19, ⇝4.1.90
submesh of n-meshes, ⇝4.1.90
submesh of 1-meshes, ⇝4.1.19
subproframed map, ⇝3.2.13
substratification, ⇝B.2.6
subtruss, ⇝2.3.61, ⇝2.3.65
subtruss of n-trusses, ⇝2.3.65
subtruss of 1-trusses, ⇝2.3.61
support of a 1-realized manifold, ⇝4.1.4
support of an n-realized mesh, ⇝4.1.71
support of an n-realized mesh

bundle, ⇝4.1.78
suspended section, ⇝2.2.16
suspension functor, ⇝2.1.110, ⇝2.1.111
suspension of n-truss bundles, ⇝2.3.60
suspension of 1-truss bundles, ⇝2.1.111
suspension of labeled 1-truss

bundles, ⇝2.2.81
suspension of posets, ⇝2.1.110
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(n, k)-truncation, ⇝B.3.11
Top-enriched category, ⇝4.1.96

Top-tensoredness of
stratifications, ⇝B.2.24

kTop-enriched category of n-truss
bundles, ⇝2.3.39

kTop-enriched category of
n-trusses, ⇝2.3.39
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stratifications, ⇝B.2.17

i-truncation of n-mesh bundles, ⇝4.1.80
i-truncation of n-truss bundles, ⇝2.3.42,

⇝2.3.43
i-truncation of proframed maps, ⇝3.2.29
i-truncation of proframings, ⇝3.2.29
i-truncation, ⇝2.3.42, ⇝2.3.43, ⇝4.1.80
n-tame m-cell, ⇝5.3.66ff
n-tame m-singularity, ⇝5.3.67ff
n-tame m-tangle, ⇝5.4.11
n-tame embedding, ⇝5.1.4
n-tame stratification, ⇝5.1.1
n-truss m-block, ⇝2.3.73
n-truss m-brace, ⇝2.3.100
n-truss m-cell, ⇝5.3.14
n-truss m-singularity, ⇝5.3.14
n-truss block complex, ⇝2.3.90
n-truss bordism, ⇝2.3.9
n-truss bundle, ⇝2.3.27
n-truss regular block complex, ⇝2.3.91
n-truss, ⇝2.3.1, ⇝2.3.2
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0-truncatedness of cellular

stratifications, ⇝B.3.30
1-truss (linear), ⇝2.1.10
1-truss bordism, ⇝2.1.33
1-truss bundle bordism, ⇝2.1.96
1-truss bundle isobordism, ⇝2.1.98
1-truss bundle, ⇝2.1.74
1-truss isobordism, ⇝2.1.55
1-truss map, ⇝2.1.16
1-truss, ⇝2.1.6, ⇝2.1.10
tame m-tangle isotopy, ⇝5.4.21
tame cell, ⇝5.3.66
tame embedding, ⇝5.1.4
tame immersion, ⇝5.1.14
tame open neighborhood, ⇝5.1.5
tame singularity, ⇝5.3.67
tame stratification, ⇝5.1.1
tame stratified bundle, §5.3.1.5, ⇝5.3.38
tame submersion, ⇝5.1.13
tame tangle, §5.4, ⇝5.4.11
tame tangle singularity, ⇝5.4.11,

⇝5.4.14
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tangle singularity, ⇝5.4.14
tautological 1-truss bundle, ⇝2.2.55
terminal n-truss, ⇝2.3.22
thickened 2-cube cell, §C.2
thickened 2-simplex cell, §C.2
thin poset, ⇝3.3.22
top section, ⇝2.2.27
topological stratification, ⇝B.3.4
total 1-truss bundle, ⇝2.1.93
total diposet, ⇝2.1.74
total diposet of a 1-truss

bundle, ⇝2.1.74
total labeled n-truss bundle, ⇝2.3.45
total labeled 1-truss bundle, ⇝2.2.68
total poset, ⇝2.1.72, ⇝2.1.74, ⇝2.3.2,

