Mazur manifold as tangle diagram
Mazur manifolds are intimately related to homology spheres, and are part of the puzzling world of 4-manifolds. Here we construct the simplest example of a Mazur manifold as a tangle diagram. → read note
Mazur manifolds are intimately related to homology spheres, and are part of the puzzling world of 4-manifolds. Here we construct the simplest example of a Mazur manifold as a tangle diagram. → read note
This note gives a brief visual guide to how one can understand the classical \(D_4\) singularity in terms of a categorical pasting diagram (aka manifold diagram, or more specifically, a tame tangle). → read note
Classical singularity theory and higher category theory have tantalizing connections: via the generalized tangle hypothesis we can understand singularities as expressing categorical laws satisfied by dualizable objects. However, classical singularity theory, based in differential-topological foundations, encounters technical problem in higher dimensions, which stalls this connection. Using our technology of manifold diagrams we outline steps towards remedying the problem, paving the way towards “higher” Morse theory. → read note
We describe the notion of manifold diagrams. Manifold diagrams generalize string diagrams to higher dimensions. Our focus will lie on giving an intuitively clear geometric description of these diagrams in terms of conical stratifications in a framed background space. We will also provide further details on the dual notion of pasting diagrams of computadic cells. → read note
We describe the problem of defining a “universal” class of cell shapes for higher categories, the central obstruction in the classical approach to the question, and how to overcome that obstruction in the context of framed combinatorial topology. → read note
We explore two fundamental paradigms underlying models of higher categories. Most models for higher categories are based on the paradigm of contraction; this requires spaces of evaluations of a single pasting diagram to be contractible. The paradigm, however, generally fails to yield easy descriptions of interesting non-contractible behaviour in spaces of composites. This is remedied by working instead with the paradigm of isotopy as we will explain. → read note
We describe the problem of defining a “universal” class of cell shapes for higher categories, the central obstruction in the classical approach to the question, and how to overcome that obstruction in the context of framed combinatorial topology. → read note
The Pontryagin-Thom construction is a deep relation between smooth manifold theory and homotopy theory. We use the language of manifold diagrams and computads to give a purely combinatorial perspective on the construction. On our way, we’ll discuss computadic functors and transformations, and how the combinatorics of manifold diagrams may provide a “combinatorialization” of smooth structures on manifolds altogether. → read note
We describe the notion of manifold diagrams. Manifold diagrams generalize string diagrams to higher dimensions. Our focus will lie on giving an intuitively clear geometric description of these diagrams in terms of conical stratifications in a framed background space. We will also provide further details on the dual notion of pasting diagrams of computadic cells. → read note
Fast and mathematically self-contained introduction to basic ideas in geometric higher category theory, written up as an article for the n-Category Café. → go to link
This note gives a fast introduction to the rich combinatorial theory of trusses. We also discuss how presheafs of truss blocks give rise to geometric computads, and how this can be used to understand manifold diagrams in purely combinatorial terms. → read note
The Pontryagin-Thom construction is a deep relation between smooth manifold theory and homotopy theory. We use the language of manifold diagrams and computads to give a purely combinatorial perspective on the construction. On our way, we’ll discuss computadic functors and transformations, and how the combinatorics of manifold diagrams may provide a “combinatorialization” of smooth structures on manifolds altogether. → read note
This note gives a fast introduction to the rich combinatorial theory of trusses. We also discuss how presheafs of truss blocks give rise to geometric computads, and how this can be used to understand manifold diagrams in purely combinatorial terms. → read note
In this (exceedingly brief) note, we discuss computability questions in the context of manifold theory. The main observation is that several computabilty issues in classical “set-point (differential) topological” foundations may potentially be overcome when working with manifolds from the higher-categorical perspective of manifold diagrams and tangles. → read note
The Pontryagin-Thom construction is a deep relation between smooth manifold theory and homotopy theory. We use the language of manifold diagrams and computads to give a purely combinatorial perspective on the construction. On our way, we’ll discuss computadic functors and transformations, and how the combinatorics of manifold diagrams may provide a “combinatorialization” of smooth structures on manifolds altogether. → read note
Mazur manifolds are intimately related to homology spheres, and are part of the puzzling world of 4-manifolds. Here we construct the simplest example of a Mazur manifold as a tangle diagram. → read note
This note gives a brief visual guide to how one can understand the classical \(D_4\) singularity in terms of a categorical pasting diagram (aka manifold diagram, or more specifically, a tame tangle). → read note
`Framed combinatorial topology’ is the title of a book we just uploaded to the arXiv. On the linked page you’ll find more information! → go to link
We allow ourselves to speculate a bit about how the 1-dimensional logical constructs that one frequently encounters in practical approaches to mathematical foundations may in fact emerge from a set of “more fundamental” principles of compositionality in higher-dimensional logic. → read note
We allow ourselves to speculate a bit about how the 1-dimensional logical constructs that one frequently encounters in practical approaches to mathematical foundations may in fact emerge from a set of “more fundamental” principles of compositionality in higher-dimensional logic. → read note
This short note takes a birds-eye perspective on motivations for working as a researcher in mathematics and physics (which are first and foremost motivations personal to me, but I think they may be shared with many others). I briefly round up some (glimmers of) potentially interesting projects that I find fascinating. The note is written on the occasion on moving on to other endeavors. → read note
This short note takes a birds-eye perspective on motivations for working as a researcher in mathematics and physics (which are first and foremost motivations personal to me, but I think they may be shared with many others). I briefly round up some (glimmers of) potentially interesting projects that I find fascinating. The note is written on the occasion on moving on to other endeavors. → read note