⇝2.3.9ff
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total poset of a 1-truss bundle, ⇝2.1.74
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bordism, ⇝2.3.9ff
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total stratification, ⇝B.2.25ff
totalization functor, ⇝2.1.100, ⇝2.2.73,

⇝2.3.52
totalization functor for 1-truss

bundles, ⇝2.1.100
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labeled n-truss bundles, ⇝2.3.53
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labeled 1-truss bundles, ⇝2.2.74
totalization functor for labeled n-truss

bundles, ⇝2.3.52
totalization functor for labeled 1-truss

bundles, ⇝2.2.73
tower of 1-mesh bundles, ⇝4.1.76
tower of 1-truss bundles, ⇝2.3.2
tower of bundles, ⇝2.3.2, ⇝4.1.76
transition arrow, ⇝2.2.12
transition functor, ⇝3.2.41
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proframings, ⇝3.2.41
transition index, ⇝2.2.12
translation vector, ⇝A.2.1
transversal embedding, §5.4.1.2
transversal singularity, §5.4.1.2
trivial 1-mesh, ⇝4.1.10
trivial 1-truss, ⇝2.1.7
trivial circular 1-truss, ⇝2.1.7
trivial closed 1-truss, ⇝2.1.23
trivial fence, ⇝2.1.2

trivial linear 1-truss, ⇝2.1.7
trivial open 1-truss, ⇝2.1.23
trivialization of 1-mesh bundles over

strata, ⇝4.1.34
truncation, ⇝2.3.42, ⇝2.3.43, ⇝4.1.80
truncation of proframed maps, ⇝3.2.29
truncation of proframings, ⇝3.2.29
truncation of truss bundles, ⇝2.3.42,

⇝2.3.43
truss, ⇝2.1.6, ⇝2.3.1
truss block, ⇝2.3.73
truss brace, ⇝2.3.100
truss bundle, ⇝2.1.74, ⇝2.2.57, ⇝2.3.31
truss cell, ⇝5.3.14
truss coarsening of stratified

trusses, ⇝5.3.11
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truss product, ⇝2.3.55
truss singularity, ⇝5.3.14
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underlying n-truss, ⇝2.3.6
underlying n-truss bordism, ⇝2.3.11
underlying n-truss bundle, ⇝2.3.31
underlying n-truss bundle

map, ⇝2.3.32ff
underlying 1-truss, ⇝2.2.39
underlying 1-truss bordism, ⇝2.2.40
underlying 1-truss bundle, ⇝2.2.57
underlying 1-truss bundle

map, ⇝2.2.60ff
underlying relation functor, ⇝2.1.40
underlying relation of a boolean

profunctor, ⇝2.1.40
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underlying truss, ⇝2.2.39, ⇝2.3.6
underlying truss bordism, ⇝2.2.40,

⇝2.3.11
underlying truss bundle, ⇝2.2.57,

⇝2.3.31
unframed subspace, ⇝1.1.32, ⇝3.2.3ff
unframed subspace of a partially framed

simplex, ⇝1.1.32
unframed subspace of an embedded

partially framed simplex, ⇝1.1.44
unframing, ⇝1.2.22
unframing of framed simplicial

complexes, ⇝1.2.22
unlabeled 1-truss bundle, ⇝2.2.64
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unordered standard m-simplex, ⇝1.1.9
unordering functor, ⇝1.1.4, ⇝1.2.5
upper central section cell, ⇝3.3.7
upper closure, ⇝1.3.2
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⇝4.1.25
upper section, ⇝3.2.39, ⇝3.3.5
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simplices, ⇝3.2.39
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bundles, ⇝2.3.42
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k-vector of frame, ⇝1.2.15
vector of a simplex, ⇝1.1.12
vertical comma category, ⇝2.2.53
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Z-family of 1-mesh bundles, ⇝4.2.37ff
z-slice, ⇝4.2.37ff
zero vector, ⇝1.1.12
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